Gut microbiota variation between climatic zones and due to migration strategy in passerine birds

. 2023 ; 14 () : 1080017. [epub] 20230201

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36819027

INTRODUCTION: Decreasing biotic diversity with increasing latitude is an almost universal macroecological pattern documented for a broad range of taxa, however, there have been few studies focused on changes in gut microbiota (GM) across climatic zones. METHODS: Using 16S rRNA amplicon profiling, we analyzed GM variation between temperate (Czechia) and tropical (Cameroon) populations of 99 passerine bird species and assessed GM similarity of temperate species migrating to tropical regions with that of residents/short-distance migrants and tropical residents. Our study also considered the possible influence of diet on GM. RESULTS: We observed no consistent GM diversity differences between tropical and temperate species. In the tropics, GM composition varied substantially between dry and rainy seasons and only a few taxa exhibited consistent differential abundance between tropical and temperate zones, irrespective of migration behavior and seasonal GM changes. During the breeding season, trans-Saharan migrant GM diverged little from species not overwintering in the tropics and did not show higher similarity to tropical passerines than temperate residents/short-distance migrants. Interestingly, GM of two temperate-breeding trans-Saharan migrants sampled in the tropical zone matched that of tropical residents and converged with other temperate species during the breeding season. Diet had a slight effect on GM composition of tropical species, but no effect on GM of temperate hosts. DISCUSSION: Consequently, our results demonstrate extensive passerine GM plasticity, the dominant role of environmental factors in its composition and limited effect of diet.

Zobrazit více v PubMed

Abdad M. Y., Abou Abdallah R., Fournier P.-E., Stenos J., Vasoo S. (2018). A concise review of the epidemiology and diagnostics of rickettsioses: Rickettsia and Orientia spp. J. Clin. Microbiol. 56 e1728–e1717. 10.1128/JCM.01728-17 PubMed DOI PMC

Abe F., Ishibashi N., Shimamura S. (1995). Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets. J. Dairy Sci. 78 2838–2846. 10.3168/jds.S0022-0302(95)76914-4 PubMed DOI

Albrecht T., Kleven O., Kreisinger J., Laskemoen T., Omotoriogun T. C., Ottosson U., et al. (2013). Sperm competition in tropical versus temperate zone birds. Proc. R. Soc. London B Biol. Sci. 280:20122434. 10.1098/rspb.2012.2434 PubMed DOI PMC

Andreani M. L., Freitas L., Ramos E. K. S., Nery M. F. (2020). Latitudinal diversity gradient and cetaceans from the perspective of MHC genes. Immunogenetics 72 393–398. 10.1007/s00251-020-01171-9 PubMed DOI

Bäckhed F., Ley R. E., Sonnenburg J. L., Peterson D. A., Gordon J. I. (2005). Host-bacterial mutualism in the human intestine. Science 307 1915–1920. 10.1126/science.1104816 PubMed DOI

Benjamini Y., Hochberg Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57 289–300. 10.1111/j.2517-6161.1995.tb02031.x DOI

Berlow M., Kohl K. D., Derryberry E. P. (2020). Evaluation of non-lethal gut microbiome sampling methods in a passerine bird. Ibis 162 911–923. 10.1111/ibi.12807 DOI

Bodawatta K. H., Koane B., Maiah G., Sam K., Poulsen M., Jønsson K. A. (2021). Species-specific but not phylosymbiotic gut microbiomes of New Guinean passerine birds are shaped by diet and flight-associated gut modifications. Proc. Royal Soc. B 288:20210446. 10.1098/rspb.2021.0446 PubMed DOI PMC

Bodawatta K. H., Sam K., Jønsson K. A., Poulsen M. (2018). Comparative analyses of the digestive tract microbiota of New Guinean passerine birds. Front. Microbiol. 9:1830. 10.3389/fmicb.2018.01830 PubMed DOI PMC

Callahan B. J., McMurdie P. J., Rosen M. J., Han A. W., Johnson A. J. A., Holmes S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Meth. 13 581–583. 10.1038/nmeth.3869 PubMed DOI PMC

Capunitan D. C., Johnson O., Terrill R. S., Hird S. M. (2020). Evolutionary signal in the gut microbiomes of 74 bird species from Equatorial Guinea. Mol. Ecol. 29 829–847. 10.1111/mec.15354 PubMed DOI

Carter W. A., Pearson S. F., Smith A. D., McWilliams S. R., Levey D. J. (2021). Seasonal and interspecific variation in frugivory by a mixed resident-migrant overwintering songbird community. Diversity 13:314. 10.3390/d13070314 DOI

Cepák J., Klvaňa P., Škopek J., Schröpfer J., Jelínek M., Hořák D., et al. (2008). Atlas migrace ptákù Èeské a Slovenské republiky: Czech and slovak bird migration atlas. Praha: Aventinum.

Cox D. T. C., Brandt M. J., McGregor R., Ottosson U., Stevens M. C., Cresswell W. (2013). The seasonality of breeding in savannah birds of West Africa assessed from brood patch and juvenile occurrence. J. Ornithol. 154 671–683. 10.1007/s10336-013-0930-y DOI

Davis N. M., Proctor D. M., Holmes S. P., Relman D. A., Callahan B. J. (2018). Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6 1–14. 10.1186/s40168-018-0605-2 PubMed DOI PMC

De Filippo C., Cavalieri D., Di Paola M., Ramazzotti M., Poullet J. B., Massart S., et al. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U.S.A. 107 14691–14696. 10.1073/pnas.1005963107 PubMed DOI PMC

Edgar R. C., Haas B. J., Clemente J. C., Quince C., Knight R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27 2194–2200. 10.1093/bioinformatics/btr381 PubMed DOI PMC

Escallón C., Becker M. H., Walker J. B., Jensen R. V., Cormier G., Belden L. K., et al. (2017). Testosterone levels are positively correlated with cloacal bacterial diversity and the relative abundance of Chlamydiae in breeding male rufous-collared sparrows. Funct. Ecol. 31 192–203.

Faith D. P. (1992). Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61 1–10. 10.1016/0006-3207(92)91201-3 DOI

Fotso R. C. (1996). Seasonal breeding in birds and its implications for the conservation of biodiversity in the Oku region, Cameroon. Bird Conserv. Int. 6 393–399. 10.1017/S0959270900001830 DOI

Fry C. H., Keith S., Urban E. K. (1982). The Birds of Africa. Princeton NJ: Princeton University Press.

Gillingham M. A. F., Béchet A., Cézilly F., Wilhelm K., Rendón-Martos M., Borghesi F., et al. (2019). Offspring microbiomes differ across breeding sites in a panmictic species. Front. Microbiol. 10:35. 10.3389/fmicb.2019.00035 PubMed DOI PMC

Gomez A., Rothman J. M., Petrzelkova K., Yeoman C. J., Vlckova K., Umaña J. D., et al. (2016). Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp. ISME J 10 514–526. 10.1038/ismej.2015.146 PubMed DOI PMC

Green P. N., Ardley J. K. (2018). Review of the genus Methylobacterium and closely related organisms: A proposal that some Methylobacterium species be reclassified into a new genus, Methylorubrum gen. nov. Int. J. Syst. Evol. Microbiol. 68 2727–2748. 10.1099/ijsem.0.002856 PubMed DOI

Grond K., Santo Domingo J. W., Lanctot R. B., Jumpponen A., Bentzen R. L., Boldenow M. L., et al. (2019). Composition and drivers of gut microbial communities in Arctic-breeding shorebirds. Front. Microbiol. 10:2258. 10.3389/fmicb.2019.02258 PubMed DOI PMC

Guarner F., Malagelada J.-R. (2003). Gut flora in health and disease. Lancet 361 512–519. 10.1016/S0140-6736(03)12489-0 PubMed DOI

Guernier V., Hochberg M. E., Guégan J.-F. (2004). Ecology drives the worldwide distribution of human diseases. PLoS Biol. 2:e141. 10.1371/journal.pbio.0020141 PubMed DOI PMC

Hird S. M., Sánchez C., Carstens B. C., Brumfield R. T. (2015). Comparative gut microbiota of 59 neotropical bird species. Front. Microbiol. 6:1403. 10.3389/fmicb.2015.01403 PubMed DOI PMC

Jetz W., Freckleton R. P., McKechnie A. E. (2008). Environment, migratory tendency, phylogeny and basal metabolic rate in birds. PLoS One 3:e3261. 10.1371/journal.pone.0003261 PubMed DOI PMC

Jetz W., Thomas G. H., Joy J. B., Hartmann K., Mooers A. O. (2012). The global diversity of birds in space and time. Nature 491 444–448. 10.1038/nature11631 PubMed DOI

Jiang H., Lei R., Ding S.-W., Zhu S. (2014). Skewer: A fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinform. 15:182. 10.1186/1471-2105-15-182 PubMed DOI PMC

Jumpertz R., Le D. S., Turnbaugh P. J., Trinidad C., Bogardus C., Gordon J. I., et al. (2011). Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am. J. Clin. Nutr. 94 58–65. 10.3945/ajcn.110.010132 PubMed DOI PMC

Jurat-Fuentes J. L., Jackson T. A. (2012). “Chapter 8 - Bacterial entomopathogens,” in Insect pathology 2 Edn, eds Vega F. E., Kaya H. K. (San Diego: Academic Press; ), 265–349. 10.1016/B978-0-12-384984-7.00008-7 DOI

Kandler O. (1983). Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 49 209–224. 10.1007/BF00399499 PubMed DOI

Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C., Horn M., et al. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41:e1. 10.1093/nar/gks808 PubMed DOI PMC

Koch H., Schmid-Hempel P. (2011). Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl. Acad. Sci. U.S.A. 108 19288–19292. 10.1073/pnas.1110474108 PubMed DOI PMC

Kreisinger J., Bastien G., Hauffe H. C., Marchesi J., Perkins S. E. (2015a). Interactions between multiple helminths and the gut microbiota in wild rodents. Phil. Trans. R. Soc. B 370:20140295. 10.1098/rstb.2014.0295 PubMed DOI PMC

Kreisinger J., Čížková D., Kropáčková L., Albrecht T. (2015b). Cloacal microbiome structure in a long-distance migratory bird assessed using deep 16sRNA pyrosequencing. PLoS One 10:e0137401. 10.1371/journal.pone.0137401 PubMed DOI PMC

Kreisinger J., Kropáčková L., Petrželková A., Adámková M., Tomášek O., Martin J.-F., et al. (2017). Temporal stability and the effect of transgenerational transfer on fecal microbiota structure in a long distance migratory bird. Front. Microbiol. 8:50. 10.3389/fmicb.2017.00050 PubMed DOI PMC

Kropáčková L., Těšický M., Albrecht T., Kubov čiak J., Čížková D., Tomášek O., et al. (2017). Co-diversification of gastrointestinal microbiota and phylogeny in passerines is not explained by ecological divergence. Mol. Ecol. 26 5292–5304. 10.1111/mec.14144 PubMed DOI

Lee S. C., Tang M. S., Lim Y. A. L., Choy S. H., Kurtz Z. D., Cox L. M., et al. (2014). Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Negl. Trop. Dis. 8:e2880. 10.1371/journal.pntd.0002880 PubMed DOI PMC

Lewis W. B., Moore F. R., Wang S. (2016a). Changes in gut microbiota of migratory passerines during stopover after crossing an ecological barrier. Auk 134 137–145. 10.1642/AUK-16-120.1 PubMed DOI

Lewis W. B., Moore F. R., Wang S. (2016b). Characterization of the gut microbiota of migratory passerines during stopover along the northern coast of the Gulf of Mexico. J. Avian Biol. 47 659–668. 10.1111/jav.00954 DOI

Li M., Bolker B. (2019). Wzmli/phyloglmm: First release of phylogenetic comparative analysis in lme4-verse (version v1.0.0). Zenodo. Available online at: 10.5281/zenodo.2639887 DOI

Ljungh A., Wadström T. (2006). Lactic acid bacteria as probiotics. Curr. Issues Intest. Microbiol. 7 73–89. PubMed

Love M. I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550. 10.1186/s13059-014-0550-8 PubMed DOI PMC

Macpherson A. J., Harris N. L. (2004). Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 4 478–485. 10.1038/nri1373 PubMed DOI

Martin T. E., Martin P. R., Olson C. R., Heidinger B. J., Fontaine J. J. (2000). Parental care and clutch sizes in North and South American birds. Science 287 1482–1485. 10.1126/science.287.5457.1482 PubMed DOI

McCoy E. D., Connor E. F. (1980). Latitudinal gradients in the species diversity of North American mammals. Evolution 34 193–203. 10.2307/2408328 PubMed DOI

McWilliams S. R., Karasov W. H. (2001). Phenotypic flexibility in digestive system structure and function in migratory birds and its ecological significance. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 128 579–593. 10.1016/s1095-6433(00)00336-6 PubMed DOI

Moreno J., Briones V., Merino S., Ballesteros C., Sanz J. J., Tomás G. (2003). Beneficial effects of cloacal bacteria on growth and fledging size in nestling pied flycatchers (Ficedula hypoleuca) in spain. Auk 120 784–790. 10.1642/0004-80382003120[0784:BEOCBO]2.0.CO;2 DOI

Norris D. R., Marra P. P., Kyser T. K., Sherry T. W., Ratcliffe L. M. (2004). Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird. Proc. Biol. Sci. 271 59–64. 10.1098/rspb.2003.2569 PubMed DOI PMC

Nunn C. L., Altizer S. M., Sechrest W., Cunningham A. A. (2005). Latitudinal gradients of parasite species richness in primates. Diversity Distribut. 11 249–256. 10.1111/j.1366-9516.2005.00160.x DOI

Nwaogu C. J., Tieleman B. I., Cresswell W. (2019). Weak breeding seasonality of a songbird in a seasonally arid tropical environment arises from individual flexibility and strongly seasonal moult. Ibis 161 533–545. 10.1111/ibi.12661 DOI

Ormeño-Orrillo E., Martínez-Romero E. (2019). A genomotaxonomy view of the Bradyrhizobium genus. Front. Microbiol. 10:1334. 10.3389/fmicb.2019.01334 PubMed DOI PMC

Owen D. F., Owen J. (1974). Species diversity in temperate and tropical Ichneumonidae. Nature 249 583–584. 10.1038/249583a0 DOI

Owen J. C., Moore F. R. (2008). Swainson’s thrushes in migratory disposition exhibit reduced immune function. J. Ethol. 26 383–388. 10.1007/s10164-008-0092-1 DOI

Peach W. J., Hanmer D. B., Oatley T. B. (2001). Do southern African songbirds live longer than their European counterparts? Oikos 93 235–249. 10.1034/j.1600-0706.2001.930207.x PubMed DOI

Peng R. D. (2019). simpleboot: Simple bootstrap routines. Available online at: https://CRAN.R-project.org/package=simpleboot (accessed October 5, 2021).

Pérez-Cobas A. E., Gosalbes M. J., Friedrichs A., Knecht H., Artacho A., Eismann K., et al. (2013). Gut microbiota disturbance during antibiotic therapy: A multi-omic approach. Gut 62 1591–1601. 10.1136/gutjnl-2012-303184 PubMed DOI PMC

Piersma T., Gudmundsson G. A., Lilliendahl K. (1999). Rapid changes in the size of different functional organ and muscle groups during refueling in a long-distance migrating shorebird. Physiol. Biochem. Zool. 72 405–415. 10.1086/316680 PubMed DOI

Price M. N., Dehal P. S., Arkin A. P. (2009). FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26 1641–1650. 10.1093/molbev/msp077 PubMed DOI PMC

Qin J., Li R., Raes J., Arumugam M., Burgdorf K. S., Manichanh C., et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464 59–65. 10.1038/nature08821 PubMed DOI PMC

Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41 D590–D596. 10.1093/nar/gks1219 PubMed DOI PMC

R Core Team (2020). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

Reikvam D. H., Erofeev A., Sandvik A., Grcic V., Jahnsen F. L., Gaustad P., et al. (2011). Depletion of murine intestinal microbiota: Effects on gut mucosa and epithelial gene expression. PLoS One 6:e17996. 10.1371/journal.pone.0017996 PubMed DOI PMC

Risely A., Waite D. W., Ujvari B., Hoye B. J., Klaassen M. (2018). Active migration is associated with specific and consistent changes to gut microbiota in Calidris shorebirds. J. Anim. Ecol. 87 428–437. 10.1111/1365-2656.12784 PubMed DOI

Risely A., Waite D., Ujvari B., Klaassen M., Hoye B. (2017). Gut microbiota of a long-distance migrant demonstrates resistance against environmental microbe incursions. Mol. Ecol. 26 5842–5854. 10.1111/mec.14326 PubMed DOI

Rockwell S. M., Bocetti C. I., Marra P. P. (2012). Carry-over effects of winter climate on spring arrival date and reproductive success in an endangered migratory bird. Kirtland’s Warbler (Setophaga kirtlandii. The Auk 129 744–752. 10.1525/auk.2012.12003 DOI

Rognes T., Flouri T., Nichols B., Quince C., Mahé F. (2016). VSEARCH: A versatile open source tool for metagenomics. PeerJ 4:e2584. 10.7717/peerj.2584 PubMed DOI PMC

Saino N., Szép T., Ambrosini R., Romano M., Møller A. P. (2004). Ecological conditions during winter affect sexual selection and breeding in a migratory bird. Proc. Biol. Sci. 271 681–686. 10.1098/rspb.2003.2656 PubMed DOI PMC

Schemske D. W., Mittelbach G. G., Cornell H. V., Sobel J. M., Roy K. (2009). Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40 245–269. 10.1146/annurev.ecolsys.39.110707.173430 DOI

Schliep K. P. (2011). phangorn: Phylogenetic analysis in R. Bioinformatics 27 592–593. 10.1093/bioinformatics/btq706 PubMed DOI PMC

Schwilch R., Grattarola A., Spina F., Jenni L. (2002). Protein loss during long-distance migratory flight in passerine birds: Adaptation and constraint. J. Exp. Biol. 205 687–695. 10.1242/jeb.205.5.687 PubMed DOI

Sender R., Fuchs S., Milo R. (2016). Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164 337–340. 10.1016/j.cell.2016.01.013 PubMed DOI

Serle W. (1981). The breeding season of birds in the lowland rainforest and in the montane forest of West Cameroon. Ibis 123 62–74. 10.1111/j.1474-919X.1981.tb00173.x DOI

Sommer F., Bäckhed F. (2013). The gut microbiota-masters of host development and physiology. Nat. Rev. Microbiol. 11 227–238. 10.1038/nrmicro2974 PubMed DOI

Stutchbury B. J. M., Morton E. S. (2001). Behavioral ecology of tropical birds. London: Academic Press.

Suzuki T. A., Worobey M. (2014). Geographical variation of human gut microbial composition. Biol. Lett. 10:20131037. 10.1098/rsbl.2013.1037 PubMed DOI PMC

Suzuki T. A., Martins F. M., Phifer-Rixey M., Nachman M. W. (2020). The gut microbiota and Bergmann’s rule in wild house mice. Mol. Ecol. 29 2300–2311. 10.1111/mec.15476 PubMed DOI PMC

Turjeman S., Corl A., Wolfenden A., Tsalyuk M., Lublin A., Choi O., et al. (2020). Migration, pathogens and the avian microbiome: A comparative study in sympatric migrants and residents. Mol. Ecol. 29 4706–4720. 10.1111/mec.15660 PubMed DOI

Tye H. (1992). Reversal of breeding season by lowland birds at higher altitudes in western Cameroon. Ibis 134 154–163. 10.1111/j.1474-919X.1992.tb08392.x DOI

van Dongen W. F., White J., Brandl H. B., Moodley Y., Merkling T., Leclaire S., et al. (2013). Age-related differences in the cloacal microbiota of a wild bird species. BMC Ecol. 13:11. 10.1186/1472-6785-13-11 PubMed DOI PMC

Videvall E., Strandh M., Engelbrecht A., Cloete S., Cornwallis C. K. (2018). Measuring the gut microbiome in birds: Comparison of faecal and cloacal sampling. Mol. Ecol. Resourc. 18 424–434. 10.1111/1755-0998.12744 PubMed DOI

Wang Q., Garrity G. M., Tiedje J. M., Cole J. R. (2007). Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73 5261–5267. 10.1128/AEM.00062-07 PubMed DOI PMC

Wiersma P., Chappell M. A., Williams J. B. (2007a). Cold- and exercise-induced peak metabolic rates in tropical birds. PNAS 104 20866–20871. 10.1073/pnas.0707683104 PubMed DOI PMC

Wiersma P., Muñoz-Garcia A., Walker A., Williams J. B. (2007b). Tropical birds have a slow pace of life. PNAS 104 9340–9345. 10.1073/pnas.0702212104 PubMed DOI PMC

Wilman H., Belmaker J., Simpson J., de la Rosa C., Rivadeneira M. M., Jetz W. (2014). EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95 2027–2027. 10.1890/13-1917.1 PubMed DOI

Wright E. S. (2020). RNAconTest: Comparing tools for noncoding RNA multiple sequence alignment based on structural consistency. RNA 26 531–540. 10.1261/rna.073015.119 PubMed DOI PMC

Wu H.-J., Wu E. (2012). The role of gut microbiota in immune homeostasis and autoimmunity. Gut. Microbes 3 4–14. 10.4161/gmic.19320 PubMed DOI PMC

Wu Y., Yang Y., Cao L., Yin H., Xu M., Wang Z., et al. (2018). Habitat environments impacted the gut microbiome of long-distance migratory swan geese but central species conserved. Sci. Rep. 8 1–11. 10.1038/s41598-018-31731-9 PubMed DOI PMC

Yatsunenko T., Rey F. E., Manary M. J., Trehan I., Dominguez-Bello M. G., Contreras M., et al. (2012). Human gut microbiome viewed across age and geography. Nature 486 222–227. 10.1038/nature11053 PubMed DOI PMC

Youngblut N. D., Reischer G. H., Walters W., Schuster N., Walzer C., Stalder G., et al. (2019). Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 10:2200. 10.1038/s41467-019-10191-3 PubMed DOI PMC

Zhang F., Xiang X., Dong Y., Yan S., Song Y., Zhou L. (2020). Significant differences in the gut bacterial communities of Hooded Crane (Grus monacha) in different seasons at a stopover site on the flyway. Animals 10:701. 10.3390/ani10040701 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...