Feather growth and quality across passerines is explained by breeding rather than moulting latitude

. 2022 Mar 09 ; 289 (1970) : 20212404. [epub] 20220309

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35259984

Tropical bird species are characterized by a comparatively slow pace of life, being predictably different from their temperate zone counterparts in their investments in growth, survival and reproduction. In birds, the development of functional plumage is often considered energetically demanding investment, with consequences on individual fitness and survival. However, current knowledge of interspecific variation in feather growth patterns is mostly based on species of the northern temperate zone. We evaluated patterns in tail feather growth rates (FGR) and feather quality (stress-induced fault bar occurrence; FBO), using 1518 individuals of 167 species and 39 passerine families inhabiting Afrotropical and northern temperate zones. We detected a clear difference in feather traits between species breeding in the temperate and tropical zones, with the latter having significantly slower FGR and three times higher FBO. Moreover, trans-Saharan latitudinal migrants resembled temperate zone residents in that they exhibited a comparatively fast FGR and low FBO, despite sharing moulting environments with tropical species. Our results reveal convergent latitudinal shifts in feather growth investments (latitudinal syndrome) across unrelated passerine families and underscore the importance of breeding latitude in determining cross-species variation in key avian life-history traits.

Zobrazit více v PubMed

Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K. 2009. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245-269. (10.1146/annurev.ecolsys.39.110707.173430) DOI

Wiersma P, Muñoz-Garcia A, Walker A, Williams JB. 2007. Tropical birds have a slow pace of life. Proc. Natl Acad. Sci. USA 104, 9340-9345. (10.1073/pnas.0702212104) PubMed DOI PMC

Jetz W, Sekercioglu CH, Böhning-Gaese K. 2008. The worldwide variation in avian clutch size across species and space. PLoS Biol. 6, e303. (10.1371/journal.pbio.0060303) PubMed DOI PMC

Hau M, Ricklefs RE, Wikelski M, Lee KA, Brawn JD. 2010. Corticosterone, testosterone and life-history strategies of birds. Proc. R. Soc. B 277, 3203-3212. (10.1098/rspb.2010.0673) PubMed DOI PMC

Ricklefs RE, Wikelski M. 2002. The physiology/life-history nexus. Trends Ecol. Evol. 17, 462-468. (10.1016/S0169-5347(02)02578-8) DOI

Boyle AW, Sandercock BK, Martin K. 2016. Patterns and drivers of intraspecific variation in avian life history along elevational gradients: a meta-analysis. Biol. Rev. 91, 469-482. (10.1111/brv.12180) PubMed DOI

Skutch AF. 1949. Do tropical birds rear as many young as they can nourish? Ibis (Lond. 1859). 91, 430-455. (10.1111/j.1474-919X.1949.tb02293.x) DOI

Jenni L, Winkler R. 2020. The biology of moult in birds. London, UK: Bloomsbury Publishing.

Murphy ME, King JR, Lu J. 1988. Malnutrition during the postnuptial molt of white-crowned sparrows: feather growth and quality. Can. J. Zool. 66, 1403-1413. (10.1139/z88-206) DOI

Jenni L, Winkler R. 2020. Moult and ageing of European passerines, 2nd edn. London, UK: Bloomsbury Publishing.

Stutchbury BJ, Morton ES. 2001. Behavioral ecology of tropical birds. San Diego, CA: Academic Press.

Wiersma P, Chappell MA, Williams JB. 2007. Cold- and exercise-induced peak metabolic rates in tropical birds. Proc. Natl Acad. Sci. USA 104, 20 866-20 871. (10.1073/pnas.0707683104) PubMed DOI PMC

Johnson EI, Stouffer PC, Bierregaard RO Jr. 2012. The phenology of molting, breeding and their overlap in central Amazonian birds. J. Avian Biol. 43, 141-154. (10.1111/j.1600-048X.2011.05574.x) DOI

Martin LB II, Hasselquist D, Wikelski M. 2006. Investment in immune defense is linked to pace of life in house sparrows. Oecologia 147, 565-575. (10.1007/s00442-005-0314-y) PubMed DOI

Grubb TC. 2006. Ptilochronology: feather time and the biology of birds. Oxford, UK: Oxford University Press.

Saino N, Romano M, Caprioli M, Ambrosini R, Rubolini D, Scandolara C, Romano A. 2012. A ptilochronological study of carry-over effects of conditions during wintering on breeding performance in the barn swallow Hirundo rustica. J. Avian Biol. 43, 513-524. (10.1111/j.1600-048X.2012.05622.x) DOI

de la Hera I, DeSante DF, Milá B. 2012. Feather growth rate and mass in Nearctic passerines with variable migratory behavior and molt pattern. Auk 129, 222-230. (10.1525/auk.2012.11212) DOI

Sodhi NS. 2002. A comparison of bird communities of two fragmented and two continuous southeast Asian rainforests. Biodivers. Conserv. 11, 1105-1119. (10.1023/A:1015869106512) DOI

Møller AP, Erritzøe J, Nielsen JT. 2009. Frequency of fault bars in feathers of birds and susceptibility to predation. Biol. J. Linn. Soc. 97, 334-345. (10.1111/j.1095-8312.2009.01204.x) DOI

Grubb TC. 1989. Ptilochronology: feather growth bars as indicators of nutritional status. Auk 106, 314-320. (10.1093/auk/106.2.314) DOI

Jenni-Eiermann S, Helfenstein F, Vallat A, Glauser G, Jenni L. 2015. Corticosterone: effects on feather quality and deposition into feathers. Methods Ecol. Evol. 6, 237-246. (10.1111/2041-210X.12314) DOI

Jovani R, Rohwer S. 2017. Fault bars in bird feathers: mechanisms, and ecological and evolutionary causes and consequences. Biol. Rev. 92, 1113-1127. (10.1111/brv.12273) PubMed DOI

Sarasola JH, Jovani R. 2006. Risk of feather damage explains fault bar occurrence in a migrant hawk, the Swainson's hawk Buteo swainsoni. J. Avian Biol. 37, 29-35. (10.1111/j.2006.0908-8857.03693.x) DOI

Duerden JE. 1909. Experiments with ostriches - X. Agric. J. Union South Africa 35, 474-487.

Jovani R, Blas J. 2004. Adaptive allocation of stress-induced deformities on bird feathers. J. Evol. Biol. 17, 294-301. (10.1111/j.1420-9101.2003.00680.x) PubMed DOI

Terrill RS. 2018. Feather growth rate increases with latitude in four species of widespread resident Neotropical birds. Auk 135, 1055-1063. (10.1642/AUK-17-176.1) DOI

Rohwer S, Ricklefs RE, Rohwer VG, Copple MM. 2009. Allometry of the duration of flight feather molt in birds. PLoS Biol. 7, e1000132. (10.1371/journal.pbio.1000132) PubMed DOI PMC

Albrecht T, et al. 2013. Sperm competition in tropical versus temperate zone birds. Proc. R. Soc. B 280, 20122434. (10.1098/rspb.2012.2434) PubMed DOI PMC

Griffiths R, Double MC, Orr K, Dawson RJG. 1998. A DNA test to sex most birds. Mol. Ecol. 7, 1071-1075. (10.1046/j.1365-294x.1998.00389.x) PubMed DOI

Bantock TM, Prys-Jones RP, Lee PLM. 2008. New and improved molecular sexing methods for museum bird specimens. Mol. Ecol. Resour. 8, 519-528. (10.1111/j.1471-8286.2007.01999.x) PubMed DOI

Synek P, Popelková A, Koubínová D, Šťastný K, Langrová I, Votýpka J, Munclinger P. 2016. Haemosporidian infections in the Tengmalm's Owl (Aegolius funereus) and potential insect vectors of their transmission. Parasitol. Res. 115, 291-298. (10.1007/s00436-015-4745-z) PubMed DOI

Horák K, et al. . 2022. Data from: Feather growth and quality across passerines is explained by breeding rather than moulting latitude. Dryad Digital Repository. (10.5061/dryad.0vt4b8h1m) DOI

Brodin A. 1993. Radio-ptilochronology: tracing radioactively labelled food in feathers. Ornis Scand. 24, 167-173. (10.2307/3676732) DOI

Stoffel MA, Nakagawa S, Schielzeth H. 2017. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639-1644. (10.1111/2041-210X.12797) DOI

Tomášek O, Bobek L, Králová T, Adámková M, Albrecht T. 2019. Fuel for the pace of life: baseline blood glucose concentration co-evolves with life-history traits in songbirds. Funct. Ecol. 33, 239-249. (10.1111/1365-2435.13238) DOI

Hadfield J. 2010. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1-22. (10.18637/jss.v033.i02) PubMed DOI

R Core Team. 2019. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Garamszegi LZ. 2014. Uncertainties due to within-species variation in comparative studies: measurement errors and statistical weights. In Modern phylogenetic comparative methods and their application in evolutionary biology (ed Garamszegi LZ), pp. 157-199. Berlin, Germany: Springer.

van de Pol M, Wright J.. 2009. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753-758. (10.1016/j.anbehav.2008.11.006) DOI

Londoño GA, Chappell MA, del Castañeda MR, Jankowski JE, Robinson SK. 2015. Basal metabolism in tropical birds: latitude, altitude, and the ‘pace of life’. Funct. Ecol. 29, 338-346. (10.1111/1365-2435.12348) DOI

Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133-142. (10.1111/J.2041-210X.20110.1111/j.2041-210x.2012.00261.x) DOI

Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401, 877-884. (10.1038/44766) PubMed DOI

de Villemereuil P, Nakagawa S. 2014. General quantitative genetic methods for comparative biology. In Modern phylogenetic comparative methods and their application in evolutionary biology (ed. Garamszegi LZ), pp. 287-303. Berlin, Germany: Springer.

Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S-S, Isaac N, Maintainer WP.. 2015. Package ‘caper’ type package title comparative analyses of phylogenetics and evolution in R. See https://cran.r-project.org/package=caper.

Oliveros CH, et al. 2019. Earth history and the passerine superradiation. Proc. Natl Acad. Sci. USA 116, 7916-7925. (10.1073/pnas.1813206116) PubMed DOI PMC

Cyr NE, Wikelski M, Romero LM. 2008. Increased energy expenditure but decreased stress responsiveness during molt. Physiol. Biochem. Zool. 81, 452-462. (10.1086/589547) PubMed DOI

Lindström Å, Visser GH, Daan S. 1993. The energetic cost of feather synthesis is proportional to basal metabolic rate. Physiol. Zool. 66, 490-510. (10.1086/physzool.66.4.30163805) DOI

Jimenez AG, Cooper-Mullin C, Calhoon EA, Williams JB. 2014. Physiological underpinnings associated with differences in pace of life and metabolic rate in north temperate and neotropical birds. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 184, 545-561. (10.1007/s00360-014-0825-0) PubMed DOI

Bókony V, Lendvai ÁZ, Likér A, Angelier F, Wingfield JC, Chastel O. 2009. Stress response and the value of reproduction: are birds prudent parents? Am. Nat. 173, 589-598. (10.1086/597610) PubMed DOI

Hails CJ. 1982. A comparison of tropical and temperate aerial insect abundance. Biotropica 14, 310. (10.2307/2388092) DOI

Dobzhansky T. 1950. Evolution in the tropics. Am. Sci. 38, 209-221.

Bourlière F, Hadley M. 1970. Ecology of tropical savannas. Annu. Rev. Ecol. Syst. 1, 125-152. (10.1146/annurev.es.01.110170.001013) DOI

Tobias JA, Sheard C, Seddon N, Meade A, Cotton AJ, Nakagawa S. 2016. Territoriality, social bonds, and the evolution of communal signaling in birds. Communal Signal. Birds. Front. Ecol. Evol 4, 74. (10.3389/fevo.2016.00074) DOI

Payne RB. 1969. Overlap of breeding and molting schedules in a collection of African Birds. Condor 71, 140-145. (10.2307/1366075) DOI

Martin TE. 2015. Age-related mortality explains life history strategies of tropical and temperate songbirds. Science 349, 966-970. (10.1126/science.aad1173) PubMed DOI

Dawson A, Hinsley SA, Ferns PN, Bonser RHC, Eccleston L. 2000. Rate of moult affects feather quality: a mechanism linking current reproductive effort to future survival. Proc. R. Soc. Lond. B 267, 2093-2098. (10.1098/rspb.2000.1254) PubMed DOI PMC

Zobrazit více v PubMed

Dryad
10.5061/dryad.0vt4b8h1m

figshare
10.6084/m9.figshare.c.5870795

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...