Proteostasis as a Sentry for Sperm Quality and Male Fertility

. 2025 ; 1469 () : 273-303.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40301261

In the last two decades, a school of thought emerged that perceives male reproductive health, testicular function, and sperm output as a sentry for general, somatic health. Large-scale epidemiologic studies have already linked the reduced sperm count to increased risk of chronic somatic disease (e.g., cancer, cardiovascular, neurological and bone diseases), yet most of these studies have not taken full advantage of advanced andrological analysis. Altered proteostasis, i.e., the disbalance between protein synthesis and turnover, is a common denominator of many diseases, including but not limited to cancer and neurodegenerative diseases. This chapter introduces the concept of cellular proteostasis as a measure of sperm structural and functional integrity and an endpoint of varied impacts on spermiogenesis and sperm maturation, including heritability, general health, lifestyle, and occupational and environmental reprotoxic exposure. Special consideration is given to small molecule protein modifiers, sperm-binding seminal plasma proteins, zinc-interacting proteins, and redox proteins responsible for the maintenance of protein structure and the protection of spermatozoa from oxidative damage. While the main focus is on human male infertility, serious consideration is given to relevant animal models, and in particular to male food animals with extensive records of fertility from artificial insemination services. Altogether, the proteostatic biomarker discovery and validation studies set the stage for the integration of proteomics of sperm proteostasis with genomic and high throughput phenomic approaches to benefit both human and animal reproductive medicine.

Zobrazit více v PubMed

Harris, K.L., Caskey-Sigety, L.: The medieval vagina: an historical and hysterical look at all things vaginal during the middle ages. In: CreateSpace Independent Publishing Platform, pp. 1050–1097 (2014)

Pierce, R.V.: The People’s Common Sense Medical Adviser in Plain English or, Medicine Simplified. World Dispensary Printing Office and Bindery, Buffalo, NY (1909)

Hanson, B.M., Eisenberg, M.L., Hotaling, J.M.: Male infertility: a biomarker of individual and familial cancer risk. Fertil. Steril. 109, 6–19 (2018) PubMed DOI

Del Giudice, F., Kasman, A.M., Ferro, M., Sciarra, A., De Berardinis, E., Belladelli, F., Salonia, A., Eisenberg, M.L.: Clinical correlation among male infertility and overall male health: a systematic review of the literature. Investig. Clin. Urol. 61, 355–371 (2020) PubMed DOI PMC

Huxley, A.: Brave New World. Chatto & Windus, London, UK (1932)

Center for Disease Control: 2021 Assisted Reproductive Technology Fertility Clinic and National Summary Report (2023)

Xiong, Y., Yu, C., Zhang, Q.: Ubiquitin-proteasome system-regulated protein degradation in spermatogenesis. Cells. 11, 11 (2022) DOI

Zigo, M., Jonakova, V., Manaskova-Postlerova, P., Kerns, K., Sutovsky, P.: Ubiquitin-proteasome system participates in the de-aggregation of spermadhesin and DQH protein during boar sperm capacitation. Reproduction. 157, 283–295 (2019) PubMed DOI

Gou, L.T., Kang, J.Y., Dai, P., Wang, X., Li, F., Zhao, S., Zhang, M., Hua, M.M., Lu, Y., Zhu, Y., Li, Z., Chen, H., et al.: Ubiquitination-deficient mutations in human Piwi cause male infertility by impairing histone-to-protamine exchange during spermiogenesis. Cell. 169, 1090–1104 e1013 (2017) PubMed DOI PMC

Chen, H.Y., Sun, J.M., Zhang, Y., Davie, J.R., Meistrich, M.L.: Ubiquitination of histone H3 in elongating spermatids of rat testes. J. Biol. Chem. 273, 13165–13169 (1998) PubMed DOI

Berruti, G., Martegani, E.: The deubiquitinating enzyme mUBPy interacts with the sperm-specific molecular chaperone MSJ-1: the relation with the proteasome, acrosome, and centrosome in mouse male germ cells. Biol. Reprod. 72, 14–21 (2005) PubMed DOI

Ali, A., Mistry, B.V., Ahmed, H.A., Abdulla, R., Amer, H.A., Prince, A., Alazami, A.M., Alkuraya, F.S., Assiri, A.: Deletion of DDB1- and CUL4- associated factor-17 (Dcaf17) gene causes spermatogenesis defects and male infertility in mice. Sci. Rep. 8, 9202 (2018) PubMed DOI PMC

Yin, Y., Liu, L., Yang, C., Lin, C., Veith, G.M., Wang, C., Sutovsky, P., Zhou, P., Ma, L.: Cell autonomous and nonautonomous function of CUL4B in mouse spermatogenesis. J. Biol. Chem. 291, 6923–6935 (2016) PubMed DOI PMC

Sutovsky, P., Aarabi, M., Miranda-Vizuete, A., Oko, R.: Negative biomarker based male fertility evaluation: sperm phenotypes associated with molecular-level anomalies. Asian J. Androl. 17, 554–560 (2015) PubMed DOI PMC

Ahlering, P., Sutovsky, P.: Biomarker-based flow-cytometric semen analysis for male infertility diagnostics and clinical decision making in ART. In: Sills, E.S. (ed.) Screening for the Single Euploid Embryo – Molecular Genetics in Reproductive Medicine, pp. 33–51. Springer (2015) DOI

Toshimori, K.: Dynamics of the mammalian sperm head: modifications and maturation events from spermatogenesis to egg activation. Adv. Anat. Embryol. Cell Biol. 204, 5–94 (2009) PubMed

Chenoweth, P.J.: Genetic sperm defects. Theriogenology. 64, 457–468 (2005) PubMed DOI

Courtens, J.L., Amir, D., Durand, J.: Abnormal spermiogenesis in bulls treated with ethylene dibromide: an ultrastructural and ultracytochemical study. J. Ultrastruct. Res. 71, 103–115 (1980) PubMed DOI

Coulter, G.H., Oko, R.J., Costerton, J.W.: Incidence and ultrastructure of “crater” defect of bovine spermatozoa. Theriogenology. 9, 165–173 (1978) DOI

Hamilton, L.E., Oko, R., Miranda-Vizuete, A., Sutovsky, P.: Sperm redox system equilibrium: implications for fertilization and male fertility. Adv. Exp. Med. Biol. 1358, 345–367 (2022) PubMed DOI

Miranda-Vizuete, A., Sadek, C.M., Jimenez, A., Krause, W.J., Sutovsky, P., Oko, R.: The mammalian testis-specific thioredoxin system. Antioxid. Redox Signal. 6, 25–40 (2004) PubMed DOI

Buckman, C., Ozanon, C., Qiu, J., Sutovsky, M., Carafa, J.A., Rawe, V.Y., Manandhar, G., Miranda-Vizuete, A., Sutovsky, P.: Semen levels of spermatid-specific thioredoxin-3 correlate with pregnancy rates in ART couples. PLoS One. 8, e61000 (2013) PubMed DOI PMC

Jimenez, A., Zu, W., Rawe, V.Y., Pelto-Huikko, M., Flickinger, C.J., Sutovsky, P., Gustafsson, J.A., Oko, R., Miranda-Vizuete, A.: Spermatocyte/spermatid-specific thioredoxin-3, a novel Golgi apparatus-associated thioredoxin, is a specific marker of aberrant spermatogenesis. J. Biol. Chem. 279, 34971–34982 (2004) PubMed DOI

Rawe, V.Y., Olmedo, S.B., Benmusa, A., Shiigi, S.M., Chemes, H.E., Sutovsky, P.: Sperm ubiquitination in patients with dysplasia of the fibrous sheath. Hum. Reprod. 17, 2119–2127 (2002) PubMed DOI

Sutovsky, P., Hauser, R., Sutovsky, M.: Increased levels of sperm ubiquitin correlate with semen quality in men from an andrology laboratory clinic population. Hum. Reprod. 19, 628–638 (2004) PubMed DOI

Sutovsky, P., Terada, Y., Schatten, G.: Ubiquitin-based sperm assay for the diagnosis of male factor infertility. Hum. Reprod. 16, 250–258 (2001) PubMed DOI

Ozanon, C., Chouteau, J., Sutovsky, P.: Clinical adaptation of the sperm ubuquitin tag immunoassay (SUTI): relationship of sperm ubiquitylation with sperm quality in gradient-purified semen samples from 93 men from a general infertility clinic population. Hum. Reprod. 20, 2271–2278 (2005) PubMed DOI

Eskandari-Shahraki, M., Tavalaee, M., Deemeh, M.R., Jelodar, G.A., Nasr-Esfahani, M.H.: Proper ubiquitination effect on the fertilisation outcome post-ICSI. Andrologia. 45, 204–210 (2013) PubMed DOI

Sutovsky, P., Moreno, R., Ramalho-Santos, J., Dominko, T., Thompson, W.E., Schatten, G.: A putative, ubiquitin-dependent mechanism for the recognition and elimination of defective spermatozoa in the mammalian epididymis. J. Cell Sci. 114, 1665–1675 (2001) PubMed DOI

Olson, G.E., Winfrey, V.P., NagDas, S.K., Melner, M.H.: Region-specific expression and secretion of the fibrinogen-related protein, fgl2, by epithelial cells of the hamster epididymis and its role in disposal of defective spermatozoa. J. Biol. Chem. 279, 51266–51274 (2004) PubMed DOI

Da Silva, N., Cortez-Retamozo, V., Reinecker, H.C., Wildgruber, M., Hill, E., Brown, D., Swirski, F.K., Pittet, M.J., Breton, S.: A dense network of dendritic cells populates the murine epididymis. Reproduction. 141, 653–663 (2011) PubMed DOI PMC

Plante, G., Prud'homme, B., Fan, J., Lafleur, M., Manjunath, P.: Evolution and function of mammalian binder of sperm proteins. Cell Tissue Res. 363, 105–127 (2016) PubMed DOI

Odhiambo, J.F., DeJarnette, J.M., Geary, T.W., Kennedy, C.E., Suarez, S.S., Sutovsky, M., Sutovsky, P.: Increased conception rates in beef cattle inseminated with nanopurified bull semen. Biol. Reprod. 91, 97 (2014) PubMed DOI

Diaz-Miranda, E.A., Hamilton, L.E., Zigo, M., Fallon, L., Ortega, M.S., D'Avila Assumpcao, M.E.O., Guimaraes, J.D., Sutovsky, P.: Regional abundances of binder of sperm (BSP) proteins are negatively associated with the quality of frozen-thawed bovine spermatozoa. Reproduction. 167 (2024)

Topfer-Petersen, E., Romero, A., Varela, P.F., Ekhlasi-Hundrieser, M., Dostalova, Z., Sanz, L., Calvete, J.J.: Spermadhesins: a new protein family. Facts, hypotheses and perspectives. Andrologia. 30, 217–224 (1998) PubMed DOI

Einspanier, R., Krause, I., Calvete, J.J., Töfper-Petersen, E., Klostermeyer, H., Karg, H.: Bovine seminal plasma aSFP: localization of disulfide bridges and detection of three different isoelectric forms. FEBS Lett. 344, 61–64 (1994) PubMed DOI

Tedeschi, G., Oungre, E., Mortarino, M., Negri, A., Maffeo, G., Ronchi, S.: Purification and primary structure of a new bovine spermadhesin. Eur. J. Biochem. 267, 6175–6179 (2000) PubMed DOI

Reinert, M., Calvete, J.J., Sanz, L., Mann, K., Töpfer-Petersen, E.: Primary structure of stallion seminal plasma protein HSP-7, a zona-pellucida-binding protein of the spermadhesin family. Eur. J. Biochem. 242, 636–640 (1996) PubMed DOI

Bergeron, A., Villemure, M., Lazure, C., Manjunath, P.: Isolation and characterization of the major proteins of ram seminal plasma. Mol. Reprod. Dev. 71, 461–470 (2005) PubMed DOI

Teixeira, D.I., Cavada, B.S., Sampaio, A.H., Havt, A., Bloch Jr., C., Prates, M.V., Moreno, F.B., Santos, E.A., Gadelha, C.A., Gadelha, T.S., Crisóstomo, F.S., Freitas, V.J.: Isolation and partial characterisation of a protein from buck seminal plasma (Capra hircus), homologous to spermadhesins. Protein Pept. Lett. 9, 331–335 (2002) PubMed DOI

Kraus, M., Tichá, M., Jonáková, V.: Heparin-binding proteins of human seminal plasma homologous with boar spermadhesins. J. Reprod. Immunol. 51, 131–144 (2001) PubMed DOI

Kraus, M., Tichá, M., Zelezná, B., Peknicová, J., Jonáková, V.: Characterization of human seminal plasma proteins homologous to boar AQN spermadhesins. J. Reprod. Immunol. 65, 33–46 (2005) PubMed DOI

Jonakova, V., Manaskova, P., Kraus, M., Liberda, J., Ticha, M.: Sperm surface proteins in mammalian fertilization. Mol. Reprod. Dev. 56, 275–277 (2000) PubMed DOI

Liberda, J., Manaskova, P., Prelovska, L., Ticha, M., Jonakova, V.: Saccharide-mediated interactions of boar sperm surface proteins with components of the porcine oviduct. J. Reprod. Immunol. 71, 112–125 (2006) PubMed DOI

Talevi, R., Gualtieri, R.: Molecules involved in sperm-oviduct adhesion and release. Theriogenology. 73, 796–801 (2010) PubMed DOI

Novak, S., Ruiz-Sánchez, A., Dixon, W.T., Foxcroft, G.R., Dyck, M.K.: Seminal plasma proteins as potential markers of relative fertility in boars. J. Androl. 31, 188–200 (2010) PubMed DOI

Rodriguez-Martinez, H., Saravia, F., Wallgren, M., Martinez, E.A., Sanz, L., Roca, J., Vazquez, J.M., Calvete, J.J.: Spermadhesin PSP-I/PSP-II heterodimer induces migration of polymorphonuclear neutrophils into the uterine cavity of the sow. J. Reprod. Immunol. 84, 57–65 (2010) PubMed DOI

Kwon, W.S., Rahman, M.S., Lee, J.S., Yoon, S.J., Park, Y.J., Pang, M.G.: Discovery of predictive biomarkers for litter size in boar spermatozoa. Mol. Cell. Proteomics. 14, 1230–1240 (2015) PubMed DOI PMC

Kwon, W.S., Rahman, M.S., Ryu, D.Y., Park, Y.J., Pang, M.G.: Increased male fertility using fertility-related biomarkers. Sci. Rep. 5, 15654 (2015) PubMed DOI PMC

Pérez-Patiño, C., Parrilla, I., Barranco, I., Vergara-Barberán, M., Simó-Alfonso, E.F., Herrero-Martínez, J.M., Rodriguez-Martínez, H., Martínez, E.A., Roca, J.: New in-depth analytical approach of the porcine seminal plasma proteome reveals potential fertility biomarkers. J. Proteome Res. 17, 1065–1076 (2018) PubMed DOI

Somashekar, L., Selvaraju, S., Parthipan, S., Patil, S.K., Binsila, B.K., Venkataswamy, M.M., Karthik Bhat, S., Ravindra, J.P.: Comparative sperm protein profiling in bulls differing in fertility and identification of phosphatidylethanolamine-binding protein 4, a potential fertility marker. Andrology. 5, 1032–1051 (2017) PubMed DOI

Ramírez-López, C.J., Barros, E., Vidigal, P.M.P., Silva Okano, D., Duarte Rodrigues, J.N., Lopes Gomes, L., Montes-Vergara, J.C., Petro Hernandez, V.G., Baracat-Pereira, M.C., Guimarães, S.E.F., Guimarães, J.D.: Relative abundance of Spermadhesin-1 in the seminal plasma of young Nellore bulls is in agreement with reproductive parameters. Vet. Sci. 10 (2023)

Centurion, F., Vazquez, J.M., Calvete, J.J., Roca, J., Sanz, L., Parrilla, I., Garcia, E.M., Martinez, E.A.: Influence of porcine spermadhesins on the susceptibility of boar spermatozoa to high dilution. Biol. Reprod. 69, 640–646 (2003) PubMed DOI

Caballero, I., Vázquez, J.M., García, E.M., Roca, J., Martínez, E.A., Calvete, J.J., Sanz, L., Ekwall, H., Rodríguez-Martínez, H.: Immunolocalization and possible functional role of PSP-I/PSP-II heterodimer in highly extended boar spermatozoa. J. Androl. 27, 766–773 (2006) PubMed DOI

Gomes, F.P., Park, R., Viana, A.G., Fernandez-Costa, C., Topper, E., Kaya, A., Memili, E., Yates 3rd, J.R., Moura, A.A.: Protein signatures of seminal plasma from bulls with contrasting frozen-thawed sperm viability. Sci. Rep. 10, 14661 (2020) PubMed DOI PMC

Simonik, O., Bubenickova, F., Tumova, L., Frolikova, M., Sur, V.P., Beran, J., Havlikova, K., Hackerova, L., Spevakova, D., Komrskova, K., Postlerova, P.: Boar sperm cryopreservation improvement using semen extender modification by dextran and pentaisomaltose. Animals (Basel). 12 (2022)

Bubenickova, F., Postlerova, P., Simonik, O., Sirohi, J., Sichtar, J.: Effect of seminal plasma protein fractions on stallion sperm cryopreservation. Int. J. Mol. Sci. 21 (2020)

Zuidema, D., Jones, A., Song, W.H., Zigo, M., Sutovsky, P.: Identification of candidate mitochondrial inheritance determinants using the mammalian cell-free system. elife. 12, 12 (2023) DOI

Song, W.H., Yi, Y.J., Sutovsky, M., Meyers, S., Sutovsky, P.: Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization. Proc. Natl. Acad. Sci. USA. 113, E5261–E5270 (2016) PubMed DOI PMC

Kerns, K., Jankovitz, J., Robinson, J., Minton, A., Kuster, C., Sutovsky, P.: Relationship between the length of sperm tail mitochondrial sheath and fertility traits in boars used for artificial insemination. Antioxidants. 9, 9 (2020) DOI

Kennedy, C.E., Krieger, K.B., Sutovsky, M., Xu, W., Vargovic, P., Didion, B.A., Ellersieck, M.R., Hennessy, M.E., Verstegen, J., Oko, R., Sutovsky, P.: Protein expression pattern of PAWP in bull spermatozoa is associated with sperm quality and fertility following artificial insemination. Mol. Reprod. Dev. 81, 436–449 (2014) PubMed DOI

Fallon, L., Diaz-Miranda, E., Hamilton, L.E., Sutovsky, P., Zigo, M., Spencer, T.E., Ortega, M.S.: The development of new biomarkers of spermatozoa quality in cattle. Front. Vet. Sci. 10, 1258295 (2023) PubMed DOI PMC

Jodar, M., Soler-Ventura, A., Oliva, R.: Semen proteomics and male infertility. J. Proteome. 162, 125–134 (2017) DOI

Amaral, A., Castillo, J., Ramalho-Santos, J., Oliva, R.: The combined human sperm proteome: cellular pathways and implications for basic and clinical science. Hum. Reprod. Update. 20, 40–62 (2014) PubMed DOI

Chhikara, N., Tomar, A.K., Datta, S.K., Yadav, S.: Proteomic changes in human spermatozoa during in vitro capacitation and acrosome reaction in normozoospermia and asthenozoospermia. Andrology. 11, 73–85 (2023) PubMed DOI

Hernández-Silva, G., Fabián López-Araiza, J.E., López-Torres, A.S., Larrea, F., Torres-Flores, V., Chirinos, M.: Proteomic characterization of human sperm plasma membrane-associated proteins and their role in capacitation. Andrology. 8, 171–180 (2020) PubMed DOI

Castillo, J., Bogle, O.A., Jodar, M., Torabi, F., Delgado-Dueñas, D., Estanyol, J.M., Ballescà, J.L., Miller, D., Oliva, R.: Proteomic changes in human sperm during sequential in vitro capacitation and acrosome reaction. Front. Cell Dev. Biol. 7, 295 (2019) PubMed DOI PMC

Secciani, F., Bianchi, L., Ermini, L., Cianti, R., Armini, A., La Sala, G.B., Focarelli, R., Bini, L., Rosati, F.: Protein profile of capacitated versus ejaculated human sperm. J. Proteome Res. 8, 3377–3389 (2009) PubMed DOI

Nixon, B., Mitchell, L.A., Anderson, A.L., McLaughlin, E.A., O'Bryan, M.K., Aitken, R.J.: Proteomic and functional analysis of human sperm detergent resistant membranes. J. Cell. Physiol. 226, 2651–2665 (2011) PubMed DOI

Kerns, K., Zigo, M., Drobnis, E.Z., Sutovsky, M., Sutovsky, P.: Zinc ion flux during mammalian sperm capacitation. Nat. Commun. 9, 2061 (2018) PubMed DOI PMC

Kerns, K., Sharif, M., Zigo, M., Xu, W., Hamilton, L.E., Sutovsky, M., Ellersieck, M., Drobnis, E.Z., Bovin, N., Oko, R., Miller, D., Sutovsky, P.: Sperm cohort-specific zinc signature acquisition and capacitation-induced zinc flux regulate sperm-oviduct and sperm-zona Pellucida interactions. Int. J. Mol. Sci. 21 (2020)

Zigo, M., Kerns, K., Sen, S., Essien, C., Oko, R., Xu, D., Sutovsky, P.: Zinc is a master-regulator of sperm function associated with binding, motility, and metabolic modulation during porcine sperm capacitation. Commun. Biol. 5, 538 (2022) PubMed DOI PMC

Bjorndahl, L., Kvist, U.: Human sperm chromatin stabilization: a proposed model including zinc bridges. Mol. Hum. Reprod. 16, 23–29 (2010) PubMed DOI

Sutovsky, P., Neuber, E., Schatten, G.: Ubiquitin-dependent sperm quality control mechanism recognizes spermatozoa with DNA defects as revealed by dual ubiquitin-TUNEL assay. Mol. Reprod. Dev. 61, 406–413 (2002) PubMed DOI

Varum, S., Bento, C., Sousa, A.P., Gomes-Santos, C.S., Henriques, P., Almeida-Santos, T., Teodosio, C., Paiva, A., Ramalho-Santos, J.: Characterization of human sperm populations using conventional parameters, surface ubiquitination, and apoptotic markers. Fertil. Steril. 87, 572–583 (2007) PubMed DOI

Stiavnicka, M., Garcia-Alvarez, O., Ulcova-Gallova, Z., Sutovsky, P., Abril-Parreno, L., Dolejsova, M., Rimnacova, H., Moravec, J., Hosek, P., Losan, P., Gold, L., Fenclova, T., et al.: H3K4me2 accompanies chromatin immaturity in human spermatozoa: an epigenetic marker for sperm quality assessment. Syst Biol Reprod Med. 66, 3–11 (2020) PubMed DOI

Van Raamsdonk, J.M., Murphy, Z., Selva, D.M., Hamidizadeh, R., Pearson, J., Petersén, A., Björkqvist, M., Muir, C., Mackenzie, I.R., Hammond, G.L., Vogl, A.W., Hayden, M.R., et al.: Testicular degeneration in Huntington disease. Neurobiol. Dis. 26, 512–520 (2007) PubMed DOI

Baxa, M., Hruska-Plochan, M., Juhas, S., Vodicka, P., Pavlok, A., Juhasova, J., Miyanohara, A., Nejime, T., Klima, J., Macakova, M., Marsala, S., Weiss, A., et al.: A transgenic minipig model of Huntington's disease. J. Huntingtons Dis. 2, 47–68 (2013) PubMed DOI

Krizova, J., Stufkova, H., Rodinova, M., Macakova, M., Bohuslavova, B., Vidinska, D., Klima, J., Ellederova, Z., Pavlok, A., Howland, D.S., Zeman, J., Motlik, J., et al.: Mitochondrial metabolism in a large-animal model of Huntington disease: the hunt for biomarkers in the spermatozoa of Presymptomatic Minipigs. Neurodegener Dis. 17, 213–226 (2017) PubMed DOI

Macakova, M., Bohuslavova, B., Vochozkova, P., Pavlok, A., Sedlackova, M., Vidinska, D., Vochyanova, K., Liskova, I., Valekova, I., Baxa, M., Ellederova, Z., Klima, J., et al.: Mutated huntingtin causes testicular pathology in transgenic Minipig boars. Neurodegener Dis. 16, 245–259 (2016) PubMed DOI

Vidinská, D., Vochozková, P., Šmatlíková, P., Ardan, T., Klíma, J., Juhás, Š., Juhásová, J., Bohuslavová, B., Baxa, M., Valeková, I., Motlík, J., Ellederová, Z.: Gradual phenotype development in Huntington disease transgenic Minipig model at 24 months of age. Neurodegener Dis. 18, 107–119 (2018) PubMed DOI

Chen, S., Yang, Y., Gao, B., Jia, C., Zhu, F., Meng, Q., Zhang, Z., Zhang, Z., Xu, S.: Comparative proteomics of the Acanthopagrus schlegelii gonad in different sex reversal. Genes (Basel). 13, 13 (2022)

Zmudzinska, A., Bromke, M.A., Strzezek, R., Zielinska, M., Olejnik, B., Mogielnicka-Brzozowska, M.: Proteomic analysis of intracellular and membrane-associated fractions of canine (Canis lupus familiaris) epididymal spermatozoa and sperm structure separation. Animals (Basel). 12 (2022)

Jia, B., Larbi, A., Lv, C., Liang, J., Xiang, D., Zhang, B., Fang, Y., Shen, W., Wu, G., Quan, G.: Identification and validation of ram sperm proteins associated with cryoinjuries caused by the cryopreservation process. Theriogenology. 184, 191–203 (2022) PubMed DOI

Zhang, M., Chiozzi, R.Z., Skerrett-Byrne, D.A., Veenendaal, T., Klumperman, J., Heck, A.J.R., Nixon, B., Helms, J.B., Gadella, B.M., Bromfield, E.G.: High resolution proteomic analysis of subcellular fractionated boar spermatozoa provides comprehensive insights into perinuclear theca-residing proteins. Front. Cell Dev. Biol. 10, 836208 (2022) PubMed DOI PMC

Martín-Cano, F.E., Gaitskell-Phillips, G., Ortiz-Rodríguez, J.M., Silva, A., Gil, C., Ortega-Ferrusola, C., Peña, F.J.: Data set of the proteome of fresh and frozen thawed stallion spermatozoa. Data Brief. 31, 105887 (2020) PubMed DOI PMC

Singh, R., Sengar, G.S., Singh, U., Deb, R., Junghare, V., Hazra, S., Kumar, S., Tyagi, S., Das, A.K., Raja, T.V., Kumar, A.: Functional proteomic analysis of crossbred (Holstein Friesian × Sahiwal) bull spermatozoa. Reprod. Domest. Anim. 53, 588–608 (2018) PubMed DOI

D'Amours, O., Calvo, É., Bourassa, S., Vincent, P., Blondin, P., Sullivan, R.: Proteomic markers of low and high fertility bovine spermatozoa separated by Percoll gradient. Mol. Reprod. Dev. 86, 999–1012 (2019) PubMed DOI

Liang, J., Zheng, Y., Zeng, W., Chen, L., Yang, S., Du, P., Wang, Y., Yu, X., Zhang, X.: Proteomic profile of sperm in infertile males reveals changes in metabolic pathways. Protein J. 40, 929–939 (2021) PubMed DOI PMC

Ghosh, S., Parikh, S., Nissa, M.U., Acharjee, A., Singh, A., Patwa, D., Makwana, P., Athalye, A., Barpanda, A., Laloraya, M., Srivastava, S., Parikh, F.: Semen proteomics of COVID-19 convalescent men reveals disruption of key biological pathways relevant to male reproductive function. ACS Omega. 7, 8601–8612 (2022) PubMed DOI PMC

Meizel, S.: The sperm, a neuron with a tail: 'neuronal' receptors in mammalian sperm. Biol. Rev. Camb. Philos. Soc. 79, 713–732 (2004) PubMed DOI

Urra, J.A., Villaroel-Espíndola, F., Covarrubias, A.A., Rodríguez-Gil, J.E., Ramírez-Reveco, A., Concha, I.I.: Presence and function of dopamine transporter (DAT) in stallion sperm: dopamine modulates sperm motility and acrosomal integrity. PLoS One. 9, e112834 (2014) PubMed DOI PMC

Puente, M.A., Tartaglione, C.M., Ritta, M.N.: Bull sperm acrosome reaction induced by gamma-aminobutyric acid (GABA) is mediated by GABAergic receptors type A. Anim. Reprod. Sci. 127, 31–37 (2011) PubMed DOI

Gorodeski, G.I.: Purinergic signalling in the reproductive system. Auton. Neurosci. 191, 82–101 (2015) PubMed DOI

Kumar, P., Meizel, S.: Nicotinic acetylcholine receptor subunits and associated proteins in human sperm. J. Biol. Chem. 280, 25928–25935 (2005) PubMed DOI

Meizel, S., Son, J.H.: Studies of sperm from mutant mice suggesting that two neurotransmitter receptors are important to the zona pellucida-initiated acrosome reaction. Mol. Reprod. Dev. 72, 250–258 (2005) PubMed DOI

Gianzo, M., Muñoa-Hoyos, I., Urizar-Arenaza, I., Larreategui, Z., Quintana, F., Garrido, N., Subirán, N., Irazusta, J.: Angiotensin II type 2 receptor is expressed in human sperm cells and is involved in sperm motility. Fertil. Steril. 105, 608–616 (2016) PubMed DOI

Amoako, A.A., Marczylo, T.H., Marczylo, E.L., Elson, J., Willets, J.M., Taylor, A.H., Konje, J.C.: Anandamide modulates human sperm motility: implications for men with asthenozoospermia and oligoasthenoteratozoospermia. Hum. Reprod. 28, 2058–2066 (2013) PubMed DOI

Flegel, C., Vogel, F., Hofreuter, A., Schreiner, B.S., Osthold, S., Veitinger, S., Becker, C., Brockmeyer, N.H., Muschol, M., Wennemuth, G., Altmüller, J., Hatt, H., et al.: Characterization of the olfactory receptors expressed in human spermatozoa. Front. Mol. Biosci. 2, 73 (2015) PubMed

Cortés-Rodriguez, M., Royo, J.L., Reyes-Palomares, A., Lendínez, A.M., Ruiz-Galdón, M., Reyes-Engel, A.: Sperm count and motility are quantitatively affected by functional polymorphisms of HTR2A, MAOA and SLC18A. Reprod. Biomed. Online. 36, 560–567 (2018) PubMed DOI

Guo, J., Zhu, P., Wu, C., Yu, L., Zhao, S., Gu, X.: In silico analysis indicates a similar gene expression pattern between human brain and testis. Cytogenet. Genome Res. 103, 58–62 (2003) PubMed DOI

Sharp, A.H., Ross, C.A.: Neurobiology of Huntington's disease. Neurobiol. Dis. 3, 3–15 (1996) PubMed DOI

Caterino, M., Squillaro, T., Montesarchio, D., Giordano, A., Giancola, C., Melone, M.A.B.: Huntingtin protein: a new option for fixing the Huntington's disease countdown clock. Neuropharmacology. 135, 126–138 (2018) PubMed DOI

Gatto, E.M., Rojas, N.G., Persi, G., Etcheverry, J.L., Cesarini, M.E., Perandones, C.: Huntington disease: advances in the understanding of its mechanisms. Clin. Park. Relat. Disord. 3, 100056 (2020) PubMed PMC

Tabrizi, S.J., Flower, M.D., Ross, C.A., Wild, E.J.: Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat. Rev. Neurol. 16, 529–546 (2020) PubMed DOI

Ehrnhoefer, D.E., Sutton, L., Hayden, M.R.: Small changes, big impact: posttranslational modifications and function of huntingtin in Huntington disease. Neuroscientist. 17, 475–492 (2011) PubMed DOI PMC

Im, W., Chung, J., Lee, S.T., Chu, K., Kim, M.W., Kim, M.: Nuclear localization of huntingtin during spermatogenesis. Neurol. Sci. 35, 459–462 (2014) PubMed DOI

Leavitt, B.R., Guttman, J.A., Hodgson, J.G., Kimel, G.H., Singaraja, R., Vogl, A.W., Hayden, M.R.: Wild-type huntingtin reduces the cellular toxicity of mutant huntingtin in vivo. Am. J. Hum. Genet. 68, 313–324 (2001) PubMed DOI

Yan, J., Zhang, H., Liu, Y., Zhao, F., Zhu, S., Xie, C., Tang, T.S., Guo, C.: Germline deletion of huntingtin causes male infertility and arrested spermiogenesis in mice. J. Cell Sci. 129, 492–501 (2016) PubMed DOI

Harper, P.S.: Trinucleotide repeat disorders. J. Inherit. Metab. Dis. 20, 122–124 (1997) PubMed DOI

Huang, H., Winter, E.E., Wang, H., Weinstock, K.G., Xing, H., Goodstadt, L., Stenson, P.D., Cooper, D.N., Smith, D., Albà, M.M., Ponting, C.P., Fechtel, K.: Evolutionary conservation and selection of human disease gene orthologs in the rat and mouse genomes. Genome Biol. 5, R47 (2004) PubMed DOI PMC

La Spada, A.R., Taylor, J.P.: Repeat expansion disease: progress and puzzles in disease pathogenesis. Nat. Rev. Genet. 11, 247–258 (2010) PubMed DOI PMC

Pearson, C.E., Nichol Edamura, K., Cleary, J.D.: Repeat instability: mechanisms of dynamic mutations. Nat. Rev. Genet. 6, 729–742 (2005) PubMed DOI

Albà, M.M., Guigó, R.: Comparative analysis of amino acid repeats in rodents and humans. Genome Res. 14, 549–554 (2004) PubMed DOI PMC

Whan, V., Hobbs, M., McWilliam, S., Lynn, D.J., Lutzow, Y.S., Khatkar, M., Barendse, W., Raadsma, H., Tellam, R.L.: Bovine proteins containing poly-glutamine repeats are often polymorphic and enriched for components of transcriptional regulatory complexes. BMC Genomics. 11, 654 (2010) PubMed DOI PMC

Madsen, L.B., Thomsen, B., Sølvsten, C.A., Bendixen, C., Fredholm, M., Jørgensen, A.L., Nielsen, A.L.: Identification of the porcine homologous of human disease causing trinucleotide repeat sequences. Neurogenetics. 8, 207–218 (2007) PubMed DOI

Cornwall, G.A., von Horsten, H.H., Swartz, D., Johnson, S., Chau, K., Whelly, S.: Extracellular quality control in the epididymis. Asian J. Androl. 9, 500–507 (2007) PubMed DOI

Whelly, S., Johnson, S., Powell, J., Borchardt, C., Hastert, M.C., Cornwall, G.A.: Nonpathological extracellular amyloid is present during normal epididymal sperm maturation. PLoS One. 7, e36394 (2012) PubMed DOI PMC

Cafe, S.L., Nixon, B., Ecroyd, H., Martin, J.H., Skerrett-Byrne, D.A., Bromfield, E.G.: Proteostasis in the male and female germline: a new outlook on the maintenance of reproductive health. Front. Cell Dev. Biol. 9, 660626 (2021) PubMed DOI PMC

Bisconti, M., Simon, J.F., Grassi, S., Leroy, B., Martinet, B., Arcolia, V., Isachenko, V., Hennebert, E.: Influence of risk factors for male infertility on sperm protein composition. Int. J. Mol. Sci. 22 (2021)

Guo, Y., Jiang, J., Zhang, H., Wen, Y., Zhang, H., Cui, Y., Tian, J., Jiang, M., Liu, X., Wang, G., Li, Y., Hu, Z., et al.: Proteomic analysis of Dpy19l2-deficient human globozoospermia reveals multiple molecular defects. Proteomics Clin. Appl. 13, e1900007 (2019) PubMed DOI

Siva, A.B., Kameshwari, D.B., Singh, V., Pavani, K., Sundaram, C.S., Rangaraj, N., Deenadayal, M., Shivaji, S.: Proteomics-based study on asthenozoospermia: differential expression of proteasome alpha complex. Mol. Hum. Reprod. 16, 452–462 (2010) PubMed DOI

De Amicis, F., Perrotta, I., Santoro, M., Guido, C., Morelli, C., Cesario, M.G., Bruno, R., Aquila, S.: Human sperm anatomy: different expression and localization of phosphatidylinositol 3-kinase in normal and varicocele human spermatozoa. Ultrastruct. Pathol. 37, 176–182 (2013) PubMed DOI

Hosseinifar, H., Gourabi, H., Salekdeh, G.H., Alikhani, M., Mirshahvaladi, S., Sabbaghian, M., Modarresi, T., Gilani, M.A.: Study of sperm protein profile in men with and without varicocele using two-dimensional gel electrophoresis. Urology. 81, 293–300 (2013) PubMed DOI

Agarwal, A., Sharma, R., Durairajanayagam, D., Ayaz, A., Cui, Z., Willard, B., Gopalan, B., Sabanegh, E.: Major protein alterations in spermatozoa from infertile men with unilateral varicocele. Reprod. Biol. Endocrinol. 13, 8 (2015) PubMed DOI PMC

Agarwal, A., Sharma, R., Durairajanayagam, D., Cui, Z., Ayaz, A., Gupta, S., Willard, B., Gopalan, B., Sabanegh, E.: Differential proteomic profiling of spermatozoal proteins of infertile men with unilateral or bilateral varicocele. Urology. 85, 580–588 (2015) PubMed DOI

Agarwal, A., Sharma, R., Durairajanayagam, D., Cui, Z., Ayaz, A., Gupta, S., Willard, B., Gopalan, B., Sabanegh, E.: Spermatozoa protein alterations in infertile men with bilateral varicocele. Asian J. Androl. 18, 43–53 (2016) PubMed DOI

Samanta, L., Agarwal, A., Swain, N., Sharma, R., Gopalan, B., Esteves, S.C., Durairajanayagam, D., Sabanegh, E.: Proteomic signatures of sperm mitochondria in varicocele: clinical use as biomarkers of varicocele associated infertility. J. Urol. 200, 414–422 (2018) PubMed DOI

Martins, A.D., Agarwal, A., Baskaran, S., Pushparaj, P.N., Ahmad, G., Panner Selvam, M.K.: Alterations of spermatozoa proteomic profile in men with Hodgkin's disease prior to cancer therapy. World J. Mens Health. 38, 521–534 (2020) PubMed DOI

Dias, T.R., Agarwal, A., Pushparaj, P.N., Ahmad, G., Sharma, R.: New insights on the mechanisms affecting fertility in men with non-seminoma testicular cancer before cancer therapy. World J. Mens Health. 38, 198–207 (2020) PubMed DOI

Panner Selvam, M.K., Finelli, R., Baskaran, S., Agarwal, A.: Dysregulation of key proteins associated with sperm motility and fertility potential in cancer patients. Int. J. Mol. Sci. 21 (2020)

Guo, Y., Li, J., Hao, F., Yang, Y., Yang, H., Chang, Q., Kong, P., Liu, W., Jiao, X., Teng, X.: A new perspective on semen quality of aged male: the characteristics of metabolomics and proteomics. Front. Endocrinol. (Lausanne). 13, 1058250 (2022) PubMed DOI

Pini, T., Parks, J., Russ, J., Dzieciatkowska, M., Hansen, K.C., Schoolcraft, W.B., Katz-Jaffe, M.: Obesity significantly alters the human sperm proteome, with potential implications for fertility. J. Assist. Reprod. Genet. 37, 777–787 (2020) PubMed DOI PMC

Liu, Y., Guo, Y., Song, N., Fan, Y., Li, K., Teng, X., Guo, Q., Ding, Z.: Proteomic pattern changes associated with obesity-induced asthenozoospermia. Andrology. 3, 247–259 (2015) PubMed DOI

Mu, Y., Yan, W.J., Yin, T.L., Zhang, Y., Li, J., Yang, J.: Diet-induced obesity impairs spermatogenesis: a potential role for autophagy. Sci. Rep. 7, 43475 (2017) PubMed DOI PMC

Wang, F., Chen, H., Chen, Y., Cheng, Y., Li, J., Zheng, L., Zeng, X., Luo, T.: Diet-induced obesity is associated with altered expression of sperm motility-related genes and testicular post-translational modifications in a mouse model. Theriogenology. 158, 233–238 (2020) PubMed DOI

Paasch, U., Heidenreich, F., Pursche, T., Kuhlisch, E., Kettner, K., Grunewald, S., Kratzsch, J., Dittmar, G., Glander, H.J., Hoflack, B., Kriegel, T.M.: Identification of increased amounts of eppin protein complex components in sperm cells of diabetic and obese individuals by difference gel electrophoresis. Mol. Cell. Proteomics. 10, M110.007187 (2011) PubMed DOI PMC

Muciaccia, B., Pensini, S., Culasso, F., Padula, F., Paoli, D., Gandini, L., Di Veroli, C., Bianchini, G., Stefanini, M., D'Agostino, A.: Higher clusterin immunolabeling and sperm DNA damage levels in hypertensive men compared with controls. Hum. Reprod. 27, 2267–2276 (2012) PubMed DOI

An, T., Wang, Y.F., Liu, J.X., Pan, Y.Y., Liu, Y.F., He, Z.C., Mo, F.F., Li, J., Kang, L.H., Gu, Y.J., Lv, B.H., Gao, S.H., et al.: Comparative analysis of proteomes between diabetic and normal human sperm: insights into the effects of diabetes on male reproduction based on the regulation of mitochondria-related proteins. Mol. Reprod. Dev. 85, 7–16 (2018) PubMed DOI

Carvalho, M.G., Silva, K.M., Aristizabal, V.H.V., Ortiz, P.E.O., Paranzini, C.S., Melchert, A., Amaro, J.L., Souza, F.F.: Effects of obesity and diabetes on sperm cell proteomics in rats. J. Proteome Res. 20, 2628–2642 (2021) PubMed DOI

Chen, X., Xu, W., Miao, M., Zhu, Z., Dai, J., Chen, Z., Fang, P., Wu, J., Nie, D., Wang, L., Wang, Z., Qiao, Z., et al.: Alteration of sperm protein profile induced by cigarette smoking. Acta Biochim. Biophys. Sin. Shanghai. 47, 504–515 (2015) PubMed DOI

Shrivastava, V., Pekar, M., Grosser, E., Im, J., Vigodner, M.: SUMO proteins are involved in the stress response during spermatogenesis and are localized to DNA double-strand breaks in germ cells. Reproduction. 139, 999–1010 (2010) PubMed DOI

Shrivastava, V., Marmor, H., Chernyak, S., Goldstein, M., Feliciano, M., Vigodner, M.: Cigarette smoke affects posttranslational modifications and inhibits capacitation-induced changes in human sperm proteins. Reprod. Toxicol. 43, 125–129 (2014) PubMed DOI

Nie, D., Zhang, D., Dai, J., Zhang, M., Zhao, X., Xu, W., Chen, Z., Wang, L., Wang, Z., Qiao, Z.: Nicotine induced murine spermatozoa apoptosis via up-regulation of deubiquitinated RIP1 by Trim27 promoter hypomethylation. Biol. Reprod. 94, 31 (2016) PubMed DOI

Zhu, Z., Xu, W., Dai, J., Chen, X., Zhao, X., Fang, P., Yang, F., Tang, M., Wang, Z., Wang, L., Ma, D., Qaio, Z.: The alteration of protein profile induced by cigarette smoking via oxidative stress in mice epididymis. Int. J. Biochem. Cell Biol. 45, 571–582 (2013) PubMed DOI

Bromfield, E.G., Aitken, R.J., Anderson, A.L., McLaughlin, E.A., Nixon, B.: The impact of oxidative stress on chaperone-mediated human sperm-egg interaction. Hum. Reprod. 30, 2597–2613 (2015) PubMed DOI

Bromfield, E.G., Aitken, R.J., McLaughlin, E.A., Nixon, B.: Proteolytic degradation of heat shock protein A2 occurs in response to oxidative stress in male germ cells of the mouse. Mol. Hum. Reprod. 23, 91–105 (2017) PubMed

Marić, T., Fučić, A., Aghayanian, A.: Environmental and occupational exposures associated with male infertility. Arh. Hig. Rada Toksikol. 72, 101–113 (2021) PubMed PMC

Rahman, M.S., Kwon, W.S., Lee, J.S., Yoon, S.J., Ryu, B.Y., Pang, M.G.: Bisphenol-A affects male fertility via fertility-related proteins in spermatozoa. Sci. Rep. 5, 9169 (2015) PubMed DOI PMC

Rahman, M.S., Kwon, W.S., Yoon, S.J., Park, Y.J., Ryu, B.Y., Pang, M.G.: A novel approach to assessing bisphenol-A hazards using an in vitro model system. BMC Genomics. 17, 577 (2016) PubMed DOI PMC

Rahman, M.S., Kwon, W.S., Karmakar, P.C., Yoon, S.J., Ryu, B.Y., Pang, M.G.: Gestational exposure to bisphenol A affects the function and proteome profile of F1 spermatozoa in adult mice. Environ. Health Perspect. 125, 238–245 (2017) PubMed DOI

Rahman, M.S., Kwon, W.S., Ryu, D.Y., Khatun, A., Karmakar, P.C., Ryu, B.Y., Pang, M.G.: Functional and proteomic alterations of F1 capacitated spermatozoa of adult mice following gestational exposure to bisphenol A. J. Proteome Res. 17, 524–535 (2018) PubMed DOI

Brieño-Enríquez, M.A., García-López, J., Cárdenas, D.B., Guibert, S., Cleroux, E., Děd, L., Hourcade Jde, D., Pěknicová, J., Weber, M., Del Mazo, J.: Exposure to endocrine disruptor induces transgenerational epigenetic deregulation of microRNAs in primordial germ cells. PLoS One. 10, e0124296 (2015) PubMed DOI PMC

Huang, S., Lu, Y., Li, S., Zhou, T., Wang, J., Xia, J., Zhang, X., Zhou, Z.: Key proteins of proteome underlying sperm malformation of rats exposed to low fenvalerate doses are highly related to P53. Environ. Toxicol. 36, 1181–1194 (2021) PubMed DOI

Komsky-Elbaz, A., Kalo, D., Roth, Z.: Effect of aflatoxin B1 on bovine spermatozoa's proteome and embryo's transcriptome. Reproduction. 160, 709–723 (2020) PubMed DOI

Sun, Z., Wei, R., Luo, G., Niu, R., Wang, J.: Proteomic identification of sperm from mice exposed to sodium fluoride. Chemosphere. 207, 676–681 (2018) PubMed DOI

Nayak, J., Jena, S.R., Kumar, S., Kar, S., Dixit, A., Samanta, L.: Human sperm proteome reveals the effect of environmental borne seminal polyaromatic hydrocarbons exposome in etiology of idiopathic male factor infertility. Front. Cell Dev. Biol. 11, 1117155 (2023) PubMed DOI PMC

Nerin, C., Canellas, E., Vera, P., Garcia-Calvo, E., Luque-Garcia, J.L., Cámara, C., Ausejo, R., Miguel, J., Mendoza, N.: A common surfactant used in food packaging found to be toxic for reproduction in mammals. Food Chem. Toxicol. 113, 115–124 (2018) PubMed DOI

Upham, N.S., Landis, M.J.: Genomics expands the mammalverse. Science. 380, 358–359 (2023) PubMed DOI PMC

Ostedgaard, L.S., Meyerholz, D.K., Chen, J.H., Pezzulo, A.A., Karp, P.H., Rokhlina, T., Ernst, S.E., Hanfland, R.A., Reznikov, L.R., Ludwig, P.S., Rogan, M.P., Davis, G.J., et al.: The DeltaF508 mutation causes CFTR misprocessing and cystic fibrosis-like disease in pigs. Sci. Transl. Med. 3, 74ra24 (2011) PubMed DOI PMC

Pratt, S.L., Stowe, H.M., Whitlock, B.K., Strickland, L., Miller, M., Calcatera, S.M., Dimmick, M.D., Aiken, G.E., Schrick, F.N., Long, N.M., Duckett, S.K., Andrae, J.G.: Bulls grazing Kentucky 31 tall fescue exhibit impaired growth, semen quality, and decreased semen freezing potential. Theriogenology. 83, 408–414 (2015) PubMed DOI

Geary, T.W., Waterman, R.C., Van Emon, M.L., Ratzburg, C.R., Lake, S., Eik, B.A., Armstrong, D.R., Zezeski, A.L., Heldt, J.S.: Effect of supplemental trace minerals on standard and novel measures of bull fertility. Theriogenology. 172, 307–314 (2021) PubMed DOI

Brito, L.F., Silva, A.E., Barbosa, R.T., Unanian, M.M., Kastelic, J.P.: Effects of scrotal insulation on sperm production, semen quality, and testicular echotexture in Bos indicus and Bos indicus x Bos taurus bulls. Anim. Reprod. Sci. 79, 1–15 (2003) PubMed DOI

Ruiz-Sánchez, A.L., O'Donoghue, R., Novak, S., Dyck, M.K., Cosgrove, J.R., Dixon, W.T., Foxcroft, G.R.: The predictive value of routine semen evaluation and IVF technology for determining relative boar fertility. Theriogenology. 66, 736–748 (2006) PubMed DOI

Broekhuijse, M.L., Šoštarić, E., Feitsma, H., Gadella, B.M.: Application of computer-assisted semen analysis to explain variations in pig fertility. J. Anim. Sci. 90, 779–789 (2012) PubMed DOI

Savić, R., Marcos, R.A., Petrović, M., Radojković, D., Radović, Č., Gogić, M.: Fertility of boars – what is important to know. Biotechnol. Anim. Husb. 33, 135–149 (2017) DOI

Nani, J.P., Rezende, F.M., Peñagaricano, F.: Predicting male fertility in dairy cattle using markers with large effect and functional annotation data. BMC Genomics. 20, 258 (2019) PubMed DOI PMC

Dordas-Perpinyà, M., Sergeant, N., Ruelle, I., Bruyas, J.F., Charreaux, F., Michaud, S., Carracedo, S., Catalán, J., Miró, J., Delehedde, M., Briand-Amirat, L.: ProAKAP4 semen concentrations as a valuable marker protein of post-thawed semen quality and bull fertility: a retrospective study. Vet. Sci. 9 (2022)

Kuhn, M.T., Hutchison, J.L.: Prediction of dairy bull fertility from field data: use of multiple services and identification and utilization of factors affecting bull fertility. J. Dairy Sci. 91, 2481–2492 (2008) PubMed DOI

Han, Y., Peñagaricano, F.: Unravelling the genomic architecture of bull fertility in Holstein cattle. BMC Genet. 17, 143 (2016) PubMed DOI PMC

Kutchy, N.A., Dogan, S., Wang, X., Topper, E., Kaya, A., Memili, E.: Application of proteomics to identify fertility markers in angus bull sperm. HAYATI J. Biosci. 27, 116–135 (2020) DOI

Willforss, J., Morrell, J.M., Resjö, S., Hallap, T., Padrik, P., Siino, V., de Koning, D.J., Andreasson, E., Levander, F., Humblot, P.: Stable bull fertility protein markers in seminal plasma. J. Proteome. 236, 104135 (2021) DOI

Muhammad Aslam, M.K., Sharma, V.K., Pandey, S., Kumaresan, A., Srinivasan, A., Datta, T.K., Mohanty, T.K., Yadav, S.: Identification of biomarker candidates for fertility in spermatozoa of crossbred bulls through comparative proteomics. Theriogenology. 119, 43–51 (2018) PubMed DOI

Kwon, W.S., Oh, S.A., Kim, Y.J., Rahman, M.S., Park, Y.J., Pang, M.G.: Proteomic approaches for profiling negative fertility markers in inferior boar spermatozoa. Sci. Rep. 5, 13821 (2015) PubMed DOI PMC

Zigo, M., Manaskova-Postlerova, P., Zuidema, D., Kerns, K., Jonakova, V., Tumova, L., Bubenickova, F., Sutovsky, P.: Porcine model for the study of sperm capacitation, fertilization and male fertility. Cell Tissue Res. 380, 237–262 (2020) PubMed DOI

López Rodríguez, A., Rijsselaere, T., Beek, J., Vyt, P., Van Soom, A., Maes, D.: Boar seminal plasma components and their relation with semen quality. Syst Biol Reprod Med. 59, 5–12 (2013) PubMed DOI

Schulze, M., Buder, S., Rüdiger, K., Beyerbach, M., Waberski, D.: Influences on semen traits used for selection of young AI boars. Anim. Reprod. Sci. 148, 164–170 (2014) PubMed DOI

Maside, C., Recuero, S., Salas-Huetos, A., Ribas-Maynou, J., Yeste, M.: Animal board invited review: An update on the methods for semen quality evaluation in swine – From farm to the lab. Animal. 17, 100720 (2023) PubMed DOI

Zuidema, D., Sutovsky, P.: The domestic pig as a model for the study of mitochondrial inheritance. Cell Tissue Res. 380, 263–271 (2020) PubMed DOI

Wernersson, R., Schierup, M.H., Jørgensen, F.G., Gorodkin, J., Panitz, F., Staerfeldt, H.H., Christensen, O.F., Mailund, T., Hornshøj, H., Klein, A., Wang, J., Liu, B., et al.: Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing. BMC Genomics. 6, 70 (2005) PubMed DOI PMC

Dawson, H.D.: A comparative assessment of the pig, mouse and human genomes: structural and functional analysis of genes involved in immunity and infammation. In: McAnulty, P.A., Dayan, A.D., Ganderup, N.C., Hastings, K.L. (eds.) The Minipig in Biomedical Research, 1st edn. CRC Press (2011)

Lunney, J.K., Van Goor, A., Walker, K.E., Hailstock, T., Franklin, J., Dai, C.: Importance of the pig as a human biomedical model. Sci. Transl. Med. 13, eabd5758 (2021) PubMed DOI

Perleberg, C., Kind, A., Schnieke, A.: Genetically engineered pigs as models for human disease. Dis. Model. Mech. 11 (2018)

Bertolini, L.R., Meade, H., Lazzarotto, C.R., Martins, L.T., Tavares, K.C., Bertolini, M., Murray, J.D.: The transgenic animal platform for biopharmaceutical production. Transgenic Res. 25, 329–343 (2016) PubMed DOI

Petersen, B., Frenzel, A., Lucas-Hahn, A., Herrmann, D., Hassel, P., Klein, S., Ziegler, M., Hadeler, K.G., Niemann, H.: Efficient production of biallelic GGTA1 knockout pigs by cytoplasmic microinjection of CRISPR/Cas9 into zygotes. Xenotransplantation. 23, 338–346 (2016) PubMed DOI

Wolf, E., Kemter, E., Klymiuk, N., Reichart, B.: Genetically modified pigs as donors of cells, tissues, and organs for xenotransplantation. Anim. Front. 9, 13–20 (2019) PubMed DOI PMC

Dorado, B., Pløen, G.G., Barettino, A., Macías, A., Gonzalo, P., Andrés-Manzano, M.J., González-Gómez, C., Galán-Arriola, C., Alfonso, J.M., Lobo, M., López-Martín, G.J., Molina, A., et al.: Generation and characterization of a novel knockin minipig model of Hutchinson-Gilford progeria syndrome. Cell Discov. 5, 16 (2019) PubMed DOI PMC

Navarro-Serna, S., Dehesa-Etxebeste, M., Piñeiro-Silva, C., Romar, R., Lopes, J.S., López de Munaín, A., Gadea, J.: Generation of Calpain-3 knock-out porcine embryos by CRISPR-Cas9 electroporation and intracytoplasmic microinjection of oocytes before insemination. Theriogenology. 186, 175–184 (2022) PubMed DOI

Navarro-Serna, S., Hachem, A., Canha-Gouveia, A., Hanbashi, A., Garrappa, G., Lopes, J.S., París-Oller, E., Sarrías-Gil, L., Flores-Flores, C., Bassett, A., Sánchez, R., Bermejo-Álvarez, P., et al.: Generation of nonmosaic, two-pore channel 2 Biallelic knockout pigs in one generation by CRISPR-Cas9 microinjection before oocyte insemination. CRISPR J. 4, 132–146 (2021) PubMed DOI

Oseguera-López, I., Pérez-Cerezales, S., Ortiz-Sánchez, P.B., Mondragon-Payne, O., Sánchez-Sánchez, R., Jiménez-Morales, I., Fierro, R., González-Márquez, H.: Perfluorooctane sulfonate (PFOS) and Perfluorohexane sulfonate (PFHxS) alters protein phosphorylation, increase ROS levels and DNA fragmentation during in vitro capacitation of boar spermatozoa. Animals (Basel). 10 (2020)

Pang, J., Yang, H., Feng, X., Wang, Q., Cai, Y., Liu, Z., Wang, C., Wang, F., Zhang, Y.: HT-2 toxin affects cell viability of goat spermatogonial stem cells through AMPK-ULK1 autophagy pathways. Theriogenology. 164, 22–30 (2021) PubMed DOI

Chand, N., Tyagi, S., Prasad, R., Dutta, D., Sirohi, A.S., Sharma, A., Tyagi, R.: Effect of heavy metals on oxidative markers and semen quality parameters in HF crossbred bulls. Indian J. Anim. Sci. 89, 632–636 (2019) DOI

Llamas-Luceño, N., Hostens, M., Mullaart, E., Broekhuijse, M., Lonergan, P., Van Soom, A.: High temperature-humidity index compromises sperm quality and fertility of Holstein bulls in temperate climates. J. Dairy Sci. 103, 9502–9514 (2020) PubMed DOI

Pereira, G.R., de Lazari, F.L., Dalberto, P.F., Bizarro, C.V., Sontag, E.R., Koetz Junior, C., Menegassi, S.R.O., Barcellos, J.O.J., Bustamante-Filho, I.C.: Effect of scrotal insulation on sperm quality and seminal plasma proteome of Brangus bulls. Theriogenology. 144, 194–203 (2020) PubMed DOI

Peña Jr., S.T., Stone, F., Gummow, B., Parker, A.J., Paris, D.: Susceptibility of boar spermatozoa to heat stress using in vivo and in vitro experimental models. Trop. Anim. Health Prod. 53, 97 (2021) PubMed DOI

Harrison, T.D., Chaney, E.M., Brandt, K.J., Ault-Seay, T.B., Schneider, L.G., Strickland, L.G., Schrick, F.N., McLean, K.J.: The effects of differing nutritional levels and body condition score on scrotal circumference, motility, and morphology of bovine sperm. Transl. Anim. Sci. 6, txac001 (2022) PubMed DOI PMC

Kennedy, C., Ahlering, P., Rodriguez, H., Levy, S., Sutovsky, P.: Sperm chromatin structure correlates with spontaneous abortion and multiple pregnancy rates in assisted reproduction. Reprod. Biomed. Online. 22, 272–276 (2011) PubMed DOI

Ahlering, P., Sutovsky, M., Gliedt, D., Branson, K., Miranda Vizuete, A., Sutovsky, P.: Sperm content of TXNDC8 reflects sperm chromatin structure, pregnancy establishment, and incidence of multiple births after ART. Syst Biol Reprod Med. 66, 311–321 (2020) PubMed DOI

Rubessa, M., Wheeler, M.B.: Label-free microscopy: a non-invasive new tool to assess gametes and embryo quality. Theriogenology. 150, 241–246 (2020) PubMed DOI

Sharara, F., Seaman, E., Morris, R., Schinfeld, J., Nichols, J., Sobel, M., Lee, A., Somkuti, S., Hirshberg, S., Budinetz, T., Barmat, L., Palermo, G., et al.: Multicentric, prospective observational data show sperm capacitation predicts male fertility, and cohort comparison reveals a high prevalence of impaired capacitation in men questioning their fertility. Reprod. Biomed. Online. 41, 69–79 (2020) PubMed DOI

Blommaert, D., Sergeant, N., Delehedde, M., Jouy, N., Mitchell, V., Franck, T., Donnay, I., Lejeune, J.P., Serteyn, D.: Expression, localization, and concentration of A-kinase anchor protein 4 (AKAP4) and its precursor (proAKAP4) in equine semen: promising marker correlated to the total and progressive motility in thawed spermatozoa. Theriogenology. 131, 52–60 (2019) PubMed DOI

Kerns, K., Zigo, M., Sutovsky, P.: Zinc: a necessary ion for mammalian sperm fertilization competency. Int. J. Mol. Sci., 19 (2018)

Lawlor, M., Zigo, M., Kerns, K., Cho, I.K., Easley Iv, C.A., Sutovsky, P.: Spermatozoan metabolism as a non-traditional model for the study of Huntington's disease. Int. J. Mol. Sci. 23 (2022)

Buckman, C., George, T.C., Friend, S., Sutovsky, M., Miranda-Vizuete, A., Ozanon, C., Morrissey, P., Sutovsky, P.: High throughput, parallel imaging and biomarker quantification of human spermatozoa by ImageStream flow cytometry. Syst. Biol. Reprod. Med. 55, 244–251 (2009) PubMed DOI

Teixeira, D.M., Hadyme Miyague, A., Barbosa, M.A., Navarro, P.A., Raine-Fenning, N., Nastri, C.O., Martins, W.P.: Regular (ICSI) versus ultra-high magnification (IMSI) sperm selection for assisted reproduction. Cochrane Database Syst. Rev. 2, CD010167 (2020) PubMed

Costa-Borges, N., Munne, S., Albo, E., Mas, S., Castello, C., Giralt, G., Lu, Z., Chau, C., Acacio, M., Mestres, E., Matia, Q., Marques, L., et al.: First babies conceived with automated intracytoplasmic sperm injection. Reprod. Biomed. Online. 47, 103237 (2023) PubMed DOI

Miles, E.L., O'Gorman, C., Zhao, J., Samuel, M., Walters, E., Yi, Y.J., Sutovsky, M., Prather, R.S., Wells, K.D., Sutovsky, P.: Transgenic pig carrying green fluorescent proteasomes. Proc. Natl. Acad. Sci. USA. 110, 6334–6339 (2013) PubMed DOI PMC

Zigo, M., Manaskova-Postlerova, P., Jonakova, V., Kerns, K., Sutovsky, P.: Compartmentalization of the proteasome-interacting proteins during sperm capacitation. Sci. Rep. 9, 12583 (2019) PubMed DOI PMC

Yi, Y.J., Zimmerman, S.W., Manandhar, G., Odhiambo, J.F., Kennedy, C., Jonakova, V., Manaskova-Postlerova, P., Sutovsky, M., Park, C.S., Sutovsky, P.: Ubiquitin-activating enzyme (UBA1) is required for sperm capacitation, acrosomal exocytosis and sperm-egg coat penetration during porcine fertilization. Int. J. Androl. 35, 196–210 (2012) PubMed DOI

Yi, Y.J., Manandhar, G., Sutovsky, M., Jonakova, V., Park, C.S., Sutovsky, P.: Inhibition of 19S proteasomal regulatory complex subunit PSMD8 increases polyspermy during porcine fertilization in vitro. J. Reprod. Immunol. 84, 154–163 (2010) PubMed DOI

Yi, Y.J., Manandhar, G., Sutovsky, M., Li, R., Jonakova, V., Oko, R., Park, C.S., Prather, R.S., Sutovsky, P.: Ubiquitin C-terminal hydrolase-activity is involved in sperm acrosomal function and anti-polyspermy defense during porcine fertilization. Biol. Reprod. 77, 780–793 (2007) PubMed DOI

Thompson, W.E., Ramalho-Santos, J., Sutovsky, P.: Ubiquitination of prohibitin in mammalian sperm mitochondria: possible roles in the regulation of mitochondrial inheritance and sperm quality control. Biol. Reprod. 69, 254–260 (2003) PubMed DOI

Antelman, J., Manandhar, G., Yi, Y.J., Li, R., Whitworth, K.M., Sutovsky, M., Agca, C., Prather, R.S., Sutovsky, P.: Expression of mitochondrial transcription factor A (TFAM) during porcine gametogenesis and preimplantation embryo development. J. Cell. Physiol. 217, 529–543 (2008) PubMed DOI

Hillman, P., Ickowicz, D., Vizel, R., Breitbart, H.: Dissociation between AKAP3 and PKARII promotes AKAP3 degradation in sperm capacitation. PLoS One. 8, e68873 (2013) PubMed DOI PMC

Qu, X., Han, Y., Chen, X., Lv, Y., Zhang, Y., Cao, L., Zhang, J., Jin, Y.: Inhibition of 26S proteasome enhances AKAP3-mediated cAMP-PKA signaling during boar sperm capacitation. Anim. Reprod. Sci. 247, 107079 (2022) PubMed DOI

Zapata-Carmona, H., Barón, L., Kong, M., Morales, P.: Protein kinase a (PRKA) activity is regulated by the proteasome at the onset of human sperm capacitation. Cells. 10 (2021)

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...