Seasonal and Sexual Differences in the Microbiota of the Hoopoe Uropygial Secretion
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30103505
PubMed Central
PMC6115775
DOI
10.3390/genes9080407
PII: genes9080407
Knihovny.cz E-zdroje
- Klíčová slova
- bacteria, clostridia, fluorescence in situ hybridization (FISH), high-throughput sequencing, hoopoe, microbiota, mutualism, quantitative polymerase chain reaction (qPCR), uropygial gland secretion,
- Publikační typ
- časopisecké články MeSH
The uropygial gland of hoopoe nestlings and nesting females hosts bacterial symbionts that cause changes in the characteristics of its secretion, including an increase of its antimicrobial activity. These changes occur only in nesting individuals during the breeding season, possibly associated with the high infection risk experienced during the stay in the hole-nests. However, the knowledge on hoopoes uropygial gland microbial community dynamics is quite limited and based so far on culture-dependent and molecular fingerprinting studies. In this work, we sampled wild and captive hoopoes of different sex, age, and reproductive status, and studied their microbiota using quantitative polymerase chain reaction (qPCR), fluorescence in situ hybridization (FISH) and pyrosequencing. Surprisingly, we found a complex bacterial community in all individuals (including non-nesting ones) during the breeding season. Nevertheless, dark secretions from nesting hoopoes harbored significantly higher bacterial density than white secretions from breeding males and both sexes in winter. We hypothesize that bacterial proliferation may be host-regulated in phases of high infection risk (i.e., nesting). We also highlight the importance of specific antimicrobial-producing bacteria present only in dark secretions that may be key in this defensive symbiosis. Finally, we discuss the possible role of environmental conditions in shaping the uropygial microbiota, based on differences found between wild and captive hoopoes.
Departamento de Microbiología Universidad de Granada E 18071 Granada Spain
Departamento de Zoología Universidad de Granada E 18071 Granada Spain
Estación Experimental de Zonas Áridas E 04120 Almeria Spain
Faculty of Science University of South Bohemia CZ 370 05 Ceske Budejovice Czechia
Instituto de Biotecnología Universidad de Granada E 18071 Granada Spain
Zobrazit více v PubMed
Moran N.A. Symbiosis. Curr. Biol. 2006;16:R866–R871. doi: 10.1016/j.cub.2006.09.019. PubMed DOI
Moya A., Peretó J., Gil R., Latorre A. Learning how to live together: Genomic insights into prokaryote-animal symbioses. Nat. Rev. Genet. 2008;9:218–229. doi: 10.1038/nrg2319. PubMed DOI
Bordenstein S.R., Theis K.R. Host biology in light of the microbiome: Ten principles of holobionts and hologenomes. PLoS Biol. 2015;13:e1002226. doi: 10.1371/journal.pbio.1002226. PubMed DOI PMC
Flórez L.V., Biedermann P.H.W., Engl T., Kaltenpoth M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat. Prod. Rep. 2015;32:904–936. doi: 10.1039/C5NP00010F. PubMed DOI
Hird S.M. Evolutionary biology needs wild microbiomes. Front. Microbiol. 2017;8:725. doi: 10.3389/fmicb.2017.00725. PubMed DOI PMC
Peterson C.T., Sharma V., Elmén L., Peterson S.N. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clin. Exp. Immunol. 2015;179:363–377. doi: 10.1111/cei.12474. PubMed DOI PMC
Rajilić-Stojanović M. Function of the microbiota. Best Pract. Res. Clin. Gastroenterol. 2013;27:5–16. doi: 10.1016/j.bpg.2013.03.006. PubMed DOI
Belkaid Y., Hand T.W. Role of the microbiota in immunity and inflammation. Cell. 2014;157:121–141. doi: 10.1016/j.cell.2014.03.011. PubMed DOI PMC
Hooper L.V., Gordon J.I. Commensal host-bacterial relationships in the gut. Science. 2001;292:1115–1118. doi: 10.1126/science.1058709. PubMed DOI
Leser T.D., Mølbak L. Better living through microbial action: The benefits of the mammalian gastrointestinal microbiota on the host. Environ. Microbiol. 2009;11:2194–2206. doi: 10.1111/j.1462-2920.2009.01941.x. PubMed DOI
Jacob J., Ziswiler V. Avian Biology. Academic Press; London, UK: 1982. The uropygial gland.
Moreno-Rueda G. Preen oil and bird fitness: A critical review of the evidence. Biol. Rev. 2017;92:2131–2143. doi: 10.1111/brv.12324. PubMed DOI
Hagelin J.C., Jones I.L. Bird odors and other chemical substances: A defense mechanism or overlooked mode of intraspecific communication? Auk Waco. 2007;124:741–761. doi: 10.1642/0004-8038(2007)124[741:BOAOCS]2.0.CO;2. DOI
Law-Brown J., Meyers P.R. Enterococcus phoeniculicola sp. nov., a novel member of the enterococci isolated from the uropygial gland of the red-billed woodhoopoe, Phoeniculus purpureus. Int. J. Syst. Evol. Microbiol. 2003;53:683–685. doi: 10.1099/ijs.0.02334-0. PubMed DOI
Martín-Vivaldi M., Peña A., Peralta-Sánchez J.M., Sánchez L., Ananou S., Ruiz-Rodríguez M., Soler J.J. Antimicrobial chemicals in hoopoe preen secretions are produced by symbiotic bacteria. Proc. R. Soc. B Biol. Sci. 2010;277:123–130. doi: 10.1098/rspb.2009.1377. PubMed DOI PMC
Soler J.J., Martín-Vivaldi M., Ruiz-Rodríguez M., Valdivia E., Martín-Platero A.M., Martínez-Bueno M., Peralta-Sánchez J.M., Méndez M. Symbiotic association between hoopoes and antibiotic-producing bacteria that live in their uropygial gland. Funct. Ecol. 2008;22:864–871. doi: 10.1111/j.1365-2435.2008.01448.x. DOI
Law-Brown J. Master’s Thesis. University of Cape Town; Rondebosch, South Africa: 2001. Chemical Defence in the Red-Billed Wood Hoopoe: Phoeniculus purpureus.
Soler J.J., Martín-Vivaldi M., Peralta-Sánchez J.M., Ruiz-Rodríguez M. Antibiotic-producing bacteria as a possible defence of birds against pathogenic microorganisms. Open Ornithol. J. 2010;3:93–100. doi: 10.2174/1874453201003010093. DOI
Kristin A. Handbook of the Birds of the World. Volume 6. Lynx Edicions; Barcelona, Spain: 2001. Family Upupidae (Hoopoes) pp. 396–411.
Ligon J.D. Handbook of the Birds of the World. Volume 6. Lynx Edicions; Barcelona, Spain: 2001. Family Phoeniculidae (Wood-hoopoes) pp. 412–434.
Martín-Platero A.M., Valdivia E., Soler J.J., Martín-Vivaldi M., Maqueda M., Martínez-Bueno M. Characterization of antimicrobial substances produced by Enterococcus faecalis MRR 10-3, isolated from the uropygial gland of the hoopoe (Upupa epops) Appl. Environ. Microbiol. 2006;72:4245–4249. doi: 10.1128/AEM.02940-05. PubMed DOI PMC
Ruiz-Rodríguez M., Valdivia E., Martín-Vivaldi M., Martín-Platero A.M., Martínez-Bueno M., Méndez M., Peralta-Sánchez J.M., Soler J.J. Antimicrobial activity and genetic profile of enteroccoci isolated from hoopoes uropygial gland. PLoS ONE. 2012;7:e41843. doi: 10.1371/journal.pone.0041843. PubMed DOI PMC
Martín-Vivaldi M., Ruiz-Rodríguez M., José Soler J., Manuel Peralta-Sánchez J., Méndez M., Valdivia E., Manuel Martín-Platero A., Martínez-Bueno M. Seasonal, sexual and developmental differences in hoopoe Upupa epops preen gland morphology and secretions: Evidence for a role of bacteria. J. Avian Biol. 2009;40:191–205. doi: 10.1111/j.1600-048X.2009.04393.x. DOI
Martín-Vivaldi M., Soler J.J., Peralta-Sánchez J.M., Arco L., Martín-Platero A.M., Martínez-Bueno M., Ruiz-Rodríguez M., Valdivia E. Special structures of hoopoe eggshells enhance the adhesion of symbiont-carrying uropygial secretion that increase hatching success. J. Anim. Ecol. 2014;83:1289–1301. doi: 10.1111/1365-2656.12243. PubMed DOI
Soler J.J., Martín-Vivaldi M., Peralta-Sánchez J.M., Arco L., Juárez-García-Pelayo N. Hoopoes color their eggs with antimicrobial uropygial secretions. Naturwissenschaften. 2014;101:697–705. doi: 10.1007/s00114-014-1201-3. PubMed DOI
Ministerio de la Presidencia REAL DECRETO 1201/2005, de 10 de octubre, sobre protección de los animales utilizados para experimentación y otros fines científicos. Boletín Oficial del Estado (BOE) 2005;252:34367–34391.
Amann R.I., Binder B.J., Olson R.J., Chisholm S.W., Devereux R., Stahl D.A. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 1990;56:1919–1925. PubMed PMC
Wellinghausen N., Bartel M., Essig A., Poppert S. Rapid identification of clinically relevant Enterococcus species by Fluorescence In Situ Hybridization. J. Clin. Microbiol. 2007;45:3424–3426. doi: 10.1128/JCM.00861-07. PubMed DOI PMC
Schüffler P.J., Fuchs T.J., Ong C.S., Wild P.J., Rupp N.J., Buhmann J.M. TMARKER: A free software toolkit for histopathological cell counting and staining estimation. J. Pathol. Inform. 2013;4:S2. doi: 10.4103/2153-3539.109804. PubMed DOI PMC
Klammer S., Knapp B., Insam H., Dell’Abate M.T., Ros M. Bacterial community patterns and thermal analyses of composts of various origins. Waste Manag. Res. 2008;26:173–187. doi: 10.1177/0734242X07084113. PubMed DOI
Muyzer G., de Waal E.C., Uitterlinden A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993;59:695–700. PubMed PMC
Větrovský T., Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE. 2013;8:e57923. doi: 10.1371/journal.pone.0057923. PubMed DOI PMC
Fierer N., Hamady M., Lauber C.L., Knight R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc. Natl. Acad. Sci. USA. 2008;105:17994–17999. doi: 10.1073/pnas.0807920105. PubMed DOI PMC
Huse S.M., Dethlefsen L., Huber J.A., Welch D.M., Relman D.A., Sogin M.L. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet. 2008;4:e1000255. doi: 10.1371/annotation/3d8a6578-ce56-45aa-bc71-05078355b851. PubMed DOI PMC
Schloss P.D., Westcott S.L., Ryabin T., Hall J.R., Hartmann M., Hollister E.B., Lesniewski R.A., Oakley B.B., Parks D.H., Robinson C.J., et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009;75:7537–7541. doi: 10.1128/AEM.01541-09. PubMed DOI PMC
Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N., Peña A.G., Goodrich J.K., Gordon J.I., et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 2010;7:335–336. doi: 10.1038/nmeth.f.303. PubMed DOI PMC
Preheim S.P., Perrotta A.R., Martín-Platero A.M., Gupta A., Alm E.J. Distribution-Based Clustering: Using ecology to refine the Operational Taxonomic Unit. Appl. Environ. Microbiol. 2013;79:6593–6603. doi: 10.1128/AEM.00342-13. PubMed DOI PMC
McDonald D., Price M.N., Goodrich J., Nawrocki E.P., DeSantis T.Z., Probst A., Andersen G.L., Knight R., Hugenholtz P. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6:610–618. doi: 10.1038/ismej.2011.139. PubMed DOI PMC
Edgar R.C., Haas B.J., Clemente J.C., Quince C., Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–2200. doi: 10.1093/bioinformatics/btr381. PubMed DOI PMC
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
McDonald J.H. Handbook of Biological Statistics. 3rd ed. Sparky House Publishing; Baltimore, MD, USA: 2014.
Chao A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 1984;11:265–270.
Faith D.P., Baker A.M. Phylogenetic diversity (PD) and biodiversity conservation: Some bioinformatics challenges. Evol. Bioinform. Online. 2007;2:121–128. doi: 10.1177/117693430600200007. PubMed DOI PMC
Oksanen J., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., Stevens M.H.H., Wagner H. Vegan: Community Ecology Package; The Comprehensive R Archive Network CRAN. [(accessed on 1 August 2018)];2013 Available online: https://www.cran.r-project.org/
Bray J.R., Curtis J.T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 1957;27:325–349. doi: 10.2307/1942268. DOI
R Development Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2014.
Hothorn T., Bretz F., Westfall P. Simultaneous inference in general parametric models. Biom. J. 2008;50:346–363. doi: 10.1002/bimj.200810425. PubMed DOI
Wickham H. Ggplot2: Elegant Graphics for Data Analysis. Springer; New York, NY, USA: 2009.
Vázquez-Baeza Y., Pirrung M., Gonzalez A., Knight R. EMPeror: A tool for visualizing high-throughput microbial community data. GigaScience. 2013;2:16. doi: 10.1186/2047-217X-2-16. PubMed DOI PMC
Pedrós-Alió C. The rare bacterial biosphere. Annu. Rev. Mar. Sci. 2012;4:449–466. doi: 10.1146/annurev-marine-120710-100948. PubMed DOI
Rodríguez-Ruano S.M., Martín-Vivaldi M., Martín-Platero A.M., López-López J.P., Peralta-Sánchez J.M., Ruiz-Rodríguez M., Soler J.J., Valdivia E., Martínez-Bueno M. The hoopoe’s uropygial gland hosts a bacterial community influenced by the living conditions of the bird. PLoS ONE. 2015;10:e0139734. doi: 10.1371/journal.pone.0139734. PubMed DOI PMC
Lopetuso L.R., Scaldaferri F., Petito V., Gasbarrini A. Commensal Clostridia: Leading players in the maintenance of gut homeostasis. Gut Pathog. 2013;5:23. doi: 10.1186/1757-4749-5-23. PubMed DOI PMC
Martínez-García Á., Martín-Vivaldi M., Ruiz-Rodríguez M., Martínez-Bueno M., Arco L., Rodríguez-Ruano S.M., Peralta-Sánchez J.M., Soler J.J. The microbiome of the uropygial secretion in hoopoes is shaped along the nesting phase. Microb. Ecol. 2016;72:252–261. doi: 10.1007/s00248-016-0765-1. PubMed DOI
Martín-Vivaldi M., Soler J.J., Martínez-García Á., Arco L., Juárez-García-Pelayo N., Ruiz-Rodríguez M., Martínez-Bueno M. Acquisition of uropygial gland microbiome by hoopoe nestlings. Microb. Ecol. 2018;76:285–297. doi: 10.1007/s00248-017-1125-5. PubMed DOI
David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., Ling A.V., Devlin A.S., Varma Y., Fischbach M.A., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563. doi: 10.1038/nature12820. PubMed DOI PMC
Wienemann T., Schmitt-Wagner D., Meuser K., Segelbacher G., Schink B., Brune A., Berthold P. The bacterial microbiota in the ceca of Capercaillie (Tetrao urogallus) differs between wild and captive birds. Syst. Appl. Microbiol. 2011;34:542–551. doi: 10.1016/j.syapm.2011.06.003. PubMed DOI
Young V.B., Schmidt T.M. Overview of the gastrointestinal microbiota. In: Huffnagle G.B., Noverr M.C., editors. GI Microbiota and Regulation of the Immune System. Springer; New York, NY, USA: 2008. pp. 29–40. (Advances in Experimental Medicine and Biology). PubMed PMC
Kreisinger J., Kropáčková L., Petrželková A., Adámková M., Tomášek O., Martin J.-F., Michálková R., Albrecht T. Temporal stability and the effect of transgenerational transfer on fecal microbiota structure in a long distance migratory bird. Front. Microbiol. 2017;8:50. doi: 10.3389/fmicb.2017.00050. PubMed DOI PMC
Soler J.J., Martínez-García Á., Rodríguez-Ruano S.M., Martínez-Bueno M., Martín-Platero A.M., Peralta-Sánchez J.M., Martín-Vivaldi M. Nestedness of hoopoes’ bacterial communities: Symbionts from the uropygial gland to the eggshell. Biol. J. Linn. Soc. 2016;118:763–773. doi: 10.1111/bij.12772. DOI
Kulkarni S., Heeb P. Social and sexual behaviours aid transmission of bacteria in birds. Behav. Process. 2007;74:88–92. doi: 10.1016/j.beproc.2006.10.005. PubMed DOI
Martínez-García Á., Soler J.J., Rodríguez-Ruano S.M., Martínez-Bueno M., Martín-Platero A.M., Juárez-García N., Martín-Vivaldi M. Preening as a vehicle for key bacteria in hoopoes. Microb. Ecol. 2015;70:1024–1033. doi: 10.1007/s00248-015-0636-1. PubMed DOI
Reichlin T.S., Hobson K.A., Wilgenburg S.L.V., Schaub M., Wassenaar L.I., Martín-Vivaldi M., Arlettaz R., Jenni L. Conservation through connectivity: Can isotopic gradients in Africa reveal winter quarters of a migratory bird? Oecologia. 2012;171:591–600. doi: 10.1007/s00442-012-2418-5. PubMed DOI
Martínez-García Á., Martín-Vivaldi M., Rodríguez-Ruano S.M., Peralta-Sánchez J.M., Valdivia E., Soler J.J. Nest bacterial environment affects microbiome of hoopoe eggshells, but not that of the uropygial secretion. PLoS ONE. 2016;11:e0158158. doi: 10.1371/journal.pone.0158158. PubMed DOI PMC
Dominianni C., Sinha R., Goedert J.J., Pei Z., Yang L., Hayes R.B., Ahn J. Sex, body mass index, and dietary fiber intake influence the human gut microbiome. PLoS ONE. 2015;10:e0124599. doi: 10.1371/journal.pone.0124599. PubMed DOI PMC
Org E., Mehrabian M., Parks B.W., Shipkova P., Liu X., Drake T.A., Lusis A.J. Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes. 2016;7:313–322. doi: 10.1080/19490976.2016.1203502. PubMed DOI PMC
Dohrmann A.B., Küting M., Jünemann S., Jaenicke S., Schlüter A., Tebbe C.C. Importance of rare taxa for bacterial diversity in the rhizosphere of Bt− and conventional maize varieties. ISME J. 2013;7:37–49. doi: 10.1038/ismej.2012.77. PubMed DOI PMC
Jian W., Dong X. Transfer of Bifidobacterium inopinatum and Bifidobacterium denticolens to Scardovia inopinata gen. nov., comb. nov., and Parascardovia denticolens gen. nov., comb. nov., respectively. Int. J. Syst. Evol. Microbiol. 2002;52:809–812. doi: 10.1099/ijs.0.02054-0. PubMed DOI
In Y.-W., Kim J.-J., Kim H.-J., Oh S.-W. Antimicrobial activities of acetic acid, citric acid and lactic acid against Shigella species. J. Food Saf. 2013;33:79–85. doi: 10.1111/jfs.12025. DOI
Batt C.A. In: Encyclopedia of Food Microbiology. Batt C.A., editor. Academic Press; Cambridge, MA, USA: 1999.
Great Tit (Parus major) Uropygial Gland Microbiomes and Their Potential Defensive Roles