Temporal Stability and the Effect of Transgenerational Transfer on Fecal Microbiota Structure in a Long Distance Migratory Bird
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28220109
PubMed Central
PMC5292904
DOI
10.3389/fmicb.2017.00050
Knihovny.cz E-zdroje
- Klíčová slova
- barn swallow, fecal microbiota, gastrointestinal tract, metagenome, microbiome, symbiosis,
- Publikační typ
- časopisecké články MeSH
Animal bodies are inhabited by a taxonomically and functionally diverse community of symbiotic and commensal microorganisms. From an ecological and evolutionary perspective, inter-individual variation in host-associated microbiota contributes to physiological and immune system variation. As such, host-associated microbiota may be considered an integral part of the host's phenotype, serving as a substrate for natural selection. This assumes that host-associated microbiota exhibits high temporal stability, however, and that its composition is shaped by trans-generational transfer or heritable host-associated microbiota modulators encoded by the host genome. Although this concept is widely accepted, its crucial assumptions have rarely been tested in wild vertebrate populations. We performed 16S rRNA metabarcoding on an extensive set of fecal microbiota (FM) samples from an insectivorous, long-distance migratory bird, the barn swallow (Hirundo rustica). Our data revealed clear differences in FM among juveniles and adults as regards taxonomic and functional composition, diversity and co-occurrence network complexity. Multiple FM samples from the same juvenile or adult collected within single breeding seasons exhibited higher similarity than expected by chance, as did adult FM samples over two consecutive years. Despite low effect sizes for FM stability over time at the community level, we identified an adult FM subset with relative abundances exhibiting significant temporal consistency, possibly inducing long-term effects on the host phenotype. Our data also indicate a slight maternal (but not paternal) effect on FM composition in social offspring, though this is unlikely to persist into adulthood. We discuss our findings in the context of both evolution and ecology of microbiota vs. host interactions and barn swallow biology.
Department of Ecology Faculty of Science Charles University Prague Czechia
Department of Zoology Faculty of Science Charles University Prague Czechia
Institute of Vertebrate Biology Czech Academy of Sciences Studenec Czechia
Zobrazit více v PubMed
Abe F., Ishibashi N., Shimamura S. (1995). Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets. J. Dairy Sci. 78 2838–2846. 10.3168/jds.S0022-0302(95)76914-4 PubMed DOI
Amato K. R. (2013). Co-evolution in context: the importance of studying gut microbiomes in wild animals. Microbiome Sci. Med. 1 10–29. 10.2478/micsm-2013-0002 DOI
Amato K. R., Yeoman C. J., Kent A., Righini N., Carbonero F., Estrada A., et al. (2013). Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 7 1344–1353. 10.1038/ismej.2013.16 PubMed DOI PMC
Askarian F., Zhou Z., Olsen R. E., Sperstad S., Ringø E. (2012). Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquaculture 326–329, 1–8. 10.1016/j.aquaculture.2011.10.016 DOI
Bäckhed F., Ley R. E., Sonnenburg J. L., Peterson D. A., Gordon J. I. (2005). Host-bacterial mutualism in the human intestine. Science 307 1915–1920. 10.1126/science.1104816 PubMed DOI
Bäckhed F., Roswall J., Peng Y., Feng Q., Jia H., Kovatcheva-Datchary P., et al. (2015). Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17 690–703. 10.1016/j.chom.2015.04.004 PubMed DOI
Bates D., Mächler M., Bolker B., Walker S. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67 1–48. 10.18637/jss.v067.i01 DOI
Baxter N. T., Wan J. J., Schubert A. M., Jenior M. L., Myers P., Schloss P. D. (2015). Intra- and interindividual variations mask interspecies variation in the microbiota of sympatric Peromyscus populations. Appl. Environ. Microbiol. 81 396–404. 10.1128/AEM.02303-14 PubMed DOI PMC
Becker A. A. M. J., Janssens G. P. J., Snauwaert C., Hesta M., Huys G. (2015). Integrated community profiling indicates long-term temporal stability of the predominant faecal microbiota in captive cheetahs. PLoS ONE 10:e0123933 10.1371/journal.pone.0123933 PubMed DOI PMC
Bennett P., Owens I. (2002). Evolutionary Ecology of Birds: Life Histories, Mating Systems, and Extinction. Oxford: Oxford University Press.
Benskin C. M. H., Rhodes G., Pickup R. W., Mainwaring M. C., Wilson K., Hartley I. R. (2015). Life history correlates of fecal bacterial species richness in a wild population of the blue tit Cyanistes caeruleus. Ecol. Evol. 5 821–835. 10.1002/ece3.1384 PubMed DOI PMC
Benskin C. M. H., Rhodes G., Pickup R. W., Wilson K., Hartley I. R. (2010). Diversity and temporal stability of bacterial communities in a model passerine bird, the zebra finch. Mol. Ecol. 19 5531–5544. 10.1111/j.1365-294X.2010.04892.x PubMed DOI
Benson A. K., Kelly S. A., Legge R., Ma F., Low S. J., Kim J., et al. (2010). Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc. Natl. Acad. Sci. U.S.A. 107 18933–18938. 10.1073/pnas.1007028107 PubMed DOI PMC
Bode L. (2012). Human milk oligosaccharides: every baby needs a sugar mama Glycobiology 22 1147–1162. 10.1093/glycob/cws074 PubMed DOI PMC
Bolnick D. I., Snowberg L. K., Caporaso J. G., Lauber C., Knight R., Stutz W. E. (2014). Major histocompatibility complex class IIb polymorphism influences gut microbiota composition and diversity. Mol. Ecol. 23 4831–4845. 10.1111/mec.12846 PubMed DOI
Bordenstein S. R., Theis K. R. (2015). Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol. 13:e1002226 10.1371/journal.pbio.1002226 PubMed DOI PMC
Borland S. E., Robinson S. M., Crozier S. R., Inskip H. M. (2007). Stability of dietary patterns in young women over a 2-year period. Eur. J. Clin. Nutr. 62 119–126. 10.1038/sj.ejcn.1602684 PubMed DOI
Bourgon R., Gentleman R., Huber W. (2010). Independent filtering increases detection power for high-throughput experiments. Proc. Natl. Acad. Sci. U.S.A. 107 9546–9551. 10.1073/pnas.0914005107 PubMed DOI PMC
Boutin S., Bernatchez L., Audet C., Derôme N. (2012). Antagonistic effect of indigenous skin bacteria of brook charr (Salvelinus fontinalis) against Flavobacterium columnare and F. psychrophilum. Vet. Microbiol. 155 355–361. 10.1016/j.vetmic.2011.09.002 PubMed DOI
Braun E. J., Campbell C. E. (1989). Uric acid decomposition in the lower gastrointestinal tract. J. Exp. Zool. 252 70–74. 10.1002/jez.1402520512 PubMed DOI
Brucker R. M., Bordenstein S. R. (2012). Speciation by symbiosis. Trends Ecol. Evol. 27 443–451. 10.1016/j.tree.2012.03.011 PubMed DOI
Caporaso J. G., Bittinger K., Bushman F. D., DeSantis T. Z., Andersen G. L., Knight R. (2010a). PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26 266–267. 10.1093/bioinformatics/btp636 PubMed DOI PMC
Caporaso J. G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F. D., Costello E. K., et al. (2010b). QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7 335–336. 10.1038/nmeth.f.303 PubMed DOI PMC
Caviedes-Vidal E., Karasov W. H. (2001). Developmental changes in digestive physiology of nestling house sparrows, Passer domesticus. Physiol. Biochem. Zool. 74 769–782. 10.1086/322966 PubMed DOI
Caviedes-Vidal E., McWhorter T. J., Lavin S. R., Chediack J. G., Tracy C. R., Karasov W. H. (2007). The digestive adaptation of flying vertebrates: high intestinal paracellular absorption compensates for smaller guts. Proc. Natl. Acad. Sci. U.S.A 104 19132–19137. 10.1073/pnas.0703159104 PubMed DOI PMC
Chu H. W., Honour J. M., Rawlinson C. A., Harbeck R. J., Martin R. J. (2003). Effects of respiratory Mycoplasma pneumoniae infection on allergen-induced bronchial hyperresponsiveness and lung inflammation in mice. Infect. Immun. 71 1520–1526. 10.1128/IAI.71.3.1520-1526.2003 PubMed DOI PMC
Correa N. B. O., Peret Filho L. A., Penna F. J., Lima F. M. L. S., Nicoli J. R. (2005). A randomized formula controlled trial of Bifidobacterium lactis and Streptococcus thermophilus for prevention of antibiotic-associated diarrhea in infants. J. Clin. Gastroenterol. 39 385–389. 10.1097/01.mcg.0000159217.47419.5b PubMed DOI
Costea P. I., Lundeberg J., Akan P. (2013). TagGD: fast and accurate software for DNA Tag generation and demultiplexing. PLoS ONE 8:e57521 10.1371/journal.pone.0057521 PubMed DOI PMC
Dapito D. H., Mencin A., Gwak G.-Y., Pradere J.-P., Jang M.-K., Mederacke I., et al. (2012). Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21 504–516. 10.1016/j.ccr.2012.02.007 PubMed DOI PMC
David L. A., Maurice C. F., Carmody R. N., Gootenberg D. B., Button J. E., Wolfe B. E., et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature 505 559–563. 10.1038/nature12820 PubMed DOI PMC
den Besten G., van Eunen K., Groen A. K., Venema K., Reijngoud D.-J., Bakker B. M. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54 2325–2340. 10.1194/jlr.R036012 PubMed DOI PMC
DeSantis T. Z., Hugenholtz P., Larsen N., Rojas M., Brodie E. L., Keller K., et al. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72 5069–5072. 10.1128/AEM.03006-05 PubMed DOI PMC
DiBaise J. K., Frank D. N., Mathur R. (2012). Impact of the gut microbiota on the development of obesity: current concepts. Am. J. Gastroenterol. Suppl. 1 22–27. 10.1038/ajgsup.2012.5 DOI
Edgar R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10 996–998. 10.1038/nmeth.2604 PubMed DOI
Edgar R. C., Haas B. J., Clemente J. C., Quince C., Knight R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27 2194–2200. 10.1093/bioinformatics/btr381 PubMed DOI PMC
Edstrom K. M., Devine C. M. (2001). Consistency in women’s orientations to food and nutrition in midlife and older age: a 10-year qualitative follow-up. J. Nutr. Educ. 33 215–223. 10.1016/S1499-4046(06)60034-1 PubMed DOI
Epskamp S., Cramer A. O. J., Waldorp L. J., Schmittmann V. D., Borsboom D. (2012). Qgraph: network visualizations of relationships in psychometric data. J. Stat. Softw. 48 1–18. 10.18637/jss.v048.i04 DOI
Faith J. J., Guruge J. L., Charbonneau M., Subramanian S., Seedorf H., Goodman A. L., et al. (2013). The long-term stability of the human gut microbiota. Science 341:1237439 10.1126/science.1237439 PubMed DOI PMC
Falush D., Wirth T., Linz B., Pritchard J. K., Stephens M., Kidd M., et al. (2003). Traces of human migrations in Helicobacter pylori populations. Science 299 1582–1585. 10.1126/science.1080857 PubMed DOI
Faust K., Sathirapongsasuti J. F., Izard J., Segata N., Gevers D., Raes J., et al. (2012). Microbial co-occurrence relationships in the human microbiome. PLOS Comput. Biol. 8:e1002606 10.1371/journal.pcbi.1002606 PubMed DOI PMC
Funkhouser L. J., Bordenstein S. R. (2013). Mom knows best: the universality of maternal microbial transmission. PLoS Biol. 11:e1001631 10.1371/journal.pbio.1001631 PubMed DOI PMC
Garamszegi L. Z., Eens M., Hurtrez-Boussès S., Møller A. P. (2005). Testosterone, testes size, and mating success in birds: a comparative study. Horm. Behav. 47 389–409. 10.1016/j.yhbeh.2004.11.008 PubMed DOI
González-Braojos S., Vela A. I., Ruiz-De-Castañeda R., Briones V., Cantarero A., Moreno J. (2012a). Is nestling growth affected by nest reuse and skin bacteria in Pied Flycatchers Ficedula hypoleuca? Acta Ornithol. 47 119–127. 10.3161/000164512X662223 DOI
González-Braojos S., Vela A. I., Ruiz-de-Castañeda R., Briones V., Moreno J. (2012b). Age-related changes in abundance of enterococci and Enterobacteriaceae in Pied Flycatcher (Ficedula hypoleuca) nestlings and their association with growth. J. Ornithol. 153 181–188. 10.1007/s10336-011-0725-y DOI
Harbour S., Sutton P. (2008). Immunogenicity and pathogenicity of Helicobacter infections of veterinary animals. Vet. Immunol. Immunopathol. 122 191–203. 10.1016/j.vetimm.2007.12.003 PubMed DOI
Hildebrand F., Tadeo R., Voigt A. Y., Bork P., Raes J. (2014). LotuS: an efficient and user-friendly OTU processing pipeline. Microbiome 2:30 10.1186/2049-2618-2-30 PubMed DOI PMC
Hird S. M., Sánchez C., Carstens B. C., Brumfield R. T. (2015). Comparative gut microbiota of 59 neotropical bird species. Front. Microbiol. 6:1403 10.3389/fmicb.2015.01403 PubMed DOI PMC
Hoy Y. E., Bik E. M., Lawley T. D., Holmes S. P., Monack D. M., Theriot J. A., et al. (2015). Variation in taxonomic composition of the fecal microbiota in an inbred mouse strain across individuals and time. PLoS ONE 10:e0142825 10.1371/journal.pone.0142825 PubMed DOI PMC
Janson E. M., Stireman J. O., Singer M. S., Abbot P. (2008). Phytophagous insect-microbe mutualisms and adaptive evolutionary diversification. Evol. Int. J. Org. Evol. 62 997–1012. 10.1111/j.1558-5646.2008.00348.x PubMed DOI
Jumpertz R., Le D. S., Turnbaugh P. J., Trinidad C., Bogardus C., Gordon J. I., et al. (2011). Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am. J. Clin. Nutr. 94 58–65. 10.3945/ajcn.110.010132 PubMed DOI PMC
Kandler O. (1983). Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 49 209–224. 10.1007/BF00399499 PubMed DOI
Kanehisa M., Goto S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28 27–30. 10.1093/nar/28.1.27 PubMed DOI PMC
Karasov W. H. (1990). Digestion in birds: chemical and physiological determinants and ecological implications. Stud. Avian Biol. 13 391–415.
Killpack T. L., Oguchi Y., Karasov W. H. (2013). Ontogenetic patterns of constitutive immune parameters in altricial house sparrows. J. Avian Biol. 44 513–520. 10.1111/j.1600-048X.2013.00239.x DOI
Kirkwood J. K., Macgregor S. K., Malnick H., Foster G. (2006). Unusual mortality incidents in tit species (family Paridae) associated with the novel bacterium Suttonella ornithocola. Vet. Rec. 158 203–205. 10.1136/vr.158.6.203 PubMed DOI
Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C., Horn M., et al. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41:e1 10.1093/nar/gks808 PubMed DOI PMC
Koch H., Schmid-Hempel P. (2011). Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl. Acad. Sci. U.S.A. 108 19288–19292. 10.1073/pnas.1110474108 PubMed DOI PMC
Koren O., Goodrich J. K., Cullender T. C., Spor A., Laitinen K., Bäckhed H. K., et al. (2012). Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150 470–480. 10.1016/j.cell.2012.07.008 PubMed DOI PMC
Kreisinger J., Bastien G., Hauffe H. C., Marchesi J., Perkins S. E. (2015a). Interactions between multiple helminths and the gut microbiota in wild rodents. Philos. Trans. R. Soc. B 370 20140295 10.1098/rstb.2014.0295 PubMed DOI PMC
Kreisinger J., Čížková D., Kropáčková L., Albrecht T. (2015b). Cloacal microbiome structure in a long-distance migratory bird assessed using deep 16sRNA pyrosequencing. PLoS ONE 10:e0137401 10.1371/journal.pone.0137401 PubMed DOI PMC
Kreisinger J., Čížková D., Vohánka J., Piálek J. (2014). Gastrointestinal microbiota of wild and inbred individuals of two house mouse subspecies assessed using high-throughput parallel pyrosequencing. Mol. Ecol. 23 5048–5060. 10.1111/mec.12909 PubMed DOI
Kumar M., Babaei P., Ji B., Nielsen J. (2016). Human gut microbiota and healthy aging: recent developments and future prospective. Nutr. Healthy Aging 4 3–16. 10.3233/NHA-150002 PubMed DOI PMC
Langille M. G. I., Zaneveld J., Caporaso J. G., McDonald D., Knights D., Reyes J. A., et al. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31 814–821. 10.1038/nbt.2676 PubMed DOI PMC
Lewis W. B., Moore F. R., Wang S. (2016). Characterization of the gut microbiota of migratory passerines during stopover along the northern coast of the Gulf of Mexico. J. Avian Biol. 47 659–668. 10.1111/jav.00954 DOI
Ley R. E., Hamady M., Lozupone C., Turnbaugh P., Ramey R. R., Bircher J. S., et al. (2008). Evolution of mammals and their gut microbes. Science 320 1647–1651. 10.1126/science.1155725 PubMed DOI PMC
Lim M. Y., Rho M., Song Y.-M., Lee K., Sung J., Ko G. (2014). Stability of gut enterotypes in Korean monozygotic twins and their association with biomarkers and diet. Sci. Rep. 4:7348 10.1038/srep07348 PubMed DOI PMC
Liu J. R., Lai S. F., Yu B. (2007). Evaluation of an intestinal Lactobacillus reuteri strain expressing rumen fungal xylanase as a probiotic for broiler chickens fed on a wheat-based diet. Br. Poult. Sci. 48 507–514. 10.1080/00071660701485034 PubMed DOI
Ljungh A., Wadström T. (2006). Lactic acid bacteria as probiotics. Curr. Issues Intest. Microbiol. 7 73–89. PubMed
Love M. I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550 10.1186/s13059-014-0550-8 PubMed DOI PMC
Lozupone C., Knight R. (2005). UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71 8228–8235. 10.1128/AEM.71.12.8228-8235.2005 PubMed DOI PMC
Lucas F. S., Heeb P. (2005). Environmental factors shape cloacal bacterial assemblages in great tit Parus major and blue tit P. caeruleus nestlings. J. Avian Biol. 36 510–516. 10.1111/j.0908-8857.2005.03479.x DOI
Mach N., Berri M., Estellé J., Levenez F., Lemonnier G., Denis C., et al. (2015). Early-life establishment of the swine gut microbiome and impact on host phenotypes. Environ. Microbiol. Rep. 7 554–569. 10.1111/1758-2229.12285 PubMed DOI
Macpherson A. J., Harris N. L. (2004). Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 4 478–485. 10.1038/nri1373 PubMed DOI
Maurice C. F., Cl Knowles S., Ladau J., Pollard K. S., Fenton A., Pedersen A. B., et al. (2015). Marked seasonal variation in the wild mouse gut microbiota. ISME J. 9 2423–2434. 10.1038/ismej.2015.53 PubMed DOI PMC
McKnite A. M., Perez-Munoz M. E., Lu L., Williams E. G., Brewer S., Andreux P. A., et al. (2012). Murine gut microbiota is defined by host genetics and modulates variation of metabolic traits. PLoS ONE 7:e39191 10.1371/journal.pone.0039191 PubMed DOI PMC
McMurdie P. J., Holmes S. (2013). phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217 10.1371/journal.pone.0061217 PubMed DOI PMC
McMurdie P. J., Holmes S. (2014). Waste not, want not: why rarefying microbiome data is inadmissible. PLOS Comput. Biol. 10:e1003531 10.1371/journal.pcbi.1003531 PubMed DOI PMC
McWhorter T. J., Caviedes-Vidal E., Karasov W. H. (2009). The integration of digestion and osmoregulation in the avian gut. Biol. Rev. 84 533–565. 10.1111/j.1469-185X.2009.00086.x PubMed DOI
Møller A. P. (1994). Sexual Selection and the Barn Swallow. Oxford: Oxford University Press.
Morris B. E. L., Henneberger R., Huber H., Moissl-Eichinger C. (2013). Microbial syntrophy: interaction for the common good. FEMS Microbiol. Rev. 37 384–406. 10.1111/1574-6976.12019 PubMed DOI
Moya A., Ferrer M. (2016). Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends Microbiol. 24 402–413. 10.1016/j.tim.2016.02.002 PubMed DOI
Muegge B. D., Kuczynski J., Knights D., Clemente J. C., González A., Fontana L., et al. (2011). Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332 970–974. 10.1126/science.1198719 PubMed DOI PMC
Mulder M., Ranchor A. V., Sanderman R., Bouma J., van den Heuvel W. J. (1998). The stability of lifestyle behaviour. Int. J. Epidemiol. 27 199–207. 10.1093/ije/27.2.199 PubMed DOI
Org E., Mehrabian M., Parks B. W., Shipkova P., Liu X., Drake T. A., et al. (2016). Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes 7 313–322. 10.1080/19490976.2016.1203502 PubMed DOI PMC
Perry G. C. (2006). Avian Gut Function in Health and Disease. Wallingford: CABI.
Petrželková A., Michálková R., Albrechtová J., Cepák J., Honza M., Kreisinger J., et al. (2015). Brood parasitism and quasi-parasitism in the European barn swallow Hirundo rustica rustica. Behav. Ecol. Sociobiol. 69 1405–1414. 10.1007/s00265-015-1953-6 DOI
Plonka P. M., Grabacka M. (2006). Melanin synthesis in microorganisms–biotechnological and medical aspects. Acta Biochim. Pol. 53 429–443. PubMed
Potrikus C. J., Breznak J. A. (1981). Gut bacteria recycle uric acid nitrogen in termites: A strategy for nutrient conservation. Proc. Natl. Acad. Sci. U.S.A. 78 4601–4605. 10.1073/pnas.78.7.4601 PubMed DOI PMC
Price M. N., Dehal P. S., Arkin A. P. (2009). FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26 1641–1650. 10.1093/molbev/msp077 PubMed DOI PMC
Qin J., Li R., Raes J., Arumugam M., Burgdorf K. S., Manichanh C., et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464 59–65. 10.1038/nature08821 PubMed DOI PMC
R Core Team (2015). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Reikvam D. H., Erofeev A., Sandvik A., Grcic V., Jahnsen F. L., Gaustad P., et al. (2011). Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression. PLoS ONE 6:e17996 10.1371/journal.pone.0017996 PubMed DOI PMC
Riley M. A., Wertz J. E. (2002). Bacteriocins: evolution, ecology, and application. Annu. Rev. Microbiol. 56 117–137. 10.1146/annurev.micro.56.012302.161024 PubMed DOI
Ritchie B. W., Harrison G. J., Harrison L. R. (1994). Avian Medicine: Principles and Application. Lake Worth, FL: Wingers Publishing.
Ruiz F. O., Gerbaldo G., Asurmendi P., Pascual L. M., Giordano W., Barberis I. L. (2009). Antimicrobial activity, inhibition of urogenital pathogens, and synergistic interactions between lactobacillus strains. Curr. Microbiol. 59 497–501. 10.1007/s00284-009-9465-0 PubMed DOI
Ruiz-Rodríguez M., Lucas F. S., Heeb P., Soler J. J. (2009). Differences in intestinal microbiota between avian brood parasites and their hosts. Biol. J. Linn. Soc. 96 406–414. 10.1111/j.1095-8312.2008.01127.x DOI
Salminen S., Gibson G. R., McCartney A. L., Isolauri E. (2004). Influence of mode of delivery on gut microbiota composition in seven year old children. Gut 53 1388–1389. 10.1136/gut.2004.041640 PubMed DOI PMC
Salonen A., Lahti L., Salojärvi J., Holtrop G., Korpela K., Duncan S. H., et al. (2014). Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 8 2218–2230. 10.1038/ismej.2014.63 PubMed DOI PMC
Sanders J. G., Powell S., Kronauer D. J. C., Vasconcelos H. L., Frederickson M. E., Pierce N. E. (2014). Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes. Mol. Ecol. 23 1268–1283. 10.1111/mec.12611 PubMed DOI
Schloss P. D., Schubert A. M., Zackular J. P., Iverson K. D., Young V. B., Petrosino J. F. (2012). Stabilization of the murine gut microbiome following weaning. Gut Microbes 3 383–393. 10.4161/gmic.21008 PubMed DOI PMC
Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75 7537–7541. 10.1128/AEM.01541-09 PubMed DOI PMC
Schwager E., Bielski C., Weingart G. (2014). ccrepe: ccrepe_and_nc.score. R package version 1.4.0.
Shade A., Gilbert J. A. (2015). Temporal patterns of rarity provide a more complete view of microbial diversity. Trends Microbiol. 23 335–340. 10.1016/j.tim.2015.01.007 PubMed DOI
Smith H. G., Montgomerie R. (1992). Male incubation in Barn Swallows: the influence of nest temperature and sexual selection. Condor 94 750–759. 10.2307/1369260 DOI
Smith M. I., Yatsunenko T., Manary M. J., Trehan I., Mkakosya R., Cheng J., et al. (2013). Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339 548–554. 10.1126/science.1229000 PubMed DOI PMC
Sommer F., Ståhlman M., Ilkayeva O., Arnemo J. M., Kindberg J., Josefsson J., et al. (2016). The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 14 1655–1661. 10.1016/j.celrep.2016.01.026 PubMed DOI
Sommer S. (2005). The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front. Zool. 2:16 10.1186/1742-9994-2-16 PubMed DOI PMC
Stevenson T. J., Buck C. L., Duddleston K. N. (2014). Temporal dynamics of the cecal gut microbiota of juvenile arctic ground squirrels: a strong litter effect across the first active season. Appl. Environ. Microbiol. 80 4260–4268. 10.1128/AEM.00737-14 PubMed DOI PMC
Storey J. D., Tibshirani R. (2003). Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. U.S.A. 100 9440–9445. 10.1073/pnas.1530509100 PubMed DOI PMC
Sumithra T. G., Chaturvedi V. K., Susan C., Siju S. J., Rai A. K., Harish C., et al. (2013). Mycoplasmosis in wildlife: a review. Eur. J. Wildl. Res. 59 769–781. 10.1007/s10344-013-0769-9 DOI
Sun B., Wang X., Bernstein S., Huffman M. A., Xia D.-P., Gu Z., et al. (2016). Marked variation between winter and spring gut microbiota in free-ranging Tibetan Macaques (Macaca thibetana). Sci. Rep. 6:26035 10.1038/srep26035 PubMed DOI PMC
Tap J., Furet J.-P., Bensaada M., Philippe C., Roth H., Rabot S., et al. (2015). Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ. Microbiol. 17 4954–4964. 10.1111/1462-2920.13006 PubMed DOI
Thong-On A., Suzuki K., Noda S., Inoue J., Kajiwara S., Ohkuma M. (2012). Isolation and characterization of anaerobic bacteria for symbiotic recycling of uric acid nitrogen in the gut of various termites. Microbes Environ. 27 186–192. 10.1264/jsme2.ME11325 PubMed DOI PMC
Turner A. K. (1980). The Use of Time and Energy by Aerial-feeding Birds. Ph.D. thesis University of Stirling, Stirling.
Waite D. W., Eason D. K., Taylor M. W. (2014). Influence of hand rearing and bird age on the fecal microbiota of the critically endangered kakapo. Appl. Environ. Microbiol. 80 4650–4658. 10.1128/AEM.00975-14 PubMed DOI PMC
Wang J., Kalyan S., Steck N., Turner L. M., Harr B., Künzel S., et al. (2015). Analysis of intestinal microbiota in hybrid house mice reveals evolutionary divergence in a vertebrate hologenome. Nat. Commun. 6:6440 10.1038/ncomms7440 PubMed DOI PMC
Wang J., Linnenbrink M., Künzel S., Fernandes R., Nadeau M.-J., Rosenstiel P., et al. (2014). Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proc. Natl. Acad. Sci. U.S.A. 111 E2703–E2710. 10.1073/pnas.1402342111 PubMed DOI PMC
Wang Q., Garrity G. M., Tiedje J. M., Cole J. R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73 5261–5267. 10.1128/AEM.00062-07 PubMed DOI PMC
White J., Mirleau P., Danchin E., Mulard H., Hatch S. A., Heeb P., et al. (2010). Sexually transmitted bacteria affect female cloacal assemblages in a wild bird. Ecol. Lett. 13 1515–1524. 10.1111/j.1461-0248.2010.01542.x PubMed DOI PMC
Wu H.-J., Wu E. (2012). The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 3 4–14. 10.4161/gmic.19320 PubMed DOI PMC
Xenoulis P. G., Gray P. L., Brightsmith D., Palculict B., Hoppes S., Steiner J. M., et al. (2010). Molecular characterization of the cloacal microbiota of wild and captive parrots. Vet. Microbiol. 146 320–325. 10.1016/j.vetmic.2010.05.024 PubMed DOI
Yoshimoto S., Loo T. M., Atarashi K., Kanda H., Sato S., Oyadomari S., et al. (2013). Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499 97–101. 10.1038/nature12347 PubMed DOI
Yuan M. L., Dean S. H., Longo A. V., Rothermel B. B., Tuberville T. D., Zamudio K. R. (2015). Kinship, inbreeding and fine-scale spatial structure influence gut microbiota in a hindgut-fermenting tortoise. Mol. Ecol. 24 2521–2536. 10.1111/mec.13169 PubMed DOI
Yurkovetskiy L., Burrows M., Khan A. A., Graham L., Volchkov P., Becker L., et al. (2013). Gender bias in autoimmunity is influenced by microbiota. Immunity 39 400–412. 10.1016/j.immuni.2013.08.013 PubMed DOI PMC
Zhang J., Kobert K., Flouri T., Stamatakis A. (2014). PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30 614–620. 10.1093/bioinformatics/btt593 PubMed DOI PMC
Zilber-Rosenberg I., Rosenberg E. (2008). Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol. Rev. 32 723–735. 10.1111/j.1574-6976.2008.00123.x PubMed DOI
Nearly (?) sterile avian egg in a passerine bird
Gut microbiota variation between climatic zones and due to migration strategy in passerine birds
Variation in diet composition and its relation to gut microbiota in a passerine bird
Seasonal and Sexual Differences in the Microbiota of the Hoopoe Uropygial Secretion