Sperm competition in tropical versus temperate zone birds
Jazyk angličtina Země Velká Británie, Anglie Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23235706
PubMed Central
PMC3574308
DOI
10.1098/rspb.2012.2434
PII: rspb.2012.2434
Knihovny.cz E-zdroje
- MeSH
- ekosystém * MeSH
- migrace zvířat MeSH
- multivariační analýza MeSH
- Passeriformes fyziologie MeSH
- roční období MeSH
- sexuální chování zvířat * MeSH
- spermie fyziologie MeSH
- velikost snůšky MeSH
- velikost těla MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Sperm competition represents an important component of post-copulatory sexual selection. It has been argued that the level of sperm competition declines in birds towards the equator. However, to date, sperm competition estimates have been available mainly for avian species inhabiting the northern temperate zone. Here we apply a novel approach, using the coefficient of between-male variation (CV(bm)) in sperm size as an index for sperm competition risk, in a comparative analysis of 31 Afrotropical and 99 northern temperate zone passerine species. We found no difference in sperm competition risk between the two groups, nor any relationship with migration distance. However, a multivariate model indicated that sperm competition risk was highest in species with a combination of low body mass and few eggs per clutch. The effect of clutch size was most pronounced in tropical species, which indicates that sperm competition risk in tropical and temperate species is differently associated with particular life-history traits. Although tropical species had lower sperm competition risk than temperate zone species for overlapping clutch sizes, the idea of a generally reduced risk of sperm competition in tropical birds was not supported by our analysis.
Zobrazit více v PubMed
Birkhead TR, Møller AP. 1998. Sperm competition and sexual selection. London, UK: Academic Press
Albrecht T, Vinkler M, Schnitzer J, Polakova R, Munclinger P, Bryja J. 2009. Extra-pair fertilizations contribute to selection on secondary male ornamentation in a socially monogamous passerine. J. Evol. Biol. 22, 2020–203010.1111/j.1420-9101.2009.01815.x (doi:10.1111/j.1420-9101.2009.01815.x) PubMed DOI
Webster M, Pruett-Jones S, Westneat D, Arnold S. 1995. Measuring the effects of pairing success, extra-pair copulations and mate quality on the opportunity for sexual selection. Evolution 49, 1147–115710.2307/2410439 (doi:10.2307/2410439) PubMed DOI
Pizzari T, Parker GA. 2006. Sperm competition and sperm phenotype. In Sperm biology: an evolutionary perspective (eds Birkhead TR, Hosken DJ, Pitnick S.), pp. 207–245 Oxford, UK: Academic Press
Birkhead TR, Møller AP. 1992. Sperm competition in birds: evolutionary causes and consequences. London, UK: Academic Press
Griffith S, Owens IPF, Thuman K. 2002. Extra pair paternity in birds: a review of interspecific variation and adaptive function. Mol. Ecol. 11, 2195–221210.1046/j.1365-294X.2002.01613.x (doi:10.1046/j.1365-294X.2002.01613.x) PubMed DOI
Westneat D, Stewart I. 2003. Extra-pair paternity in birds: causes, correlates, and conflict. Annu. Rev. Ecol. Evol. Syst. 34, 365–39610.1146/annurev.ecolsys.34.011802.132439 (doi:10.1146/annurev.ecolsys.34.011802.132439) DOI
Skutch A. 1949. Do tropical birds rear as many young as they can nourish? Ibis 91, 430–45810.1111/j.1474-919X.1949.tb02293.x (doi:10.1111/j.1474-919X.1949.tb02293.x) DOI
Ricklefs R, Wikelski M. 2002. The physiology/life-history nexus. Trends Ecol. Evol. 17, 462–46810.1016/S0169-5347(02)02578-8 (doi:10.1016/S0169-5347(02)02578-8) DOI
Stutchbury BJM, Morton ES. 2001. Behavioral ecology of tropical songbirds. London, UK: Academic Press
Stutchbury B, Morton E. 1995. The effect of breeding synchrony on extra-pair mating systems in songbirds. Behaviour 132, 675–69010.1163/156853995X00081 (doi:10.1163/156853995X00081) DOI
Mauck R, Marschall E, Parker P. 1999. Adult survival and imperfect assessment of parentage: effects on male parenting decisions. Am. Nat. 154, 99–10910.1086/303216 (doi:10.1086/303216) PubMed DOI
Arnold K, Owens IPF. 2002. Extra-pair paternity and egg dumping in birds: life history, parental care and the risk of retaliation. Proc. R. Soc. Lond. B 269, 1263–126910.1098/rspb.2002.2013 (doi:10.1098/rspb.2002.2013) PubMed DOI PMC
Bennett PM, Owens IPF. 2002. Evolutionary ecology of birds. Oxford, UK: Oxford University Press
Peach W, Hanmer D, Oatley T. 2001. Do southern African songbirds live longer than their European counterparts? Oikos 93, 235–24910.1034/j.1600-0706.2001.930207.x (doi:10.1034/j.1600-0706.2001.930207.x) DOI
Wiersma P, Munoz-Garcia A, Walker A, Williams JB. 2007. Tropical birds have a slow pace of life. Proc. Natl Acad. Sci. USA 104, 9340–934510.1073/pnas.0702212104 (doi:10.1073/pnas.0702212104) PubMed DOI PMC
Stutchbury B. 1998. Female mate choice of extra-pair males: breeding synchrony is important. Behav. Ecol. Sociobiol. 43, 213–21510.1007/s002650050483 (doi:10.1007/s002650050483) DOI
Spottiswoode C, Møller A. 2004. Extrapair paternity, migration, and breeding synchrony in birds. Behav. Ecol. 15, 41–5710.1093/beheco/arg100 (doi:10.1093/beheco/arg100) DOI
Govaty PA. 1996. Battle of the sexes and origins of monogamy. In Partnerships in birds: the study of monogamy (ed. Black JM.), pp. 21–52 Oxford, UK: Oxford University Press
Mulder RA, Dunn PO, Cockburn A, Lazenby-Cohen KA, Howell MJ. 1994. Helpers liberate female fairy-wrens from constraints on extra-pair mate choice. Proc. R. Soc. Lond. B 255, 223–22910.1098/rspb.1994.0032 (doi:10.1098/rspb.1994.0032) DOI
Ghalambor CK, Martin TE. 2001. Fecundity–survival trade-offs and parental risk-taking in birds. Science 292, 494–49710.1126/science.1059379 (doi:10.1126/science.1059379) PubMed DOI
Jetz W, Sekercioglu CH, Boehning-Gaese K. 2008. The worldwide variation in avian clutch size across species and space. PLoS Biol. 6, 2650–265710.1371/journal.pbio.0060303 (doi:10.1371/journal.pbio.0060303) PubMed DOI PMC
McNamara JM, Barta Z, Wikelski M, Houston AI. 2008. A theoretical investigation of the effect of latitude on avian life histories. Am. Nat. 172, 331–34510.1086/589886 (doi:10.1086/589886) PubMed DOI
Macedo RH, Karubian J, Webster MS. 2008. Extrapair paternity and sexual selection in socially monogamous birds: are tropical birds different? Auk 125, 769–77710.1525/auk.2008.11008 (doi:10.1525/auk.2008.11008) DOI
Calhim S, Immler S, Birkhead TR. 2007. Postcopulatory sexual selection is associated with reduced variation in sperm morphology. PLoS ONE 2, e413.10.1371/journal.pone.0000413 (doi:10.1371/journal.pone.0000413) PubMed DOI PMC
Pitnick S, Hosken DJ, Birkhead TR. 2006. Sperm morphological diversity. In Sperm biology: an evolutionary perspective (eds Birkhead TR, Hosken DJ, Pitnick S.), pp. 69–149 Oxford, UK: Academic Press
Lifjeld JT, Laskemoen T, Kleven O, Albrecht T, Robertson RJ. 2010. Sperm length variation as a predictor of extrapair paternity in passerine birds. PLoS ONE 5, e13456.10.1371/journal.pone.0013456 (doi:10.1371/journal.pone.0013456) PubMed DOI PMC
Birkhead T, Pellatt E, Brekke P, Yeates R, Castillo-Juarez H. 2005. Genetic effects on sperm design in the zebra finch. Nature 434, 383–38710.1038/nature03374 (doi:10.1038/nature03374) PubMed DOI
Parker G, Begon M. 1993. Sperm competition and sperm games: sperm size and number under gametic control. Proc. R. Soc. Lond. B 253, 255–26210.1098/rspb.1993.0111 (doi:10.1098/rspb.1993.0111) PubMed DOI
Hunter F, Birkhead T. 2002. Sperm viability and sperm competition in insects. Curr. Biol. 12, 121–12310.1016/S0960-9822(01)00647-9 (doi:10.1016/S0960-9822(01)00647-9) PubMed DOI
Fitzpatrick JL, Baer B. 2011. Polyandry reduces sperm length variation in social insects. Evolution 65, 3006–301210.1111/j.1558-5646.2011.01343.x (doi:10.1111/j.1558-5646.2011.01343.x) PubMed DOI
Immler S, Calhim S, Birkhead TR. 2008. Increased postcopulatory sexual selection reduces the intramale variation in sperm design. Evolution 62, 1538–154310.1111/j.1558-5646.2008.00393.x (doi:10.1111/j.1558-5646.2008.00393.x) PubMed DOI
Kleven O, Laskemoen T, Fossøy F, Robertson RJ, Lifjeld JT. 2008. Intraspecific variation in sperm length is negatively related to sperm competition in passerine birds. Evolution 62, 494–49910.1111/j.1558-5646.2007.00287.x (doi:10.1111/j.1558-5646.2007.00287.x) PubMed DOI
Pitcher T, Dunn P, Whittingham L. 2005. Sperm competition and the evolution of testes size in birds. J. Evol. Biol. 18, 557–56710.1111/j.1420-9101.2004.00874.x (doi:10.1111/j.1420-9101.2004.00874.x) PubMed DOI
Dunn P, Whittingham L, Pitcher T. 2001. Mating systems, sperm competition, and the evolution of sexual dimorphism in birds. Evolution 55, 161–17510.1554/0014-3820 (doi:10.1554/0014-3820) PubMed DOI
Lindstedt SL, Calder WA. 1976. Body size and longevity in birds. Condor 78, 91–14510.2307/1366920 (doi:10.2307/1366920) DOI
Wolfson A. 1952. The cloacal protuberance: a means for determining breeding condition in live male passerines. Bird Banding 23, 159–16510.2307/4510381 (doi:10.2307/4510381) DOI
Laskemoen T, Kleven O, Fossøy F, Lifjeld JT. 2007. Intraspecific variation in sperm length in two passerine species, the Bluethroat Luscinia svecica and the Willow Warbler Phylloscopus trochilus. Ornis Fenn. 84, 131–139
Lessells CM, Boag PT. 1987. Unrepeatable repeatabilities: a common mistake. Auk 104, 116–12110.2307/4087240 (doi:10.2307/4087240) DOI
Sokal RR, Rohlf FJ. 1981. Biometry: the principles and practice of statistics in biological research, 2nd edn New York, NY: W. H. Freeman and Co
Cramp S, Simmons KEL, Perrins CM. 1978–1994. The birds of the Western Palearctic. Oxford, UK: Oxford University Press
Fry CH, Keith S, Newman K, Urban EK. 1982–2004. The birds of Africa. Princeton, NJ: Princeton University Press
Ridgely SR, Tudor G. 2009. Birds of South America: passerines. London, UK: Christopher Helm
Bakken V, Runde O, Tjørve E. 2006. Norsk ringmerkingsatlas, vol. 2 Stavanger, Norway: Stavanger Museum
Cepák J, Klvaňa P, Škopek J, Schröpfer L, Jelínek M, Hořák D, Formánek J, Zárybnický J. 2008. Czech and Slovak bird migration atlas [in Czech]. Prague, Czech Republic: Aventinum
Fraser KC, Kyser TK, Ratcliffe LM. 2008. Detecting altitudinal migration events in neotropical birds using stable isotopes. Biotropica 40, 269–27210.1111/j.1744-7429.2008.00408.x (doi:10.1111/j.1744-7429.2008.00408.x) DOI
R Development Core Team 2011. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing
Paradis E, Claude J, Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–29010.1093/bioinformatics/btg412 (doi:10.1093/bioinformatics/btg412) PubMed DOI
Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401, 877–88410.1038/44766 (doi:10.1038/44766) PubMed DOI
Freckleton R, Harvey P, Pagel M. 2002. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–72610.1086/343873 (doi:10.1086/343873) PubMed DOI
Crawley MJ. 2007. The R book. Chichester, UK: John Willey & Sons Ltd
Schielzeth H. 2010. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–11310.1111/j.2041-210X.2010.00012.x (doi:10.1111/j.2041-210X.2010.00012.x) DOI
Calhim S, Birkhead TR. 2007. Testes size in birds: quality versus quantity—assumptions, errors, and estimates. Behav. Ecol. 18, 271–27510.1093/beheco/arl076 (doi:10.1093/beheco/arl076) DOI
Griffith S, Stewart I, Dawson D, Owens I, Burke T. 1999. Contrasting levels of extra-pair paternity in mainland and island populations of the house sparrow (Passer domesticus): is there an ‘island effect’? Biol. J. Linnean Soc. 68, 303–31610.1111/j.1095-8312.1999.tb01171.x (doi:10.1111/j.1095-8312.1999.tb01171.x) DOI
Hau M, Ricklefs RE, Wikelski M, Lee KA, Brawn JD. 2010. Corticosterone, testosterone and life-history strategies of birds. Proc. R. Soc. B 277, 3203–321210.1098/rspb.2010.0673 (doi:10.1098/rspb.2010.0673) PubMed DOI PMC
Petrie M, Doums C, Møller A. 1998. The degree of extra-pair paternity increases with genetic variability. Proc. Natl Acad. Sci. USA 95, 9390–939510.1073/pnas.95.16.9390 (doi:10.1073/pnas.95.16.9390) PubMed DOI PMC
Arnqvist G, Kirkpatrick M. 2005. The evolution of infidelity in socially monogamous passerines: the strength of direct and indirect selection on extrapair copulation behavior in females. Am. Nat. 165, S26–S3710.1086/429350 (doi:10.1086/429350) PubMed DOI
Albrecht T, Kreisinger J, Pialek J. 2006. The strength of direct selection against female promiscuity is associated with rates of extrapair fertilizations in socially monogamous songbirds. Am. Nat. 167, 739–74410.1086/502633 (doi:10.1086/502633) PubMed DOI
Ashmole NP. 1963. The regulation of numbers of tropical oceanic birds. Ibis 103, 458–473
Garamszegi LZ, Hirschenhauser K, Bokony V, Eens M, Hurtrez-Bousses S, Møller AP, Oliveira RF, Wingfield JC. 2008. Latitudinal distribution, migration, and testosterone levels in birds. Am. Nat. 172, 533–54610.1086/590955 (doi:10.1086/590955) PubMed DOI
Fitzpatrick S. 1994. Colourful migratory birds: evidence for a mechanism other than parasite resistance for maintenance of good genes sexual selection. Proc. R. Soc. Lond. B 257, 155–16010.1098/rspb.1994.0109 (doi:10.1098/rspb.1994.0109) DOI
Stutchbury B. 1998. Breeding synchrony best explains variation in extra-pair mating system among avian species. Behav. Ecol. Sociobiol. 43, 221–22210.1007/s002650050485 (doi:10.1007/s002650050485) DOI
Weatherhead P, Yezerinac S. 1998. Breeding synchrony and extra-pair mating in birds. Behav. Ecol. Sociobiol. 43, 217–21910.1007/s002650050484 (doi:10.1007/s002650050484) DOI
Slagsvold T, Lifjeld JT. 1997. Incomplete knowledge of male quality may explain variation in extra-pair paternity in birds. Behaviour 134, 353–37110.1163/156853997X00584 (doi:10.1163/156853997X00584) DOI
Stutchbury BJM, Morton ES. 2008. Recent advances in the behavioral ecology of tropical birds: the 2005 Margaret Morse Nice Lecture. Wilson J. Ornithol. 120, 26–3710.1676/07-018.1 (doi:10.1676/07-018.1) DOI
Gut microbiota variation between climatic zones and due to migration strategy in passerine birds
Feather growth and quality across passerines is explained by breeding rather than moulting latitude
Evolution of female promiscuity in Passerides songbirds
Variation in apical hook length reflects the intensity of sperm competition in murine rodents