Seasonal and Sexual Differences in the Microbiota of the Hoopoe Uropygial Secretion

. 2018 Aug 11 ; 9 (8) : . [epub] 20180811

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30103505

The uropygial gland of hoopoe nestlings and nesting females hosts bacterial symbionts that cause changes in the characteristics of its secretion, including an increase of its antimicrobial activity. These changes occur only in nesting individuals during the breeding season, possibly associated with the high infection risk experienced during the stay in the hole-nests. However, the knowledge on hoopoes uropygial gland microbial community dynamics is quite limited and based so far on culture-dependent and molecular fingerprinting studies. In this work, we sampled wild and captive hoopoes of different sex, age, and reproductive status, and studied their microbiota using quantitative polymerase chain reaction (qPCR), fluorescence in situ hybridization (FISH) and pyrosequencing. Surprisingly, we found a complex bacterial community in all individuals (including non-nesting ones) during the breeding season. Nevertheless, dark secretions from nesting hoopoes harbored significantly higher bacterial density than white secretions from breeding males and both sexes in winter. We hypothesize that bacterial proliferation may be host-regulated in phases of high infection risk (i.e., nesting). We also highlight the importance of specific antimicrobial-producing bacteria present only in dark secretions that may be key in this defensive symbiosis. Finally, we discuss the possible role of environmental conditions in shaping the uropygial microbiota, based on differences found between wild and captive hoopoes.

Zobrazit více v PubMed

Moran N.A. Symbiosis. Curr. Biol. 2006;16:R866–R871. doi: 10.1016/j.cub.2006.09.019. PubMed DOI

Moya A., Peretó J., Gil R., Latorre A. Learning how to live together: Genomic insights into prokaryote-animal symbioses. Nat. Rev. Genet. 2008;9:218–229. doi: 10.1038/nrg2319. PubMed DOI

Bordenstein S.R., Theis K.R. Host biology in light of the microbiome: Ten principles of holobionts and hologenomes. PLoS Biol. 2015;13:e1002226. doi: 10.1371/journal.pbio.1002226. PubMed DOI PMC

Flórez L.V., Biedermann P.H.W., Engl T., Kaltenpoth M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat. Prod. Rep. 2015;32:904–936. doi: 10.1039/C5NP00010F. PubMed DOI

Hird S.M. Evolutionary biology needs wild microbiomes. Front. Microbiol. 2017;8:725. doi: 10.3389/fmicb.2017.00725. PubMed DOI PMC

Peterson C.T., Sharma V., Elmén L., Peterson S.N. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clin. Exp. Immunol. 2015;179:363–377. doi: 10.1111/cei.12474. PubMed DOI PMC

Rajilić-Stojanović M. Function of the microbiota. Best Pract. Res. Clin. Gastroenterol. 2013;27:5–16. doi: 10.1016/j.bpg.2013.03.006. PubMed DOI

Belkaid Y., Hand T.W. Role of the microbiota in immunity and inflammation. Cell. 2014;157:121–141. doi: 10.1016/j.cell.2014.03.011. PubMed DOI PMC

Hooper L.V., Gordon J.I. Commensal host-bacterial relationships in the gut. Science. 2001;292:1115–1118. doi: 10.1126/science.1058709. PubMed DOI

Leser T.D., Mølbak L. Better living through microbial action: The benefits of the mammalian gastrointestinal microbiota on the host. Environ. Microbiol. 2009;11:2194–2206. doi: 10.1111/j.1462-2920.2009.01941.x. PubMed DOI

Jacob J., Ziswiler V. Avian Biology. Academic Press; London, UK: 1982. The uropygial gland.

Moreno-Rueda G. Preen oil and bird fitness: A critical review of the evidence. Biol. Rev. 2017;92:2131–2143. doi: 10.1111/brv.12324. PubMed DOI

Hagelin J.C., Jones I.L. Bird odors and other chemical substances: A defense mechanism or overlooked mode of intraspecific communication? Auk Waco. 2007;124:741–761. doi: 10.1642/0004-8038(2007)124[741:BOAOCS]2.0.CO;2. DOI

Law-Brown J., Meyers P.R. Enterococcus phoeniculicola sp. nov., a novel member of the enterococci isolated from the uropygial gland of the red-billed woodhoopoe, Phoeniculus purpureus. Int. J. Syst. Evol. Microbiol. 2003;53:683–685. doi: 10.1099/ijs.0.02334-0. PubMed DOI

Martín-Vivaldi M., Peña A., Peralta-Sánchez J.M., Sánchez L., Ananou S., Ruiz-Rodríguez M., Soler J.J. Antimicrobial chemicals in hoopoe preen secretions are produced by symbiotic bacteria. Proc. R. Soc. B Biol. Sci. 2010;277:123–130. doi: 10.1098/rspb.2009.1377. PubMed DOI PMC

Soler J.J., Martín-Vivaldi M., Ruiz-Rodríguez M., Valdivia E., Martín-Platero A.M., Martínez-Bueno M., Peralta-Sánchez J.M., Méndez M. Symbiotic association between hoopoes and antibiotic-producing bacteria that live in their uropygial gland. Funct. Ecol. 2008;22:864–871. doi: 10.1111/j.1365-2435.2008.01448.x. DOI

Law-Brown J. Master’s Thesis. University of Cape Town; Rondebosch, South Africa: 2001. Chemical Defence in the Red-Billed Wood Hoopoe: Phoeniculus purpureus.

Soler J.J., Martín-Vivaldi M., Peralta-Sánchez J.M., Ruiz-Rodríguez M. Antibiotic-producing bacteria as a possible defence of birds against pathogenic microorganisms. Open Ornithol. J. 2010;3:93–100. doi: 10.2174/1874453201003010093. DOI

Kristin A. Handbook of the Birds of the World. Volume 6. Lynx Edicions; Barcelona, Spain: 2001. Family Upupidae (Hoopoes) pp. 396–411.

Ligon J.D. Handbook of the Birds of the World. Volume 6. Lynx Edicions; Barcelona, Spain: 2001. Family Phoeniculidae (Wood-hoopoes) pp. 412–434.

Martín-Platero A.M., Valdivia E., Soler J.J., Martín-Vivaldi M., Maqueda M., Martínez-Bueno M. Characterization of antimicrobial substances produced by Enterococcus faecalis MRR 10-3, isolated from the uropygial gland of the hoopoe (Upupa epops) Appl. Environ. Microbiol. 2006;72:4245–4249. doi: 10.1128/AEM.02940-05. PubMed DOI PMC

Ruiz-Rodríguez M., Valdivia E., Martín-Vivaldi M., Martín-Platero A.M., Martínez-Bueno M., Méndez M., Peralta-Sánchez J.M., Soler J.J. Antimicrobial activity and genetic profile of enteroccoci isolated from hoopoes uropygial gland. PLoS ONE. 2012;7:e41843. doi: 10.1371/journal.pone.0041843. PubMed DOI PMC

Martín-Vivaldi M., Ruiz-Rodríguez M., José Soler J., Manuel Peralta-Sánchez J., Méndez M., Valdivia E., Manuel Martín-Platero A., Martínez-Bueno M. Seasonal, sexual and developmental differences in hoopoe Upupa epops preen gland morphology and secretions: Evidence for a role of bacteria. J. Avian Biol. 2009;40:191–205. doi: 10.1111/j.1600-048X.2009.04393.x. DOI

Martín-Vivaldi M., Soler J.J., Peralta-Sánchez J.M., Arco L., Martín-Platero A.M., Martínez-Bueno M., Ruiz-Rodríguez M., Valdivia E. Special structures of hoopoe eggshells enhance the adhesion of symbiont-carrying uropygial secretion that increase hatching success. J. Anim. Ecol. 2014;83:1289–1301. doi: 10.1111/1365-2656.12243. PubMed DOI

Soler J.J., Martín-Vivaldi M., Peralta-Sánchez J.M., Arco L., Juárez-García-Pelayo N. Hoopoes color their eggs with antimicrobial uropygial secretions. Naturwissenschaften. 2014;101:697–705. doi: 10.1007/s00114-014-1201-3. PubMed DOI

Ministerio de la Presidencia REAL DECRETO 1201/2005, de 10 de octubre, sobre protección de los animales utilizados para experimentación y otros fines científicos. Boletín Oficial del Estado (BOE) 2005;252:34367–34391.

Amann R.I., Binder B.J., Olson R.J., Chisholm S.W., Devereux R., Stahl D.A. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 1990;56:1919–1925. PubMed PMC

Wellinghausen N., Bartel M., Essig A., Poppert S. Rapid identification of clinically relevant Enterococcus species by Fluorescence In Situ Hybridization. J. Clin. Microbiol. 2007;45:3424–3426. doi: 10.1128/JCM.00861-07. PubMed DOI PMC

Schüffler P.J., Fuchs T.J., Ong C.S., Wild P.J., Rupp N.J., Buhmann J.M. TMARKER: A free software toolkit for histopathological cell counting and staining estimation. J. Pathol. Inform. 2013;4:S2. doi: 10.4103/2153-3539.109804. PubMed DOI PMC

Klammer S., Knapp B., Insam H., Dell’Abate M.T., Ros M. Bacterial community patterns and thermal analyses of composts of various origins. Waste Manag. Res. 2008;26:173–187. doi: 10.1177/0734242X07084113. PubMed DOI

Muyzer G., de Waal E.C., Uitterlinden A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993;59:695–700. PubMed PMC

Větrovský T., Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE. 2013;8:e57923. doi: 10.1371/journal.pone.0057923. PubMed DOI PMC

Fierer N., Hamady M., Lauber C.L., Knight R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc. Natl. Acad. Sci. USA. 2008;105:17994–17999. doi: 10.1073/pnas.0807920105. PubMed DOI PMC

Huse S.M., Dethlefsen L., Huber J.A., Welch D.M., Relman D.A., Sogin M.L. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet. 2008;4:e1000255. doi: 10.1371/annotation/3d8a6578-ce56-45aa-bc71-05078355b851. PubMed DOI PMC

Schloss P.D., Westcott S.L., Ryabin T., Hall J.R., Hartmann M., Hollister E.B., Lesniewski R.A., Oakley B.B., Parks D.H., Robinson C.J., et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009;75:7537–7541. doi: 10.1128/AEM.01541-09. PubMed DOI PMC

Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N., Peña A.G., Goodrich J.K., Gordon J.I., et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 2010;7:335–336. doi: 10.1038/nmeth.f.303. PubMed DOI PMC

Preheim S.P., Perrotta A.R., Martín-Platero A.M., Gupta A., Alm E.J. Distribution-Based Clustering: Using ecology to refine the Operational Taxonomic Unit. Appl. Environ. Microbiol. 2013;79:6593–6603. doi: 10.1128/AEM.00342-13. PubMed DOI PMC

McDonald D., Price M.N., Goodrich J., Nawrocki E.P., DeSantis T.Z., Probst A., Andersen G.L., Knight R., Hugenholtz P. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6:610–618. doi: 10.1038/ismej.2011.139. PubMed DOI PMC

Edgar R.C., Haas B.J., Clemente J.C., Quince C., Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–2200. doi: 10.1093/bioinformatics/btr381. PubMed DOI PMC

Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

McDonald J.H. Handbook of Biological Statistics. 3rd ed. Sparky House Publishing; Baltimore, MD, USA: 2014.

Chao A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 1984;11:265–270.

Faith D.P., Baker A.M. Phylogenetic diversity (PD) and biodiversity conservation: Some bioinformatics challenges. Evol. Bioinform. Online. 2007;2:121–128. doi: 10.1177/117693430600200007. PubMed DOI PMC

Oksanen J., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., Stevens M.H.H., Wagner H. Vegan: Community Ecology Package; The Comprehensive R Archive Network CRAN. [(accessed on 1 August 2018)];2013 Available online: https://www.cran.r-project.org/

Bray J.R., Curtis J.T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 1957;27:325–349. doi: 10.2307/1942268. DOI

R Development Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2014.

Hothorn T., Bretz F., Westfall P. Simultaneous inference in general parametric models. Biom. J. 2008;50:346–363. doi: 10.1002/bimj.200810425. PubMed DOI

Wickham H. Ggplot2: Elegant Graphics for Data Analysis. Springer; New York, NY, USA: 2009.

Vázquez-Baeza Y., Pirrung M., Gonzalez A., Knight R. EMPeror: A tool for visualizing high-throughput microbial community data. GigaScience. 2013;2:16. doi: 10.1186/2047-217X-2-16. PubMed DOI PMC

Pedrós-Alió C. The rare bacterial biosphere. Annu. Rev. Mar. Sci. 2012;4:449–466. doi: 10.1146/annurev-marine-120710-100948. PubMed DOI

Rodríguez-Ruano S.M., Martín-Vivaldi M., Martín-Platero A.M., López-López J.P., Peralta-Sánchez J.M., Ruiz-Rodríguez M., Soler J.J., Valdivia E., Martínez-Bueno M. The hoopoe’s uropygial gland hosts a bacterial community influenced by the living conditions of the bird. PLoS ONE. 2015;10:e0139734. doi: 10.1371/journal.pone.0139734. PubMed DOI PMC

Lopetuso L.R., Scaldaferri F., Petito V., Gasbarrini A. Commensal Clostridia: Leading players in the maintenance of gut homeostasis. Gut Pathog. 2013;5:23. doi: 10.1186/1757-4749-5-23. PubMed DOI PMC

Martínez-García Á., Martín-Vivaldi M., Ruiz-Rodríguez M., Martínez-Bueno M., Arco L., Rodríguez-Ruano S.M., Peralta-Sánchez J.M., Soler J.J. The microbiome of the uropygial secretion in hoopoes is shaped along the nesting phase. Microb. Ecol. 2016;72:252–261. doi: 10.1007/s00248-016-0765-1. PubMed DOI

Martín-Vivaldi M., Soler J.J., Martínez-García Á., Arco L., Juárez-García-Pelayo N., Ruiz-Rodríguez M., Martínez-Bueno M. Acquisition of uropygial gland microbiome by hoopoe nestlings. Microb. Ecol. 2018;76:285–297. doi: 10.1007/s00248-017-1125-5. PubMed DOI

David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., Ling A.V., Devlin A.S., Varma Y., Fischbach M.A., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563. doi: 10.1038/nature12820. PubMed DOI PMC

Wienemann T., Schmitt-Wagner D., Meuser K., Segelbacher G., Schink B., Brune A., Berthold P. The bacterial microbiota in the ceca of Capercaillie (Tetrao urogallus) differs between wild and captive birds. Syst. Appl. Microbiol. 2011;34:542–551. doi: 10.1016/j.syapm.2011.06.003. PubMed DOI

Young V.B., Schmidt T.M. Overview of the gastrointestinal microbiota. In: Huffnagle G.B., Noverr M.C., editors. GI Microbiota and Regulation of the Immune System. Springer; New York, NY, USA: 2008. pp. 29–40. (Advances in Experimental Medicine and Biology). PubMed PMC

Kreisinger J., Kropáčková L., Petrželková A., Adámková M., Tomášek O., Martin J.-F., Michálková R., Albrecht T. Temporal stability and the effect of transgenerational transfer on fecal microbiota structure in a long distance migratory bird. Front. Microbiol. 2017;8:50. doi: 10.3389/fmicb.2017.00050. PubMed DOI PMC

Soler J.J., Martínez-García Á., Rodríguez-Ruano S.M., Martínez-Bueno M., Martín-Platero A.M., Peralta-Sánchez J.M., Martín-Vivaldi M. Nestedness of hoopoes’ bacterial communities: Symbionts from the uropygial gland to the eggshell. Biol. J. Linn. Soc. 2016;118:763–773. doi: 10.1111/bij.12772. DOI

Kulkarni S., Heeb P. Social and sexual behaviours aid transmission of bacteria in birds. Behav. Process. 2007;74:88–92. doi: 10.1016/j.beproc.2006.10.005. PubMed DOI

Martínez-García Á., Soler J.J., Rodríguez-Ruano S.M., Martínez-Bueno M., Martín-Platero A.M., Juárez-García N., Martín-Vivaldi M. Preening as a vehicle for key bacteria in hoopoes. Microb. Ecol. 2015;70:1024–1033. doi: 10.1007/s00248-015-0636-1. PubMed DOI

Reichlin T.S., Hobson K.A., Wilgenburg S.L.V., Schaub M., Wassenaar L.I., Martín-Vivaldi M., Arlettaz R., Jenni L. Conservation through connectivity: Can isotopic gradients in Africa reveal winter quarters of a migratory bird? Oecologia. 2012;171:591–600. doi: 10.1007/s00442-012-2418-5. PubMed DOI

Martínez-García Á., Martín-Vivaldi M., Rodríguez-Ruano S.M., Peralta-Sánchez J.M., Valdivia E., Soler J.J. Nest bacterial environment affects microbiome of hoopoe eggshells, but not that of the uropygial secretion. PLoS ONE. 2016;11:e0158158. doi: 10.1371/journal.pone.0158158. PubMed DOI PMC

Dominianni C., Sinha R., Goedert J.J., Pei Z., Yang L., Hayes R.B., Ahn J. Sex, body mass index, and dietary fiber intake influence the human gut microbiome. PLoS ONE. 2015;10:e0124599. doi: 10.1371/journal.pone.0124599. PubMed DOI PMC

Org E., Mehrabian M., Parks B.W., Shipkova P., Liu X., Drake T.A., Lusis A.J. Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes. 2016;7:313–322. doi: 10.1080/19490976.2016.1203502. PubMed DOI PMC

Dohrmann A.B., Küting M., Jünemann S., Jaenicke S., Schlüter A., Tebbe C.C. Importance of rare taxa for bacterial diversity in the rhizosphere of Bt− and conventional maize varieties. ISME J. 2013;7:37–49. doi: 10.1038/ismej.2012.77. PubMed DOI PMC

Jian W., Dong X. Transfer of Bifidobacterium inopinatum and Bifidobacterium denticolens to Scardovia inopinata gen. nov., comb. nov., and Parascardovia denticolens gen. nov., comb. nov., respectively. Int. J. Syst. Evol. Microbiol. 2002;52:809–812. doi: 10.1099/ijs.0.02054-0. PubMed DOI

In Y.-W., Kim J.-J., Kim H.-J., Oh S.-W. Antimicrobial activities of acetic acid, citric acid and lactic acid against Shigella species. J. Food Saf. 2013;33:79–85. doi: 10.1111/jfs.12025. DOI

Batt C.A. In: Encyclopedia of Food Microbiology. Batt C.A., editor. Academic Press; Cambridge, MA, USA: 1999.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Great Tit (Parus major) Uropygial Gland Microbiomes and Their Potential Defensive Roles

. 2020 ; 11 () : 1735. [epub] 20200728

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...