Variation in diet composition and its relation to gut microbiota in a passerine bird

. 2022 Mar 08 ; 12 (1) : 3787. [epub] 20220308

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35260644
Odkazy

PubMed 35260644
PubMed Central PMC8904835
DOI 10.1038/s41598-022-07672-9
PII: 10.1038/s41598-022-07672-9
Knihovny.cz E-zdroje

Quality and quantity of food items consumed has a crucial effect on phenotypes. In addition to direct effects mediated by nutrient resources, an individual's diet can also affect the phenotype indirectly by altering its gut microbiota, a potent modulator of physiological, immunity and cognitive functions. However, most of our knowledge of diet-microbiota interactions is based on mammalian species, whereas little is still known about these effects in other vertebrates. We developed a metabarcoding procedure based on cytochrome c oxidase I high-throughput amplicon sequencing and applied it to describe diet composition in breeding colonies of an insectivorous bird, the barn swallow (Hirundo rustica). To identify putative diet-microbiota associations, we integrated the resulting diet profiles with an existing dataset for faecal microbiota in the same individual. Consistent with previous studies based on macroscopic analysis of diet composition, we found that Diptera, Hemiptera, Coleoptera and Hymenoptera were the dominant dietary components in our population. We revealed pronounced variation in diet consumed during the breeding season, along with significant differences between nearby breeding colonies. In addition, we found no difference in diet composition between adults and juveniles. Finally, our data revealed a correlation between diet and faecal microbiota composition, even after statistical control for environmental factors affecting both diet and microbiota variation. Our study suggests that variation in diet induce slight but significant microbiota changes in a non-mammalian host relying on a narrow spectrum of items consumed.

Zobrazit více v PubMed

Büyükdeveci ME, Balcázar JL, Demirkale İ, Dikel S. Effects of garlic-supplemented diet on growth performance and intestinal microbiota of rainbow trout (Oncorhynchus mykiss) Aquaculture. 2018;486:170–174.

Maklakov AA, et al. Sex-specific fitness effects of nutrient intake on reproduction and lifespan. Curr. Biol. 2008;18:1062–1066. PubMed

Totsch SK, et al. Effects of a Standard American Diet and an anti-inflammatory diet in male and female mice. Eur. J. Pain. 2018;22:1203–1213. PubMed

Green DA, Millar JS. Changes in gut dimensions and capacity of Peromyscus maniculatus relative to diet quality and energy needs. Can. J. Zool. 1987;65:2159–2162.

Jones VA, et al. Crohn’s disease: Maintenance of remission by diet. Lancet. 1985;2:177–180. PubMed

Hirai T. Ontogenetic change in the diet of the pond frog, Rana nigromaculata. Ecol. Res. 2002;17:639–644.

Qin J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. PubMed PMC

Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164:337–340. PubMed

Reikvam DH, et al. Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression. PLoS ONE. 2011;6:e17996. PubMed PMC

Sommer F, Bäckhed F. The gut microbiota-masters of host development and physiology. Nat. Rev. Microbiol. 2013;11:227–238. PubMed

Ley RE, et al. Evolution of mammals and their gut microbes. Science. 2008;320:1647–1651. PubMed PMC

Muegge BD, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332:970–974. PubMed PMC

Youngblut ND, et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 2019;10:2200. PubMed PMC

Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: Human gut microbes associated with obesity. Nature. 2006;444:1022–1023. PubMed

Zhu, Y. et al. Beef, chicken, and soy proteins in diets induce different gut microbiota and metabolites in rats. Front. Microbiol.8, 1395 (2017). PubMed PMC

Zimmer J, et al. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur. J. Clin. Nutr. 2012;66:53–60. PubMed

McKenney EA, Rodrigo A, Yoder AD. Patterns of gut bacterial colonization in three primate species. PLoS ONE. 2015;10:e0124618. PubMed PMC

Bergmann GT. Microbial community composition along the digestive tract in forage- and grain-fed bison. BMC Vet. Res. 2017;13:253. PubMed PMC

Phillips CD, et al. Microbiome structural and functional interactions across host dietary niche space. Integr. Comp. Biol. 2017;57:743–755. PubMed

Song, S. J. et al. Comparative analyses of vertebrate gut microbiomes reveal convergence between birds and bats. mBio11, e02901–19 (2020). PubMed PMC

Bodawatta, K. H., Sam, K., Jønsson, K. A. & Poulsen, M. Comparative analyses of the digestive tract microbiota of New Guinean passerine birds. Front. Microbiol.9, 1830 (2018). PubMed PMC

Capunitan DC, Johnson O, Terrill RS, Hird SM. Evolutionary signal in the gut microbiomes of 74 bird species from Equatorial Guinea. Mol. Ecol. 2020;29:829–847. PubMed

Hird SM, Sánchez C, Carstens BC, Brumfield RT. Comparative gut microbiota of 59 neotropical bird species. Front. Microbiol. 2015;6:1403. PubMed PMC

Waite DW, Taylor MW. Characterizing the avian gut microbiota: membership, driving influences, and potential function. Front. Microbiol. 2014;5:223. PubMed PMC

Loo WT, Dudaniec RY, Kleindorfer S, Cavanaugh CM. An inter-island comparison of Darwin’s finches reveals the impact of habitat, host phylogeny, and island on the gut microbiome. PLoS ONE. 2019;14:e0226432. PubMed PMC

Loo WT, García-Loor J, Dudaniec RY, Kleindorfer S, Cavanaugh CM. Host phylogeny, diet, and habitat differentiate the gut microbiomes of Darwin’s finches on Santa Cruz Island. Sci. Rep. 2019;9:1–12. PubMed PMC

Murray MH, et al. Gut microbiome shifts with urbanization and potentially facilitates a zoonotic pathogen in a wading bird. PLoS ONE. 2020;15:e0220926. PubMed PMC

Orłowski G, Karg J. Diet of nestling Barn Swallows Hirundo rustica in rural areas of Poland. Cent. Eur. J. Biol. 2011;6:1023–1035.

Wiesenborn WD, Heydon SL. Diets of breeding southwestern willow flycatchers in different habitats. Wilson J. Ornithol. 2007;119:547–557.

Moreby SJ. An aid to the identification of arthropod fragments in the faeces of gamebird chicks (Galliformes) Ibis. 1988;130:519–526.

Zeale MRK, Butlin RK, Barker GLA, Lees DC, Jones G. Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Mol. Ecol. Resour. 2011;11:236–244. PubMed

Bolnick DI, et al. Individuals’ diet diversity influences gut microbial diversity in two freshwater fish (threespine stickleback and Eurasian perch) Ecol. Lett. 2014;17:979–987. PubMed PMC

Bolnick DI, et al. Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat. Commun. 2014;5:4500. PubMed PMC

Clarke LJ, Soubrier J, Weyrich LS, Cooper A. Environmental metabarcodes for insects: In silico PCR reveals potential for taxonomic bias. Mol. Ecol. Resour. 2014;14:1160–1170. PubMed

Deagle, B. E., Jarman, S. N., Coissac, E., Pompanon, F. & Taberlet, P. DNA metabarcoding and the cytochrome c oxidase subunit I marker: Not a perfect match. Biol. Lett.10, 20140562 (2014). PubMed PMC

Elbrecht V, et al. Testing the potential of a ribosomal 16S marker for DNA metabarcoding of insects. PeerJ. 2016;4:e1966. PubMed PMC

Elbrecht V, Leese F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass—Sequence relationships with an innovative metabarcoding protocol. PLoS ONE. 2015;10:e0130324. PubMed PMC

Piñol J, San Andrés V, Clare EL, Mir G, Symondson WOC. A pragmatic approach to the analysis of diets of generalist predators: The use of next-generation sequencing with no blocking probes. Mol. Ecol. Resour. 2014;14:18–26. PubMed

Góngora E, Elliott KH, Whyte L. Gut microbiome is affected by inter-sexual and inter-seasonal variation in diet for thick-billed murres (Uria lomvia) Sci. Rep. 2021;11:1200. PubMed PMC

Teyssier A, et al. Diet contributes to urban-induced alterations in gut microbiota: Experimental evidence from a wild passerine. Proc. R. Soc. B. 2020;287:20192182. PubMed PMC

Kreisinger J, et al. Temporal stability and the effect of transgenerational transfer on fecal microbiota structure in a long distance migratory bird. Front. Microbiol. 2017;8:50. PubMed PMC

Petrželková A, et al. Brood parasitism and quasi-parasitism in the European barn swallow (Hirundo rustica rustica) Behav. Ecol. Sociobiol. 2015;69:1405–1414.

Kreisinger J, et al. Fecal microbiota associated with phytohaemagglutinin-induced immune response in nestlings of a passerine bird. Ecol. Evol. 2018;8:9793–9802. PubMed PMC

Klindworth A, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1. PubMed PMC

Elbrecht, V. & Leese, F. Validation and development of COI metabarcoding primers for freshwater macroinvertebrate bioassessment. Front. Environ. Sci.5, 11 (2017).

Jiang H, Lei R, Ding S-W, Zhu S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinform. 2014;15:182. PubMed PMC

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2018).

Callahan BJ, et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Meth. 2016;13:581–583. PubMed PMC

Pafčo B, et al. Metabarcoding analysis of strongylid nematode diversity in two sympatric primate species. Sci. Rep. 2018;8:5933. PubMed PMC

Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007;73:5261–5267. PubMed PMC

McMurdie PJ, Holmes S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217. PubMed PMC

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–2200. PubMed PMC

Quast C, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596. PubMed PMC

Wright ES. RNAconTest: Comparing tools for noncoding RNA multiple sequence alignment based on structural consistency. RNA. 2020;26:531–540. PubMed PMC

Price MN, Dehal PS, Arkin AP. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 2009;26:1641–1650. PubMed PMC

Douglas GM, et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020;38:685–688. PubMed PMC

Caspi R, et al. The MetaCyc database of metabolic pathways and enzymes—A 2019 update. Nucleic Acids Res. 2020;48:D445–D453. PubMed PMC

Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in a Web browser. BMC Bioinform. 2011;12:385. PubMed PMC

Stoffel MA, Nakagawa S, Schielzeth H. rptR: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 2017;8:1639–1644.

Schielzeth H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 2010;1:103–113.

Legendre P, Anderson MJ. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 1999;69:1–24.

Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-2. 2018. (2018).

Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15, 550 (2014). PubMed PMC

Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995;57:289–300.

Hui FKC. boral–Bayesian ordination and regression analysis of multivariate abundance data in R. Methods Ecol. Evol. 2016;7:744–750.

Aivelo T, Norberg A. Parasite-microbiota interactions potentially affect intestinal communities in wild mammals. J. Anim. Ecol. 2018;87:438–447. PubMed

Caviedes-Vidal E, et al. The digestive adaptation of flying vertebrates: High intestinal paracellular absorption compensates for smaller guts. Proc. Natl. Acad. Sci. U.S.A. 2007;104:19132–19137. PubMed PMC

McWhorter TJ, Caviedes-Vidal E, Karasov WH. The integration of digestion and osmoregulation in the avian gut. Biol. Rev. Camb. Philos. Soc. 2009;84:533–565. PubMed

Grigolo CP, et al. Diet heterogeneity and antioxidant defence in Barn Swallow Hirundo rustica nestlings. Avocetta. 2019;43:1.

Law AA, et al. Diet and prey selection of barn swallows (Hirundo rustica) at Vancouver International Airport. Canadian Field-Naturalist. 2017;131:26.

McClenaghan, B., Nol, E. & Kerr, K. C. R. DNA metabarcoding reveals the broad and flexible diet of a declining aerial insectivore. Auk136, uky003 (2019).

Turner AK. The use of time and energy by aerial feeding birds. University of Stirling; 1981.

Bryant DM, Turner AK. Central place foraging by swallows (Hirundinidae): The question of load size. Anim. Behav. 1982;30:845–856.

Møller AP. Advantages and disadvantages of coloniality in the swallow, Hirundo rustica. Anim. Behav. 1987;35:819–832.

Brodmann PA, Reyer H-U. Nestling provisioning in water pipits (Anthus spinoletta): Do parents go for specific nutrients or profitable prey? Oecologia. 1999;120:506–514. PubMed

Herlugson CJ. Food of adult and nestling Western and Mountain bluebirds. Murrelet. 1982;63:59–65.

Batt BDJ, Anderson MG, Afton AD. Ecology and management of breeding waterfowl. Univ of Minnesota Press; 1992.

Douglas DJT, Evans DM, Redpath SM. Selection of foraging habitat and nestling diet by Meadow Pipits Anthus pratensis breeding on intensively grazed moorland. Bird Study. 2008;55:290–296.

Waugh DR. Predation strategies in aerial feeding birds. University of Stirling; 1978.

Kropáčková L, et al. Co-diversification of gastrointestinal microbiota and phylogeny in passerines is not explained by ecological divergence. Mol. Ecol. 2017;26:5292–5304. PubMed

Kohl KD, et al. Physiological and microbial adjustments to diet quality permit facultative herbivory in an omnivorous lizard. J. Exp. Biol. 2016;219:1903–1912. PubMed

Baxter NT, et al. Intra- and interindividual variations mask interspecies variation in the microbiota of sympatric Peromyscus populations. Appl. Environ. Microbiol. 2015;81:396–404. PubMed PMC

Holmes IA, Monagan IV, Jr, Rabosky DL, Davis Rabosky AR. Metabolically similar cohorts of bacteria exhibit strong cooccurrence patterns with diet items and eukaryotic microbes in lizard guts. Ecol. Evol. 2019;9:12471–12481. PubMed PMC

Li, H. et al. Diet diversity is associated with beta but not alpha diversity of pika gut microbiota. Front. Microbiol. 7, 1169 (2016). PubMed PMC

Li H, et al. Diet simplification selects for high gut microbial diversity and strong fermenting ability in high-altitude pikas. Appl. Microbiol. Biotechnol. 2018;102:6739–6751. PubMed

Ambrosini, R. et al. Cloacal microbiomes and ecology of individual barn swallows. FEMS Microbiol. Ecol. 95, fiz061 (2019). PubMed

Kreisinger J, Čížková D, Kropáčková L, Albrecht T. Cloacal microbiome structure in a long-distance migratory bird assessed using deep 16sRNA pyrosequencing. PLoS ONE. 2015;10:e0137401. PubMed PMC

Noguera, J. C., Aira, M., Pérez-Losada, M., Domínguez, J. & Velando, A. Glucocorticoids modulate gastrointestinal microbiome in a wild bird. R. Soc. Open Sci.5, 171743 (2018). PubMed PMC

Shehzad W, et al. Carnivore diet analysis based on next-generation sequencing: Application to the leopard cat (Prionailurus bengalensis) in Pakistan. Mol. Ecol. 2012;21:1951–1965. PubMed

Vestheim H, Jarman SN. Blocking primers to enhance PCR amplification of rare sequences in mixed samples—A case study on prey DNA in Antarctic krill stomachs. Front. Zool. 2008;5:12. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...