Feather growth and quality across passerines is explained by breeding rather than moulting latitude
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35259984
PubMed Central
PMC8905169
DOI
10.1098/rspb.2021.2404
Knihovny.cz E-zdroje
- Klíčová slova
- comparative analysis, fault bars, life-history, long-distance migration, pace-of-life syndromes, ptilochronology,
- MeSH
- chov MeSH
- lidé MeSH
- Passeriformes * MeSH
- peří MeSH
- rozmnožování MeSH
- shazování tělního pokryvu * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Tropical bird species are characterized by a comparatively slow pace of life, being predictably different from their temperate zone counterparts in their investments in growth, survival and reproduction. In birds, the development of functional plumage is often considered energetically demanding investment, with consequences on individual fitness and survival. However, current knowledge of interspecific variation in feather growth patterns is mostly based on species of the northern temperate zone. We evaluated patterns in tail feather growth rates (FGR) and feather quality (stress-induced fault bar occurrence; FBO), using 1518 individuals of 167 species and 39 passerine families inhabiting Afrotropical and northern temperate zones. We detected a clear difference in feather traits between species breeding in the temperate and tropical zones, with the latter having significantly slower FGR and three times higher FBO. Moreover, trans-Saharan latitudinal migrants resembled temperate zone residents in that they exhibited a comparatively fast FGR and low FBO, despite sharing moulting environments with tropical species. Our results reveal convergent latitudinal shifts in feather growth investments (latitudinal syndrome) across unrelated passerine families and underscore the importance of breeding latitude in determining cross-species variation in key avian life-history traits.
Agricultural Research Institute for Development Nkolbisson Yaoundé Cameroon
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Department of Ecology Charles University Prague Czech Republic
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Department of Zoology University of Oxford Oxford United Kingdom
Institute of Vertebrate Biology Czech Academy of Sciences Brno Czech Republic
Natural History Museum of Denmark University of Copenhagen Denmark
Zobrazit více v PubMed
Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K. 2009. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245-269. (10.1146/annurev.ecolsys.39.110707.173430) DOI
Wiersma P, Muñoz-Garcia A, Walker A, Williams JB. 2007. Tropical birds have a slow pace of life. Proc. Natl Acad. Sci. USA 104, 9340-9345. (10.1073/pnas.0702212104) PubMed DOI PMC
Jetz W, Sekercioglu CH, Böhning-Gaese K. 2008. The worldwide variation in avian clutch size across species and space. PLoS Biol. 6, e303. (10.1371/journal.pbio.0060303) PubMed DOI PMC
Hau M, Ricklefs RE, Wikelski M, Lee KA, Brawn JD. 2010. Corticosterone, testosterone and life-history strategies of birds. Proc. R. Soc. B 277, 3203-3212. (10.1098/rspb.2010.0673) PubMed DOI PMC
Ricklefs RE, Wikelski M. 2002. The physiology/life-history nexus. Trends Ecol. Evol. 17, 462-468. (10.1016/S0169-5347(02)02578-8) DOI
Boyle AW, Sandercock BK, Martin K. 2016. Patterns and drivers of intraspecific variation in avian life history along elevational gradients: a meta-analysis. Biol. Rev. 91, 469-482. (10.1111/brv.12180) PubMed DOI
Skutch AF. 1949. Do tropical birds rear as many young as they can nourish? Ibis (Lond. 1859). 91, 430-455. (10.1111/j.1474-919X.1949.tb02293.x) DOI
Jenni L, Winkler R. 2020. The biology of moult in birds. London, UK: Bloomsbury Publishing.
Murphy ME, King JR, Lu J. 1988. Malnutrition during the postnuptial molt of white-crowned sparrows: feather growth and quality. Can. J. Zool. 66, 1403-1413. (10.1139/z88-206) DOI
Jenni L, Winkler R. 2020. Moult and ageing of European passerines, 2nd edn. London, UK: Bloomsbury Publishing.
Stutchbury BJ, Morton ES. 2001. Behavioral ecology of tropical birds. San Diego, CA: Academic Press.
Wiersma P, Chappell MA, Williams JB. 2007. Cold- and exercise-induced peak metabolic rates in tropical birds. Proc. Natl Acad. Sci. USA 104, 20 866-20 871. (10.1073/pnas.0707683104) PubMed DOI PMC
Johnson EI, Stouffer PC, Bierregaard RO Jr. 2012. The phenology of molting, breeding and their overlap in central Amazonian birds. J. Avian Biol. 43, 141-154. (10.1111/j.1600-048X.2011.05574.x) DOI
Martin LB II, Hasselquist D, Wikelski M. 2006. Investment in immune defense is linked to pace of life in house sparrows. Oecologia 147, 565-575. (10.1007/s00442-005-0314-y) PubMed DOI
Grubb TC. 2006. Ptilochronology: feather time and the biology of birds. Oxford, UK: Oxford University Press.
Saino N, Romano M, Caprioli M, Ambrosini R, Rubolini D, Scandolara C, Romano A. 2012. A ptilochronological study of carry-over effects of conditions during wintering on breeding performance in the barn swallow Hirundo rustica. J. Avian Biol. 43, 513-524. (10.1111/j.1600-048X.2012.05622.x) DOI
de la Hera I, DeSante DF, Milá B. 2012. Feather growth rate and mass in Nearctic passerines with variable migratory behavior and molt pattern. Auk 129, 222-230. (10.1525/auk.2012.11212) DOI
Sodhi NS. 2002. A comparison of bird communities of two fragmented and two continuous southeast Asian rainforests. Biodivers. Conserv. 11, 1105-1119. (10.1023/A:1015869106512) DOI
Møller AP, Erritzøe J, Nielsen JT. 2009. Frequency of fault bars in feathers of birds and susceptibility to predation. Biol. J. Linn. Soc. 97, 334-345. (10.1111/j.1095-8312.2009.01204.x) DOI
Grubb TC. 1989. Ptilochronology: feather growth bars as indicators of nutritional status. Auk 106, 314-320. (10.1093/auk/106.2.314) DOI
Jenni-Eiermann S, Helfenstein F, Vallat A, Glauser G, Jenni L. 2015. Corticosterone: effects on feather quality and deposition into feathers. Methods Ecol. Evol. 6, 237-246. (10.1111/2041-210X.12314) DOI
Jovani R, Rohwer S. 2017. Fault bars in bird feathers: mechanisms, and ecological and evolutionary causes and consequences. Biol. Rev. 92, 1113-1127. (10.1111/brv.12273) PubMed DOI
Sarasola JH, Jovani R. 2006. Risk of feather damage explains fault bar occurrence in a migrant hawk, the Swainson's hawk Buteo swainsoni. J. Avian Biol. 37, 29-35. (10.1111/j.2006.0908-8857.03693.x) DOI
Duerden JE. 1909. Experiments with ostriches - X. Agric. J. Union South Africa 35, 474-487.
Jovani R, Blas J. 2004. Adaptive allocation of stress-induced deformities on bird feathers. J. Evol. Biol. 17, 294-301. (10.1111/j.1420-9101.2003.00680.x) PubMed DOI
Terrill RS. 2018. Feather growth rate increases with latitude in four species of widespread resident Neotropical birds. Auk 135, 1055-1063. (10.1642/AUK-17-176.1) DOI
Rohwer S, Ricklefs RE, Rohwer VG, Copple MM. 2009. Allometry of the duration of flight feather molt in birds. PLoS Biol. 7, e1000132. (10.1371/journal.pbio.1000132) PubMed DOI PMC
Albrecht T, et al. 2013. Sperm competition in tropical versus temperate zone birds. Proc. R. Soc. B 280, 20122434. (10.1098/rspb.2012.2434) PubMed DOI PMC
Griffiths R, Double MC, Orr K, Dawson RJG. 1998. A DNA test to sex most birds. Mol. Ecol. 7, 1071-1075. (10.1046/j.1365-294x.1998.00389.x) PubMed DOI
Bantock TM, Prys-Jones RP, Lee PLM. 2008. New and improved molecular sexing methods for museum bird specimens. Mol. Ecol. Resour. 8, 519-528. (10.1111/j.1471-8286.2007.01999.x) PubMed DOI
Synek P, Popelková A, Koubínová D, Šťastný K, Langrová I, Votýpka J, Munclinger P. 2016. Haemosporidian infections in the Tengmalm's Owl (Aegolius funereus) and potential insect vectors of their transmission. Parasitol. Res. 115, 291-298. (10.1007/s00436-015-4745-z) PubMed DOI
Horák K, et al. . 2022. Data from: Feather growth and quality across passerines is explained by breeding rather than moulting latitude. Dryad Digital Repository. (10.5061/dryad.0vt4b8h1m) DOI
Brodin A. 1993. Radio-ptilochronology: tracing radioactively labelled food in feathers. Ornis Scand. 24, 167-173. (10.2307/3676732) DOI
Stoffel MA, Nakagawa S, Schielzeth H. 2017. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639-1644. (10.1111/2041-210X.12797) DOI
Tomášek O, Bobek L, Králová T, Adámková M, Albrecht T. 2019. Fuel for the pace of life: baseline blood glucose concentration co-evolves with life-history traits in songbirds. Funct. Ecol. 33, 239-249. (10.1111/1365-2435.13238) DOI
Hadfield J. 2010. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1-22. (10.18637/jss.v033.i02) PubMed DOI
R Core Team. 2019. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Garamszegi LZ. 2014. Uncertainties due to within-species variation in comparative studies: measurement errors and statistical weights. In Modern phylogenetic comparative methods and their application in evolutionary biology (ed Garamszegi LZ), pp. 157-199. Berlin, Germany: Springer.
van de Pol M, Wright J.. 2009. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753-758. (10.1016/j.anbehav.2008.11.006) DOI
Londoño GA, Chappell MA, del Castañeda MR, Jankowski JE, Robinson SK. 2015. Basal metabolism in tropical birds: latitude, altitude, and the ‘pace of life’. Funct. Ecol. 29, 338-346. (10.1111/1365-2435.12348) DOI
Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133-142. (10.1111/J.2041-210X.20110.1111/j.2041-210x.2012.00261.x) DOI
Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401, 877-884. (10.1038/44766) PubMed DOI
de Villemereuil P, Nakagawa S. 2014. General quantitative genetic methods for comparative biology. In Modern phylogenetic comparative methods and their application in evolutionary biology (ed. Garamszegi LZ), pp. 287-303. Berlin, Germany: Springer.
Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S-S, Isaac N, Maintainer WP.. 2015. Package ‘caper’ type package title comparative analyses of phylogenetics and evolution in R. See https://cran.r-project.org/package=caper.
Oliveros CH, et al. 2019. Earth history and the passerine superradiation. Proc. Natl Acad. Sci. USA 116, 7916-7925. (10.1073/pnas.1813206116) PubMed DOI PMC
Cyr NE, Wikelski M, Romero LM. 2008. Increased energy expenditure but decreased stress responsiveness during molt. Physiol. Biochem. Zool. 81, 452-462. (10.1086/589547) PubMed DOI
Lindström Å, Visser GH, Daan S. 1993. The energetic cost of feather synthesis is proportional to basal metabolic rate. Physiol. Zool. 66, 490-510. (10.1086/physzool.66.4.30163805) DOI
Jimenez AG, Cooper-Mullin C, Calhoon EA, Williams JB. 2014. Physiological underpinnings associated with differences in pace of life and metabolic rate in north temperate and neotropical birds. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 184, 545-561. (10.1007/s00360-014-0825-0) PubMed DOI
Bókony V, Lendvai ÁZ, Likér A, Angelier F, Wingfield JC, Chastel O. 2009. Stress response and the value of reproduction: are birds prudent parents? Am. Nat. 173, 589-598. (10.1086/597610) PubMed DOI
Hails CJ. 1982. A comparison of tropical and temperate aerial insect abundance. Biotropica 14, 310. (10.2307/2388092) DOI
Dobzhansky T. 1950. Evolution in the tropics. Am. Sci. 38, 209-221.
Bourlière F, Hadley M. 1970. Ecology of tropical savannas. Annu. Rev. Ecol. Syst. 1, 125-152. (10.1146/annurev.es.01.110170.001013) DOI
Tobias JA, Sheard C, Seddon N, Meade A, Cotton AJ, Nakagawa S. 2016. Territoriality, social bonds, and the evolution of communal signaling in birds. Communal Signal. Birds. Front. Ecol. Evol 4, 74. (10.3389/fevo.2016.00074) DOI
Payne RB. 1969. Overlap of breeding and molting schedules in a collection of African Birds. Condor 71, 140-145. (10.2307/1366075) DOI
Martin TE. 2015. Age-related mortality explains life history strategies of tropical and temperate songbirds. Science 349, 966-970. (10.1126/science.aad1173) PubMed DOI
Dawson A, Hinsley SA, Ferns PN, Bonser RHC, Eccleston L. 2000. Rate of moult affects feather quality: a mechanism linking current reproductive effort to future survival. Proc. R. Soc. Lond. B 267, 2093-2098. (10.1098/rspb.2000.1254) PubMed DOI PMC