Proteostasis as a Sentry for Sperm Quality and Male Fertility
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, přehledy
- Klíčová slova
- Biomarker, Infertility, Omics, Proteasome, Proteostasis, Seminal plasma, Sperm, Thioredoxin, Ubiquitin,
- MeSH
- fertilita * fyziologie MeSH
- homeostáze proteinů * fyziologie MeSH
- lidé MeSH
- mužská infertilita * metabolismus genetika patologie patofyziologie MeSH
- spermatogeneze * MeSH
- spermie * metabolismus patologie fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In the last two decades, a school of thought emerged that perceives male reproductive health, testicular function, and sperm output as a sentry for general, somatic health. Large-scale epidemiologic studies have already linked the reduced sperm count to increased risk of chronic somatic disease (e.g., cancer, cardiovascular, neurological and bone diseases), yet most of these studies have not taken full advantage of advanced andrological analysis. Altered proteostasis, i.e., the disbalance between protein synthesis and turnover, is a common denominator of many diseases, including but not limited to cancer and neurodegenerative diseases. This chapter introduces the concept of cellular proteostasis as a measure of sperm structural and functional integrity and an endpoint of varied impacts on spermiogenesis and sperm maturation, including heritability, general health, lifestyle, and occupational and environmental reprotoxic exposure. Special consideration is given to small molecule protein modifiers, sperm-binding seminal plasma proteins, zinc-interacting proteins, and redox proteins responsible for the maintenance of protein structure and the protection of spermatozoa from oxidative damage. While the main focus is on human male infertility, serious consideration is given to relevant animal models, and in particular to male food animals with extensive records of fertility from artificial insemination services. Altogether, the proteostatic biomarker discovery and validation studies set the stage for the integration of proteomics of sperm proteostasis with genomic and high throughput phenomic approaches to benefit both human and animal reproductive medicine.
Department of Obstetrics Gynecology and Women's Health University of Missouri Columbia MO USA
Division of Animal Sciences University of Missouri Columbia MO USA
Zobrazit více v PubMed
Harris, K.L., Caskey-Sigety, L.: The medieval vagina: an historical and hysterical look at all things vaginal during the middle ages. In: CreateSpace Independent Publishing Platform, pp. 1050–1097 (2014)
Pierce, R.V.: The People’s Common Sense Medical Adviser in Plain English or, Medicine Simplified. World Dispensary Printing Office and Bindery, Buffalo, NY (1909)
Hanson, B.M., Eisenberg, M.L., Hotaling, J.M.: Male infertility: a biomarker of individual and familial cancer risk. Fertil. Steril. 109, 6–19 (2018) PubMed DOI
Del Giudice, F., Kasman, A.M., Ferro, M., Sciarra, A., De Berardinis, E., Belladelli, F., Salonia, A., Eisenberg, M.L.: Clinical correlation among male infertility and overall male health: a systematic review of the literature. Investig. Clin. Urol. 61, 355–371 (2020) PubMed DOI PMC
Huxley, A.: Brave New World. Chatto & Windus, London, UK (1932)
Center for Disease Control: 2021 Assisted Reproductive Technology Fertility Clinic and National Summary Report (2023)
Xiong, Y., Yu, C., Zhang, Q.: Ubiquitin-proteasome system-regulated protein degradation in spermatogenesis. Cells. 11, 11 (2022) DOI
Zigo, M., Jonakova, V., Manaskova-Postlerova, P., Kerns, K., Sutovsky, P.: Ubiquitin-proteasome system participates in the de-aggregation of spermadhesin and DQH protein during boar sperm capacitation. Reproduction. 157, 283–295 (2019) PubMed DOI
Gou, L.T., Kang, J.Y., Dai, P., Wang, X., Li, F., Zhao, S., Zhang, M., Hua, M.M., Lu, Y., Zhu, Y., Li, Z., Chen, H., et al.: Ubiquitination-deficient mutations in human Piwi cause male infertility by impairing histone-to-protamine exchange during spermiogenesis. Cell. 169, 1090–1104 e1013 (2017) PubMed DOI PMC
Chen, H.Y., Sun, J.M., Zhang, Y., Davie, J.R., Meistrich, M.L.: Ubiquitination of histone H3 in elongating spermatids of rat testes. J. Biol. Chem. 273, 13165–13169 (1998) PubMed DOI
Berruti, G., Martegani, E.: The deubiquitinating enzyme mUBPy interacts with the sperm-specific molecular chaperone MSJ-1: the relation with the proteasome, acrosome, and centrosome in mouse male germ cells. Biol. Reprod. 72, 14–21 (2005) PubMed DOI
Ali, A., Mistry, B.V., Ahmed, H.A., Abdulla, R., Amer, H.A., Prince, A., Alazami, A.M., Alkuraya, F.S., Assiri, A.: Deletion of DDB1- and CUL4- associated factor-17 (Dcaf17) gene causes spermatogenesis defects and male infertility in mice. Sci. Rep. 8, 9202 (2018) PubMed DOI PMC
Yin, Y., Liu, L., Yang, C., Lin, C., Veith, G.M., Wang, C., Sutovsky, P., Zhou, P., Ma, L.: Cell autonomous and nonautonomous function of CUL4B in mouse spermatogenesis. J. Biol. Chem. 291, 6923–6935 (2016) PubMed DOI PMC
Sutovsky, P., Aarabi, M., Miranda-Vizuete, A., Oko, R.: Negative biomarker based male fertility evaluation: sperm phenotypes associated with molecular-level anomalies. Asian J. Androl. 17, 554–560 (2015) PubMed DOI PMC
Ahlering, P., Sutovsky, P.: Biomarker-based flow-cytometric semen analysis for male infertility diagnostics and clinical decision making in ART. In: Sills, E.S. (ed.) Screening for the Single Euploid Embryo – Molecular Genetics in Reproductive Medicine, pp. 33–51. Springer (2015) DOI
Toshimori, K.: Dynamics of the mammalian sperm head: modifications and maturation events from spermatogenesis to egg activation. Adv. Anat. Embryol. Cell Biol. 204, 5–94 (2009) PubMed
Chenoweth, P.J.: Genetic sperm defects. Theriogenology. 64, 457–468 (2005) PubMed DOI
Courtens, J.L., Amir, D., Durand, J.: Abnormal spermiogenesis in bulls treated with ethylene dibromide: an ultrastructural and ultracytochemical study. J. Ultrastruct. Res. 71, 103–115 (1980) PubMed DOI
Coulter, G.H., Oko, R.J., Costerton, J.W.: Incidence and ultrastructure of “crater” defect of bovine spermatozoa. Theriogenology. 9, 165–173 (1978) DOI
Hamilton, L.E., Oko, R., Miranda-Vizuete, A., Sutovsky, P.: Sperm redox system equilibrium: implications for fertilization and male fertility. Adv. Exp. Med. Biol. 1358, 345–367 (2022) PubMed DOI
Miranda-Vizuete, A., Sadek, C.M., Jimenez, A., Krause, W.J., Sutovsky, P., Oko, R.: The mammalian testis-specific thioredoxin system. Antioxid. Redox Signal. 6, 25–40 (2004) PubMed DOI
Buckman, C., Ozanon, C., Qiu, J., Sutovsky, M., Carafa, J.A., Rawe, V.Y., Manandhar, G., Miranda-Vizuete, A., Sutovsky, P.: Semen levels of spermatid-specific thioredoxin-3 correlate with pregnancy rates in ART couples. PLoS One. 8, e61000 (2013) PubMed DOI PMC
Jimenez, A., Zu, W., Rawe, V.Y., Pelto-Huikko, M., Flickinger, C.J., Sutovsky, P., Gustafsson, J.A., Oko, R., Miranda-Vizuete, A.: Spermatocyte/spermatid-specific thioredoxin-3, a novel Golgi apparatus-associated thioredoxin, is a specific marker of aberrant spermatogenesis. J. Biol. Chem. 279, 34971–34982 (2004) PubMed DOI
Rawe, V.Y., Olmedo, S.B., Benmusa, A., Shiigi, S.M., Chemes, H.E., Sutovsky, P.: Sperm ubiquitination in patients with dysplasia of the fibrous sheath. Hum. Reprod. 17, 2119–2127 (2002) PubMed DOI
Sutovsky, P., Hauser, R., Sutovsky, M.: Increased levels of sperm ubiquitin correlate with semen quality in men from an andrology laboratory clinic population. Hum. Reprod. 19, 628–638 (2004) PubMed DOI
Sutovsky, P., Terada, Y., Schatten, G.: Ubiquitin-based sperm assay for the diagnosis of male factor infertility. Hum. Reprod. 16, 250–258 (2001) PubMed DOI
Ozanon, C., Chouteau, J., Sutovsky, P.: Clinical adaptation of the sperm ubuquitin tag immunoassay (SUTI): relationship of sperm ubiquitylation with sperm quality in gradient-purified semen samples from 93 men from a general infertility clinic population. Hum. Reprod. 20, 2271–2278 (2005) PubMed DOI
Eskandari-Shahraki, M., Tavalaee, M., Deemeh, M.R., Jelodar, G.A., Nasr-Esfahani, M.H.: Proper ubiquitination effect on the fertilisation outcome post-ICSI. Andrologia. 45, 204–210 (2013) PubMed DOI
Sutovsky, P., Moreno, R., Ramalho-Santos, J., Dominko, T., Thompson, W.E., Schatten, G.: A putative, ubiquitin-dependent mechanism for the recognition and elimination of defective spermatozoa in the mammalian epididymis. J. Cell Sci. 114, 1665–1675 (2001) PubMed DOI
Olson, G.E., Winfrey, V.P., NagDas, S.K., Melner, M.H.: Region-specific expression and secretion of the fibrinogen-related protein, fgl2, by epithelial cells of the hamster epididymis and its role in disposal of defective spermatozoa. J. Biol. Chem. 279, 51266–51274 (2004) PubMed DOI
Da Silva, N., Cortez-Retamozo, V., Reinecker, H.C., Wildgruber, M., Hill, E., Brown, D., Swirski, F.K., Pittet, M.J., Breton, S.: A dense network of dendritic cells populates the murine epididymis. Reproduction. 141, 653–663 (2011) PubMed DOI PMC
Plante, G., Prud'homme, B., Fan, J., Lafleur, M., Manjunath, P.: Evolution and function of mammalian binder of sperm proteins. Cell Tissue Res. 363, 105–127 (2016) PubMed DOI
Odhiambo, J.F., DeJarnette, J.M., Geary, T.W., Kennedy, C.E., Suarez, S.S., Sutovsky, M., Sutovsky, P.: Increased conception rates in beef cattle inseminated with nanopurified bull semen. Biol. Reprod. 91, 97 (2014) PubMed DOI
Diaz-Miranda, E.A., Hamilton, L.E., Zigo, M., Fallon, L., Ortega, M.S., D'Avila Assumpcao, M.E.O., Guimaraes, J.D., Sutovsky, P.: Regional abundances of binder of sperm (BSP) proteins are negatively associated with the quality of frozen-thawed bovine spermatozoa. Reproduction. 167 (2024)
Topfer-Petersen, E., Romero, A., Varela, P.F., Ekhlasi-Hundrieser, M., Dostalova, Z., Sanz, L., Calvete, J.J.: Spermadhesins: a new protein family. Facts, hypotheses and perspectives. Andrologia. 30, 217–224 (1998) PubMed DOI
Einspanier, R., Krause, I., Calvete, J.J., Töfper-Petersen, E., Klostermeyer, H., Karg, H.: Bovine seminal plasma aSFP: localization of disulfide bridges and detection of three different isoelectric forms. FEBS Lett. 344, 61–64 (1994) PubMed DOI
Tedeschi, G., Oungre, E., Mortarino, M., Negri, A., Maffeo, G., Ronchi, S.: Purification and primary structure of a new bovine spermadhesin. Eur. J. Biochem. 267, 6175–6179 (2000) PubMed DOI
Reinert, M., Calvete, J.J., Sanz, L., Mann, K., Töpfer-Petersen, E.: Primary structure of stallion seminal plasma protein HSP-7, a zona-pellucida-binding protein of the spermadhesin family. Eur. J. Biochem. 242, 636–640 (1996) PubMed DOI
Bergeron, A., Villemure, M., Lazure, C., Manjunath, P.: Isolation and characterization of the major proteins of ram seminal plasma. Mol. Reprod. Dev. 71, 461–470 (2005) PubMed DOI
Teixeira, D.I., Cavada, B.S., Sampaio, A.H., Havt, A., Bloch Jr., C., Prates, M.V., Moreno, F.B., Santos, E.A., Gadelha, C.A., Gadelha, T.S., Crisóstomo, F.S., Freitas, V.J.: Isolation and partial characterisation of a protein from buck seminal plasma (Capra hircus), homologous to spermadhesins. Protein Pept. Lett. 9, 331–335 (2002) PubMed DOI
Kraus, M., Tichá, M., Jonáková, V.: Heparin-binding proteins of human seminal plasma homologous with boar spermadhesins. J. Reprod. Immunol. 51, 131–144 (2001) PubMed DOI
Kraus, M., Tichá, M., Zelezná, B., Peknicová, J., Jonáková, V.: Characterization of human seminal plasma proteins homologous to boar AQN spermadhesins. J. Reprod. Immunol. 65, 33–46 (2005) PubMed DOI
Jonakova, V., Manaskova, P., Kraus, M., Liberda, J., Ticha, M.: Sperm surface proteins in mammalian fertilization. Mol. Reprod. Dev. 56, 275–277 (2000) PubMed DOI
Liberda, J., Manaskova, P., Prelovska, L., Ticha, M., Jonakova, V.: Saccharide-mediated interactions of boar sperm surface proteins with components of the porcine oviduct. J. Reprod. Immunol. 71, 112–125 (2006) PubMed DOI
Talevi, R., Gualtieri, R.: Molecules involved in sperm-oviduct adhesion and release. Theriogenology. 73, 796–801 (2010) PubMed DOI
Novak, S., Ruiz-Sánchez, A., Dixon, W.T., Foxcroft, G.R., Dyck, M.K.: Seminal plasma proteins as potential markers of relative fertility in boars. J. Androl. 31, 188–200 (2010) PubMed DOI
Rodriguez-Martinez, H., Saravia, F., Wallgren, M., Martinez, E.A., Sanz, L., Roca, J., Vazquez, J.M., Calvete, J.J.: Spermadhesin PSP-I/PSP-II heterodimer induces migration of polymorphonuclear neutrophils into the uterine cavity of the sow. J. Reprod. Immunol. 84, 57–65 (2010) PubMed DOI
Kwon, W.S., Rahman, M.S., Lee, J.S., Yoon, S.J., Park, Y.J., Pang, M.G.: Discovery of predictive biomarkers for litter size in boar spermatozoa. Mol. Cell. Proteomics. 14, 1230–1240 (2015) PubMed DOI PMC
Kwon, W.S., Rahman, M.S., Ryu, D.Y., Park, Y.J., Pang, M.G.: Increased male fertility using fertility-related biomarkers. Sci. Rep. 5, 15654 (2015) PubMed DOI PMC
Pérez-Patiño, C., Parrilla, I., Barranco, I., Vergara-Barberán, M., Simó-Alfonso, E.F., Herrero-Martínez, J.M., Rodriguez-Martínez, H., Martínez, E.A., Roca, J.: New in-depth analytical approach of the porcine seminal plasma proteome reveals potential fertility biomarkers. J. Proteome Res. 17, 1065–1076 (2018) PubMed DOI
Somashekar, L., Selvaraju, S., Parthipan, S., Patil, S.K., Binsila, B.K., Venkataswamy, M.M., Karthik Bhat, S., Ravindra, J.P.: Comparative sperm protein profiling in bulls differing in fertility and identification of phosphatidylethanolamine-binding protein 4, a potential fertility marker. Andrology. 5, 1032–1051 (2017) PubMed DOI
Ramírez-López, C.J., Barros, E., Vidigal, P.M.P., Silva Okano, D., Duarte Rodrigues, J.N., Lopes Gomes, L., Montes-Vergara, J.C., Petro Hernandez, V.G., Baracat-Pereira, M.C., Guimarães, S.E.F., Guimarães, J.D.: Relative abundance of Spermadhesin-1 in the seminal plasma of young Nellore bulls is in agreement with reproductive parameters. Vet. Sci. 10 (2023)
Centurion, F., Vazquez, J.M., Calvete, J.J., Roca, J., Sanz, L., Parrilla, I., Garcia, E.M., Martinez, E.A.: Influence of porcine spermadhesins on the susceptibility of boar spermatozoa to high dilution. Biol. Reprod. 69, 640–646 (2003) PubMed DOI
Caballero, I., Vázquez, J.M., García, E.M., Roca, J., Martínez, E.A., Calvete, J.J., Sanz, L., Ekwall, H., Rodríguez-Martínez, H.: Immunolocalization and possible functional role of PSP-I/PSP-II heterodimer in highly extended boar spermatozoa. J. Androl. 27, 766–773 (2006) PubMed DOI
Gomes, F.P., Park, R., Viana, A.G., Fernandez-Costa, C., Topper, E., Kaya, A., Memili, E., Yates 3rd, J.R., Moura, A.A.: Protein signatures of seminal plasma from bulls with contrasting frozen-thawed sperm viability. Sci. Rep. 10, 14661 (2020) PubMed DOI PMC
Simonik, O., Bubenickova, F., Tumova, L., Frolikova, M., Sur, V.P., Beran, J., Havlikova, K., Hackerova, L., Spevakova, D., Komrskova, K., Postlerova, P.: Boar sperm cryopreservation improvement using semen extender modification by dextran and pentaisomaltose. Animals (Basel). 12 (2022)
Bubenickova, F., Postlerova, P., Simonik, O., Sirohi, J., Sichtar, J.: Effect of seminal plasma protein fractions on stallion sperm cryopreservation. Int. J. Mol. Sci. 21 (2020)
Zuidema, D., Jones, A., Song, W.H., Zigo, M., Sutovsky, P.: Identification of candidate mitochondrial inheritance determinants using the mammalian cell-free system. elife. 12, 12 (2023) DOI
Song, W.H., Yi, Y.J., Sutovsky, M., Meyers, S., Sutovsky, P.: Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization. Proc. Natl. Acad. Sci. USA. 113, E5261–E5270 (2016) PubMed DOI PMC
Kerns, K., Jankovitz, J., Robinson, J., Minton, A., Kuster, C., Sutovsky, P.: Relationship between the length of sperm tail mitochondrial sheath and fertility traits in boars used for artificial insemination. Antioxidants. 9, 9 (2020) DOI
Kennedy, C.E., Krieger, K.B., Sutovsky, M., Xu, W., Vargovic, P., Didion, B.A., Ellersieck, M.R., Hennessy, M.E., Verstegen, J., Oko, R., Sutovsky, P.: Protein expression pattern of PAWP in bull spermatozoa is associated with sperm quality and fertility following artificial insemination. Mol. Reprod. Dev. 81, 436–449 (2014) PubMed DOI
Fallon, L., Diaz-Miranda, E., Hamilton, L.E., Sutovsky, P., Zigo, M., Spencer, T.E., Ortega, M.S.: The development of new biomarkers of spermatozoa quality in cattle. Front. Vet. Sci. 10, 1258295 (2023) PubMed DOI PMC
Jodar, M., Soler-Ventura, A., Oliva, R.: Semen proteomics and male infertility. J. Proteome. 162, 125–134 (2017) DOI
Amaral, A., Castillo, J., Ramalho-Santos, J., Oliva, R.: The combined human sperm proteome: cellular pathways and implications for basic and clinical science. Hum. Reprod. Update. 20, 40–62 (2014) PubMed DOI
Chhikara, N., Tomar, A.K., Datta, S.K., Yadav, S.: Proteomic changes in human spermatozoa during in vitro capacitation and acrosome reaction in normozoospermia and asthenozoospermia. Andrology. 11, 73–85 (2023) PubMed DOI
Hernández-Silva, G., Fabián López-Araiza, J.E., López-Torres, A.S., Larrea, F., Torres-Flores, V., Chirinos, M.: Proteomic characterization of human sperm plasma membrane-associated proteins and their role in capacitation. Andrology. 8, 171–180 (2020) PubMed DOI
Castillo, J., Bogle, O.A., Jodar, M., Torabi, F., Delgado-Dueñas, D., Estanyol, J.M., Ballescà, J.L., Miller, D., Oliva, R.: Proteomic changes in human sperm during sequential in vitro capacitation and acrosome reaction. Front. Cell Dev. Biol. 7, 295 (2019) PubMed DOI PMC
Secciani, F., Bianchi, L., Ermini, L., Cianti, R., Armini, A., La Sala, G.B., Focarelli, R., Bini, L., Rosati, F.: Protein profile of capacitated versus ejaculated human sperm. J. Proteome Res. 8, 3377–3389 (2009) PubMed DOI
Nixon, B., Mitchell, L.A., Anderson, A.L., McLaughlin, E.A., O'Bryan, M.K., Aitken, R.J.: Proteomic and functional analysis of human sperm detergent resistant membranes. J. Cell. Physiol. 226, 2651–2665 (2011) PubMed DOI
Kerns, K., Zigo, M., Drobnis, E.Z., Sutovsky, M., Sutovsky, P.: Zinc ion flux during mammalian sperm capacitation. Nat. Commun. 9, 2061 (2018) PubMed DOI PMC
Kerns, K., Sharif, M., Zigo, M., Xu, W., Hamilton, L.E., Sutovsky, M., Ellersieck, M., Drobnis, E.Z., Bovin, N., Oko, R., Miller, D., Sutovsky, P.: Sperm cohort-specific zinc signature acquisition and capacitation-induced zinc flux regulate sperm-oviduct and sperm-zona Pellucida interactions. Int. J. Mol. Sci. 21 (2020)
Zigo, M., Kerns, K., Sen, S., Essien, C., Oko, R., Xu, D., Sutovsky, P.: Zinc is a master-regulator of sperm function associated with binding, motility, and metabolic modulation during porcine sperm capacitation. Commun. Biol. 5, 538 (2022) PubMed DOI PMC
Bjorndahl, L., Kvist, U.: Human sperm chromatin stabilization: a proposed model including zinc bridges. Mol. Hum. Reprod. 16, 23–29 (2010) PubMed DOI
Sutovsky, P., Neuber, E., Schatten, G.: Ubiquitin-dependent sperm quality control mechanism recognizes spermatozoa with DNA defects as revealed by dual ubiquitin-TUNEL assay. Mol. Reprod. Dev. 61, 406–413 (2002) PubMed DOI
Varum, S., Bento, C., Sousa, A.P., Gomes-Santos, C.S., Henriques, P., Almeida-Santos, T., Teodosio, C., Paiva, A., Ramalho-Santos, J.: Characterization of human sperm populations using conventional parameters, surface ubiquitination, and apoptotic markers. Fertil. Steril. 87, 572–583 (2007) PubMed DOI
Stiavnicka, M., Garcia-Alvarez, O., Ulcova-Gallova, Z., Sutovsky, P., Abril-Parreno, L., Dolejsova, M., Rimnacova, H., Moravec, J., Hosek, P., Losan, P., Gold, L., Fenclova, T., et al.: H3K4me2 accompanies chromatin immaturity in human spermatozoa: an epigenetic marker for sperm quality assessment. Syst Biol Reprod Med. 66, 3–11 (2020) PubMed DOI
Van Raamsdonk, J.M., Murphy, Z., Selva, D.M., Hamidizadeh, R., Pearson, J., Petersén, A., Björkqvist, M., Muir, C., Mackenzie, I.R., Hammond, G.L., Vogl, A.W., Hayden, M.R., et al.: Testicular degeneration in Huntington disease. Neurobiol. Dis. 26, 512–520 (2007) PubMed DOI
Baxa, M., Hruska-Plochan, M., Juhas, S., Vodicka, P., Pavlok, A., Juhasova, J., Miyanohara, A., Nejime, T., Klima, J., Macakova, M., Marsala, S., Weiss, A., et al.: A transgenic minipig model of Huntington's disease. J. Huntingtons Dis. 2, 47–68 (2013) PubMed DOI
Krizova, J., Stufkova, H., Rodinova, M., Macakova, M., Bohuslavova, B., Vidinska, D., Klima, J., Ellederova, Z., Pavlok, A., Howland, D.S., Zeman, J., Motlik, J., et al.: Mitochondrial metabolism in a large-animal model of Huntington disease: the hunt for biomarkers in the spermatozoa of Presymptomatic Minipigs. Neurodegener Dis. 17, 213–226 (2017) PubMed DOI
Macakova, M., Bohuslavova, B., Vochozkova, P., Pavlok, A., Sedlackova, M., Vidinska, D., Vochyanova, K., Liskova, I., Valekova, I., Baxa, M., Ellederova, Z., Klima, J., et al.: Mutated huntingtin causes testicular pathology in transgenic Minipig boars. Neurodegener Dis. 16, 245–259 (2016) PubMed DOI
Vidinská, D., Vochozková, P., Šmatlíková, P., Ardan, T., Klíma, J., Juhás, Š., Juhásová, J., Bohuslavová, B., Baxa, M., Valeková, I., Motlík, J., Ellederová, Z.: Gradual phenotype development in Huntington disease transgenic Minipig model at 24 months of age. Neurodegener Dis. 18, 107–119 (2018) PubMed DOI
Chen, S., Yang, Y., Gao, B., Jia, C., Zhu, F., Meng, Q., Zhang, Z., Zhang, Z., Xu, S.: Comparative proteomics of the Acanthopagrus schlegelii gonad in different sex reversal. Genes (Basel). 13, 13 (2022)
Zmudzinska, A., Bromke, M.A., Strzezek, R., Zielinska, M., Olejnik, B., Mogielnicka-Brzozowska, M.: Proteomic analysis of intracellular and membrane-associated fractions of canine (Canis lupus familiaris) epididymal spermatozoa and sperm structure separation. Animals (Basel). 12 (2022)
Jia, B., Larbi, A., Lv, C., Liang, J., Xiang, D., Zhang, B., Fang, Y., Shen, W., Wu, G., Quan, G.: Identification and validation of ram sperm proteins associated with cryoinjuries caused by the cryopreservation process. Theriogenology. 184, 191–203 (2022) PubMed DOI
Zhang, M., Chiozzi, R.Z., Skerrett-Byrne, D.A., Veenendaal, T., Klumperman, J., Heck, A.J.R., Nixon, B., Helms, J.B., Gadella, B.M., Bromfield, E.G.: High resolution proteomic analysis of subcellular fractionated boar spermatozoa provides comprehensive insights into perinuclear theca-residing proteins. Front. Cell Dev. Biol. 10, 836208 (2022) PubMed DOI PMC
Martín-Cano, F.E., Gaitskell-Phillips, G., Ortiz-Rodríguez, J.M., Silva, A., Gil, C., Ortega-Ferrusola, C., Peña, F.J.: Data set of the proteome of fresh and frozen thawed stallion spermatozoa. Data Brief. 31, 105887 (2020) PubMed DOI PMC
Singh, R., Sengar, G.S., Singh, U., Deb, R., Junghare, V., Hazra, S., Kumar, S., Tyagi, S., Das, A.K., Raja, T.V., Kumar, A.: Functional proteomic analysis of crossbred (Holstein Friesian × Sahiwal) bull spermatozoa. Reprod. Domest. Anim. 53, 588–608 (2018) PubMed DOI
D'Amours, O., Calvo, É., Bourassa, S., Vincent, P., Blondin, P., Sullivan, R.: Proteomic markers of low and high fertility bovine spermatozoa separated by Percoll gradient. Mol. Reprod. Dev. 86, 999–1012 (2019) PubMed DOI
Liang, J., Zheng, Y., Zeng, W., Chen, L., Yang, S., Du, P., Wang, Y., Yu, X., Zhang, X.: Proteomic profile of sperm in infertile males reveals changes in metabolic pathways. Protein J. 40, 929–939 (2021) PubMed DOI PMC
Ghosh, S., Parikh, S., Nissa, M.U., Acharjee, A., Singh, A., Patwa, D., Makwana, P., Athalye, A., Barpanda, A., Laloraya, M., Srivastava, S., Parikh, F.: Semen proteomics of COVID-19 convalescent men reveals disruption of key biological pathways relevant to male reproductive function. ACS Omega. 7, 8601–8612 (2022) PubMed DOI PMC
Meizel, S.: The sperm, a neuron with a tail: 'neuronal' receptors in mammalian sperm. Biol. Rev. Camb. Philos. Soc. 79, 713–732 (2004) PubMed DOI
Urra, J.A., Villaroel-Espíndola, F., Covarrubias, A.A., Rodríguez-Gil, J.E., Ramírez-Reveco, A., Concha, I.I.: Presence and function of dopamine transporter (DAT) in stallion sperm: dopamine modulates sperm motility and acrosomal integrity. PLoS One. 9, e112834 (2014) PubMed DOI PMC
Puente, M.A., Tartaglione, C.M., Ritta, M.N.: Bull sperm acrosome reaction induced by gamma-aminobutyric acid (GABA) is mediated by GABAergic receptors type A. Anim. Reprod. Sci. 127, 31–37 (2011) PubMed DOI
Gorodeski, G.I.: Purinergic signalling in the reproductive system. Auton. Neurosci. 191, 82–101 (2015) PubMed DOI
Kumar, P., Meizel, S.: Nicotinic acetylcholine receptor subunits and associated proteins in human sperm. J. Biol. Chem. 280, 25928–25935 (2005) PubMed DOI
Meizel, S., Son, J.H.: Studies of sperm from mutant mice suggesting that two neurotransmitter receptors are important to the zona pellucida-initiated acrosome reaction. Mol. Reprod. Dev. 72, 250–258 (2005) PubMed DOI
Gianzo, M., Muñoa-Hoyos, I., Urizar-Arenaza, I., Larreategui, Z., Quintana, F., Garrido, N., Subirán, N., Irazusta, J.: Angiotensin II type 2 receptor is expressed in human sperm cells and is involved in sperm motility. Fertil. Steril. 105, 608–616 (2016) PubMed DOI
Amoako, A.A., Marczylo, T.H., Marczylo, E.L., Elson, J., Willets, J.M., Taylor, A.H., Konje, J.C.: Anandamide modulates human sperm motility: implications for men with asthenozoospermia and oligoasthenoteratozoospermia. Hum. Reprod. 28, 2058–2066 (2013) PubMed DOI
Flegel, C., Vogel, F., Hofreuter, A., Schreiner, B.S., Osthold, S., Veitinger, S., Becker, C., Brockmeyer, N.H., Muschol, M., Wennemuth, G., Altmüller, J., Hatt, H., et al.: Characterization of the olfactory receptors expressed in human spermatozoa. Front. Mol. Biosci. 2, 73 (2015) PubMed
Cortés-Rodriguez, M., Royo, J.L., Reyes-Palomares, A., Lendínez, A.M., Ruiz-Galdón, M., Reyes-Engel, A.: Sperm count and motility are quantitatively affected by functional polymorphisms of HTR2A, MAOA and SLC18A. Reprod. Biomed. Online. 36, 560–567 (2018) PubMed DOI
Guo, J., Zhu, P., Wu, C., Yu, L., Zhao, S., Gu, X.: In silico analysis indicates a similar gene expression pattern between human brain and testis. Cytogenet. Genome Res. 103, 58–62 (2003) PubMed DOI
Sharp, A.H., Ross, C.A.: Neurobiology of Huntington's disease. Neurobiol. Dis. 3, 3–15 (1996) PubMed DOI
Caterino, M., Squillaro, T., Montesarchio, D., Giordano, A., Giancola, C., Melone, M.A.B.: Huntingtin protein: a new option for fixing the Huntington's disease countdown clock. Neuropharmacology. 135, 126–138 (2018) PubMed DOI
Gatto, E.M., Rojas, N.G., Persi, G., Etcheverry, J.L., Cesarini, M.E., Perandones, C.: Huntington disease: advances in the understanding of its mechanisms. Clin. Park. Relat. Disord. 3, 100056 (2020) PubMed PMC
Tabrizi, S.J., Flower, M.D., Ross, C.A., Wild, E.J.: Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat. Rev. Neurol. 16, 529–546 (2020) PubMed DOI
Ehrnhoefer, D.E., Sutton, L., Hayden, M.R.: Small changes, big impact: posttranslational modifications and function of huntingtin in Huntington disease. Neuroscientist. 17, 475–492 (2011) PubMed DOI PMC
Im, W., Chung, J., Lee, S.T., Chu, K., Kim, M.W., Kim, M.: Nuclear localization of huntingtin during spermatogenesis. Neurol. Sci. 35, 459–462 (2014) PubMed DOI
Leavitt, B.R., Guttman, J.A., Hodgson, J.G., Kimel, G.H., Singaraja, R., Vogl, A.W., Hayden, M.R.: Wild-type huntingtin reduces the cellular toxicity of mutant huntingtin in vivo. Am. J. Hum. Genet. 68, 313–324 (2001) PubMed DOI
Yan, J., Zhang, H., Liu, Y., Zhao, F., Zhu, S., Xie, C., Tang, T.S., Guo, C.: Germline deletion of huntingtin causes male infertility and arrested spermiogenesis in mice. J. Cell Sci. 129, 492–501 (2016) PubMed DOI
Harper, P.S.: Trinucleotide repeat disorders. J. Inherit. Metab. Dis. 20, 122–124 (1997) PubMed DOI
Huang, H., Winter, E.E., Wang, H., Weinstock, K.G., Xing, H., Goodstadt, L., Stenson, P.D., Cooper, D.N., Smith, D., Albà, M.M., Ponting, C.P., Fechtel, K.: Evolutionary conservation and selection of human disease gene orthologs in the rat and mouse genomes. Genome Biol. 5, R47 (2004) PubMed DOI PMC
La Spada, A.R., Taylor, J.P.: Repeat expansion disease: progress and puzzles in disease pathogenesis. Nat. Rev. Genet. 11, 247–258 (2010) PubMed DOI PMC
Pearson, C.E., Nichol Edamura, K., Cleary, J.D.: Repeat instability: mechanisms of dynamic mutations. Nat. Rev. Genet. 6, 729–742 (2005) PubMed DOI
Albà, M.M., Guigó, R.: Comparative analysis of amino acid repeats in rodents and humans. Genome Res. 14, 549–554 (2004) PubMed DOI PMC
Whan, V., Hobbs, M., McWilliam, S., Lynn, D.J., Lutzow, Y.S., Khatkar, M., Barendse, W., Raadsma, H., Tellam, R.L.: Bovine proteins containing poly-glutamine repeats are often polymorphic and enriched for components of transcriptional regulatory complexes. BMC Genomics. 11, 654 (2010) PubMed DOI PMC
Madsen, L.B., Thomsen, B., Sølvsten, C.A., Bendixen, C., Fredholm, M., Jørgensen, A.L., Nielsen, A.L.: Identification of the porcine homologous of human disease causing trinucleotide repeat sequences. Neurogenetics. 8, 207–218 (2007) PubMed DOI
Cornwall, G.A., von Horsten, H.H., Swartz, D., Johnson, S., Chau, K., Whelly, S.: Extracellular quality control in the epididymis. Asian J. Androl. 9, 500–507 (2007) PubMed DOI
Whelly, S., Johnson, S., Powell, J., Borchardt, C., Hastert, M.C., Cornwall, G.A.: Nonpathological extracellular amyloid is present during normal epididymal sperm maturation. PLoS One. 7, e36394 (2012) PubMed DOI PMC
Cafe, S.L., Nixon, B., Ecroyd, H., Martin, J.H., Skerrett-Byrne, D.A., Bromfield, E.G.: Proteostasis in the male and female germline: a new outlook on the maintenance of reproductive health. Front. Cell Dev. Biol. 9, 660626 (2021) PubMed DOI PMC
Bisconti, M., Simon, J.F., Grassi, S., Leroy, B., Martinet, B., Arcolia, V., Isachenko, V., Hennebert, E.: Influence of risk factors for male infertility on sperm protein composition. Int. J. Mol. Sci. 22 (2021)
Guo, Y., Jiang, J., Zhang, H., Wen, Y., Zhang, H., Cui, Y., Tian, J., Jiang, M., Liu, X., Wang, G., Li, Y., Hu, Z., et al.: Proteomic analysis of Dpy19l2-deficient human globozoospermia reveals multiple molecular defects. Proteomics Clin. Appl. 13, e1900007 (2019) PubMed DOI
Siva, A.B., Kameshwari, D.B., Singh, V., Pavani, K., Sundaram, C.S., Rangaraj, N., Deenadayal, M., Shivaji, S.: Proteomics-based study on asthenozoospermia: differential expression of proteasome alpha complex. Mol. Hum. Reprod. 16, 452–462 (2010) PubMed DOI
De Amicis, F., Perrotta, I., Santoro, M., Guido, C., Morelli, C., Cesario, M.G., Bruno, R., Aquila, S.: Human sperm anatomy: different expression and localization of phosphatidylinositol 3-kinase in normal and varicocele human spermatozoa. Ultrastruct. Pathol. 37, 176–182 (2013) PubMed DOI
Hosseinifar, H., Gourabi, H., Salekdeh, G.H., Alikhani, M., Mirshahvaladi, S., Sabbaghian, M., Modarresi, T., Gilani, M.A.: Study of sperm protein profile in men with and without varicocele using two-dimensional gel electrophoresis. Urology. 81, 293–300 (2013) PubMed DOI
Agarwal, A., Sharma, R., Durairajanayagam, D., Ayaz, A., Cui, Z., Willard, B., Gopalan, B., Sabanegh, E.: Major protein alterations in spermatozoa from infertile men with unilateral varicocele. Reprod. Biol. Endocrinol. 13, 8 (2015) PubMed DOI PMC
Agarwal, A., Sharma, R., Durairajanayagam, D., Cui, Z., Ayaz, A., Gupta, S., Willard, B., Gopalan, B., Sabanegh, E.: Differential proteomic profiling of spermatozoal proteins of infertile men with unilateral or bilateral varicocele. Urology. 85, 580–588 (2015) PubMed DOI
Agarwal, A., Sharma, R., Durairajanayagam, D., Cui, Z., Ayaz, A., Gupta, S., Willard, B., Gopalan, B., Sabanegh, E.: Spermatozoa protein alterations in infertile men with bilateral varicocele. Asian J. Androl. 18, 43–53 (2016) PubMed DOI
Samanta, L., Agarwal, A., Swain, N., Sharma, R., Gopalan, B., Esteves, S.C., Durairajanayagam, D., Sabanegh, E.: Proteomic signatures of sperm mitochondria in varicocele: clinical use as biomarkers of varicocele associated infertility. J. Urol. 200, 414–422 (2018) PubMed DOI
Martins, A.D., Agarwal, A., Baskaran, S., Pushparaj, P.N., Ahmad, G., Panner Selvam, M.K.: Alterations of spermatozoa proteomic profile in men with Hodgkin's disease prior to cancer therapy. World J. Mens Health. 38, 521–534 (2020) PubMed DOI
Dias, T.R., Agarwal, A., Pushparaj, P.N., Ahmad, G., Sharma, R.: New insights on the mechanisms affecting fertility in men with non-seminoma testicular cancer before cancer therapy. World J. Mens Health. 38, 198–207 (2020) PubMed DOI
Panner Selvam, M.K., Finelli, R., Baskaran, S., Agarwal, A.: Dysregulation of key proteins associated with sperm motility and fertility potential in cancer patients. Int. J. Mol. Sci. 21 (2020)
Guo, Y., Li, J., Hao, F., Yang, Y., Yang, H., Chang, Q., Kong, P., Liu, W., Jiao, X., Teng, X.: A new perspective on semen quality of aged male: the characteristics of metabolomics and proteomics. Front. Endocrinol. (Lausanne). 13, 1058250 (2022) PubMed DOI
Pini, T., Parks, J., Russ, J., Dzieciatkowska, M., Hansen, K.C., Schoolcraft, W.B., Katz-Jaffe, M.: Obesity significantly alters the human sperm proteome, with potential implications for fertility. J. Assist. Reprod. Genet. 37, 777–787 (2020) PubMed DOI PMC
Liu, Y., Guo, Y., Song, N., Fan, Y., Li, K., Teng, X., Guo, Q., Ding, Z.: Proteomic pattern changes associated with obesity-induced asthenozoospermia. Andrology. 3, 247–259 (2015) PubMed DOI
Mu, Y., Yan, W.J., Yin, T.L., Zhang, Y., Li, J., Yang, J.: Diet-induced obesity impairs spermatogenesis: a potential role for autophagy. Sci. Rep. 7, 43475 (2017) PubMed DOI PMC
Wang, F., Chen, H., Chen, Y., Cheng, Y., Li, J., Zheng, L., Zeng, X., Luo, T.: Diet-induced obesity is associated with altered expression of sperm motility-related genes and testicular post-translational modifications in a mouse model. Theriogenology. 158, 233–238 (2020) PubMed DOI
Paasch, U., Heidenreich, F., Pursche, T., Kuhlisch, E., Kettner, K., Grunewald, S., Kratzsch, J., Dittmar, G., Glander, H.J., Hoflack, B., Kriegel, T.M.: Identification of increased amounts of eppin protein complex components in sperm cells of diabetic and obese individuals by difference gel electrophoresis. Mol. Cell. Proteomics. 10, M110.007187 (2011) PubMed DOI PMC
Muciaccia, B., Pensini, S., Culasso, F., Padula, F., Paoli, D., Gandini, L., Di Veroli, C., Bianchini, G., Stefanini, M., D'Agostino, A.: Higher clusterin immunolabeling and sperm DNA damage levels in hypertensive men compared with controls. Hum. Reprod. 27, 2267–2276 (2012) PubMed DOI
An, T., Wang, Y.F., Liu, J.X., Pan, Y.Y., Liu, Y.F., He, Z.C., Mo, F.F., Li, J., Kang, L.H., Gu, Y.J., Lv, B.H., Gao, S.H., et al.: Comparative analysis of proteomes between diabetic and normal human sperm: insights into the effects of diabetes on male reproduction based on the regulation of mitochondria-related proteins. Mol. Reprod. Dev. 85, 7–16 (2018) PubMed DOI
Carvalho, M.G., Silva, K.M., Aristizabal, V.H.V., Ortiz, P.E.O., Paranzini, C.S., Melchert, A., Amaro, J.L., Souza, F.F.: Effects of obesity and diabetes on sperm cell proteomics in rats. J. Proteome Res. 20, 2628–2642 (2021) PubMed DOI
Chen, X., Xu, W., Miao, M., Zhu, Z., Dai, J., Chen, Z., Fang, P., Wu, J., Nie, D., Wang, L., Wang, Z., Qiao, Z., et al.: Alteration of sperm protein profile induced by cigarette smoking. Acta Biochim. Biophys. Sin. Shanghai. 47, 504–515 (2015) PubMed DOI
Shrivastava, V., Pekar, M., Grosser, E., Im, J., Vigodner, M.: SUMO proteins are involved in the stress response during spermatogenesis and are localized to DNA double-strand breaks in germ cells. Reproduction. 139, 999–1010 (2010) PubMed DOI
Shrivastava, V., Marmor, H., Chernyak, S., Goldstein, M., Feliciano, M., Vigodner, M.: Cigarette smoke affects posttranslational modifications and inhibits capacitation-induced changes in human sperm proteins. Reprod. Toxicol. 43, 125–129 (2014) PubMed DOI
Nie, D., Zhang, D., Dai, J., Zhang, M., Zhao, X., Xu, W., Chen, Z., Wang, L., Wang, Z., Qiao, Z.: Nicotine induced murine spermatozoa apoptosis via up-regulation of deubiquitinated RIP1 by Trim27 promoter hypomethylation. Biol. Reprod. 94, 31 (2016) PubMed DOI
Zhu, Z., Xu, W., Dai, J., Chen, X., Zhao, X., Fang, P., Yang, F., Tang, M., Wang, Z., Wang, L., Ma, D., Qaio, Z.: The alteration of protein profile induced by cigarette smoking via oxidative stress in mice epididymis. Int. J. Biochem. Cell Biol. 45, 571–582 (2013) PubMed DOI
Bromfield, E.G., Aitken, R.J., Anderson, A.L., McLaughlin, E.A., Nixon, B.: The impact of oxidative stress on chaperone-mediated human sperm-egg interaction. Hum. Reprod. 30, 2597–2613 (2015) PubMed DOI
Bromfield, E.G., Aitken, R.J., McLaughlin, E.A., Nixon, B.: Proteolytic degradation of heat shock protein A2 occurs in response to oxidative stress in male germ cells of the mouse. Mol. Hum. Reprod. 23, 91–105 (2017) PubMed
Marić, T., Fučić, A., Aghayanian, A.: Environmental and occupational exposures associated with male infertility. Arh. Hig. Rada Toksikol. 72, 101–113 (2021) PubMed PMC
Rahman, M.S., Kwon, W.S., Lee, J.S., Yoon, S.J., Ryu, B.Y., Pang, M.G.: Bisphenol-A affects male fertility via fertility-related proteins in spermatozoa. Sci. Rep. 5, 9169 (2015) PubMed DOI PMC
Rahman, M.S., Kwon, W.S., Yoon, S.J., Park, Y.J., Ryu, B.Y., Pang, M.G.: A novel approach to assessing bisphenol-A hazards using an in vitro model system. BMC Genomics. 17, 577 (2016) PubMed DOI PMC
Rahman, M.S., Kwon, W.S., Karmakar, P.C., Yoon, S.J., Ryu, B.Y., Pang, M.G.: Gestational exposure to bisphenol A affects the function and proteome profile of F1 spermatozoa in adult mice. Environ. Health Perspect. 125, 238–245 (2017) PubMed DOI
Rahman, M.S., Kwon, W.S., Ryu, D.Y., Khatun, A., Karmakar, P.C., Ryu, B.Y., Pang, M.G.: Functional and proteomic alterations of F1 capacitated spermatozoa of adult mice following gestational exposure to bisphenol A. J. Proteome Res. 17, 524–535 (2018) PubMed DOI
Brieño-Enríquez, M.A., García-López, J., Cárdenas, D.B., Guibert, S., Cleroux, E., Děd, L., Hourcade Jde, D., Pěknicová, J., Weber, M., Del Mazo, J.: Exposure to endocrine disruptor induces transgenerational epigenetic deregulation of microRNAs in primordial germ cells. PLoS One. 10, e0124296 (2015) PubMed DOI PMC
Huang, S., Lu, Y., Li, S., Zhou, T., Wang, J., Xia, J., Zhang, X., Zhou, Z.: Key proteins of proteome underlying sperm malformation of rats exposed to low fenvalerate doses are highly related to P53. Environ. Toxicol. 36, 1181–1194 (2021) PubMed DOI
Komsky-Elbaz, A., Kalo, D., Roth, Z.: Effect of aflatoxin B1 on bovine spermatozoa's proteome and embryo's transcriptome. Reproduction. 160, 709–723 (2020) PubMed DOI
Sun, Z., Wei, R., Luo, G., Niu, R., Wang, J.: Proteomic identification of sperm from mice exposed to sodium fluoride. Chemosphere. 207, 676–681 (2018) PubMed DOI
Nayak, J., Jena, S.R., Kumar, S., Kar, S., Dixit, A., Samanta, L.: Human sperm proteome reveals the effect of environmental borne seminal polyaromatic hydrocarbons exposome in etiology of idiopathic male factor infertility. Front. Cell Dev. Biol. 11, 1117155 (2023) PubMed DOI PMC
Nerin, C., Canellas, E., Vera, P., Garcia-Calvo, E., Luque-Garcia, J.L., Cámara, C., Ausejo, R., Miguel, J., Mendoza, N.: A common surfactant used in food packaging found to be toxic for reproduction in mammals. Food Chem. Toxicol. 113, 115–124 (2018) PubMed DOI
Upham, N.S., Landis, M.J.: Genomics expands the mammalverse. Science. 380, 358–359 (2023) PubMed DOI PMC
Ostedgaard, L.S., Meyerholz, D.K., Chen, J.H., Pezzulo, A.A., Karp, P.H., Rokhlina, T., Ernst, S.E., Hanfland, R.A., Reznikov, L.R., Ludwig, P.S., Rogan, M.P., Davis, G.J., et al.: The DeltaF508 mutation causes CFTR misprocessing and cystic fibrosis-like disease in pigs. Sci. Transl. Med. 3, 74ra24 (2011) PubMed DOI PMC
Pratt, S.L., Stowe, H.M., Whitlock, B.K., Strickland, L., Miller, M., Calcatera, S.M., Dimmick, M.D., Aiken, G.E., Schrick, F.N., Long, N.M., Duckett, S.K., Andrae, J.G.: Bulls grazing Kentucky 31 tall fescue exhibit impaired growth, semen quality, and decreased semen freezing potential. Theriogenology. 83, 408–414 (2015) PubMed DOI
Geary, T.W., Waterman, R.C., Van Emon, M.L., Ratzburg, C.R., Lake, S., Eik, B.A., Armstrong, D.R., Zezeski, A.L., Heldt, J.S.: Effect of supplemental trace minerals on standard and novel measures of bull fertility. Theriogenology. 172, 307–314 (2021) PubMed DOI
Brito, L.F., Silva, A.E., Barbosa, R.T., Unanian, M.M., Kastelic, J.P.: Effects of scrotal insulation on sperm production, semen quality, and testicular echotexture in Bos indicus and Bos indicus x Bos taurus bulls. Anim. Reprod. Sci. 79, 1–15 (2003) PubMed DOI
Ruiz-Sánchez, A.L., O'Donoghue, R., Novak, S., Dyck, M.K., Cosgrove, J.R., Dixon, W.T., Foxcroft, G.R.: The predictive value of routine semen evaluation and IVF technology for determining relative boar fertility. Theriogenology. 66, 736–748 (2006) PubMed DOI
Broekhuijse, M.L., Šoštarić, E., Feitsma, H., Gadella, B.M.: Application of computer-assisted semen analysis to explain variations in pig fertility. J. Anim. Sci. 90, 779–789 (2012) PubMed DOI
Savić, R., Marcos, R.A., Petrović, M., Radojković, D., Radović, Č., Gogić, M.: Fertility of boars – what is important to know. Biotechnol. Anim. Husb. 33, 135–149 (2017) DOI
Nani, J.P., Rezende, F.M., Peñagaricano, F.: Predicting male fertility in dairy cattle using markers with large effect and functional annotation data. BMC Genomics. 20, 258 (2019) PubMed DOI PMC
Dordas-Perpinyà, M., Sergeant, N., Ruelle, I., Bruyas, J.F., Charreaux, F., Michaud, S., Carracedo, S., Catalán, J., Miró, J., Delehedde, M., Briand-Amirat, L.: ProAKAP4 semen concentrations as a valuable marker protein of post-thawed semen quality and bull fertility: a retrospective study. Vet. Sci. 9 (2022)
Kuhn, M.T., Hutchison, J.L.: Prediction of dairy bull fertility from field data: use of multiple services and identification and utilization of factors affecting bull fertility. J. Dairy Sci. 91, 2481–2492 (2008) PubMed DOI
Han, Y., Peñagaricano, F.: Unravelling the genomic architecture of bull fertility in Holstein cattle. BMC Genet. 17, 143 (2016) PubMed DOI PMC
Kutchy, N.A., Dogan, S., Wang, X., Topper, E., Kaya, A., Memili, E.: Application of proteomics to identify fertility markers in angus bull sperm. HAYATI J. Biosci. 27, 116–135 (2020) DOI
Willforss, J., Morrell, J.M., Resjö, S., Hallap, T., Padrik, P., Siino, V., de Koning, D.J., Andreasson, E., Levander, F., Humblot, P.: Stable bull fertility protein markers in seminal plasma. J. Proteome. 236, 104135 (2021) DOI
Muhammad Aslam, M.K., Sharma, V.K., Pandey, S., Kumaresan, A., Srinivasan, A., Datta, T.K., Mohanty, T.K., Yadav, S.: Identification of biomarker candidates for fertility in spermatozoa of crossbred bulls through comparative proteomics. Theriogenology. 119, 43–51 (2018) PubMed DOI
Kwon, W.S., Oh, S.A., Kim, Y.J., Rahman, M.S., Park, Y.J., Pang, M.G.: Proteomic approaches for profiling negative fertility markers in inferior boar spermatozoa. Sci. Rep. 5, 13821 (2015) PubMed DOI PMC
Zigo, M., Manaskova-Postlerova, P., Zuidema, D., Kerns, K., Jonakova, V., Tumova, L., Bubenickova, F., Sutovsky, P.: Porcine model for the study of sperm capacitation, fertilization and male fertility. Cell Tissue Res. 380, 237–262 (2020) PubMed DOI
López Rodríguez, A., Rijsselaere, T., Beek, J., Vyt, P., Van Soom, A., Maes, D.: Boar seminal plasma components and their relation with semen quality. Syst Biol Reprod Med. 59, 5–12 (2013) PubMed DOI
Schulze, M., Buder, S., Rüdiger, K., Beyerbach, M., Waberski, D.: Influences on semen traits used for selection of young AI boars. Anim. Reprod. Sci. 148, 164–170 (2014) PubMed DOI
Maside, C., Recuero, S., Salas-Huetos, A., Ribas-Maynou, J., Yeste, M.: Animal board invited review: An update on the methods for semen quality evaluation in swine – From farm to the lab. Animal. 17, 100720 (2023) PubMed DOI
Zuidema, D., Sutovsky, P.: The domestic pig as a model for the study of mitochondrial inheritance. Cell Tissue Res. 380, 263–271 (2020) PubMed DOI
Wernersson, R., Schierup, M.H., Jørgensen, F.G., Gorodkin, J., Panitz, F., Staerfeldt, H.H., Christensen, O.F., Mailund, T., Hornshøj, H., Klein, A., Wang, J., Liu, B., et al.: Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing. BMC Genomics. 6, 70 (2005) PubMed DOI PMC
Dawson, H.D.: A comparative assessment of the pig, mouse and human genomes: structural and functional analysis of genes involved in immunity and infammation. In: McAnulty, P.A., Dayan, A.D., Ganderup, N.C., Hastings, K.L. (eds.) The Minipig in Biomedical Research, 1st edn. CRC Press (2011)
Lunney, J.K., Van Goor, A., Walker, K.E., Hailstock, T., Franklin, J., Dai, C.: Importance of the pig as a human biomedical model. Sci. Transl. Med. 13, eabd5758 (2021) PubMed DOI
Perleberg, C., Kind, A., Schnieke, A.: Genetically engineered pigs as models for human disease. Dis. Model. Mech. 11 (2018)
Bertolini, L.R., Meade, H., Lazzarotto, C.R., Martins, L.T., Tavares, K.C., Bertolini, M., Murray, J.D.: The transgenic animal platform for biopharmaceutical production. Transgenic Res. 25, 329–343 (2016) PubMed DOI
Petersen, B., Frenzel, A., Lucas-Hahn, A., Herrmann, D., Hassel, P., Klein, S., Ziegler, M., Hadeler, K.G., Niemann, H.: Efficient production of biallelic GGTA1 knockout pigs by cytoplasmic microinjection of CRISPR/Cas9 into zygotes. Xenotransplantation. 23, 338–346 (2016) PubMed DOI
Wolf, E., Kemter, E., Klymiuk, N., Reichart, B.: Genetically modified pigs as donors of cells, tissues, and organs for xenotransplantation. Anim. Front. 9, 13–20 (2019) PubMed DOI PMC
Dorado, B., Pløen, G.G., Barettino, A., Macías, A., Gonzalo, P., Andrés-Manzano, M.J., González-Gómez, C., Galán-Arriola, C., Alfonso, J.M., Lobo, M., López-Martín, G.J., Molina, A., et al.: Generation and characterization of a novel knockin minipig model of Hutchinson-Gilford progeria syndrome. Cell Discov. 5, 16 (2019) PubMed DOI PMC
Navarro-Serna, S., Dehesa-Etxebeste, M., Piñeiro-Silva, C., Romar, R., Lopes, J.S., López de Munaín, A., Gadea, J.: Generation of Calpain-3 knock-out porcine embryos by CRISPR-Cas9 electroporation and intracytoplasmic microinjection of oocytes before insemination. Theriogenology. 186, 175–184 (2022) PubMed DOI
Navarro-Serna, S., Hachem, A., Canha-Gouveia, A., Hanbashi, A., Garrappa, G., Lopes, J.S., París-Oller, E., Sarrías-Gil, L., Flores-Flores, C., Bassett, A., Sánchez, R., Bermejo-Álvarez, P., et al.: Generation of nonmosaic, two-pore channel 2 Biallelic knockout pigs in one generation by CRISPR-Cas9 microinjection before oocyte insemination. CRISPR J. 4, 132–146 (2021) PubMed DOI
Oseguera-López, I., Pérez-Cerezales, S., Ortiz-Sánchez, P.B., Mondragon-Payne, O., Sánchez-Sánchez, R., Jiménez-Morales, I., Fierro, R., González-Márquez, H.: Perfluorooctane sulfonate (PFOS) and Perfluorohexane sulfonate (PFHxS) alters protein phosphorylation, increase ROS levels and DNA fragmentation during in vitro capacitation of boar spermatozoa. Animals (Basel). 10 (2020)
Pang, J., Yang, H., Feng, X., Wang, Q., Cai, Y., Liu, Z., Wang, C., Wang, F., Zhang, Y.: HT-2 toxin affects cell viability of goat spermatogonial stem cells through AMPK-ULK1 autophagy pathways. Theriogenology. 164, 22–30 (2021) PubMed DOI
Chand, N., Tyagi, S., Prasad, R., Dutta, D., Sirohi, A.S., Sharma, A., Tyagi, R.: Effect of heavy metals on oxidative markers and semen quality parameters in HF crossbred bulls. Indian J. Anim. Sci. 89, 632–636 (2019) DOI
Llamas-Luceño, N., Hostens, M., Mullaart, E., Broekhuijse, M., Lonergan, P., Van Soom, A.: High temperature-humidity index compromises sperm quality and fertility of Holstein bulls in temperate climates. J. Dairy Sci. 103, 9502–9514 (2020) PubMed DOI
Pereira, G.R., de Lazari, F.L., Dalberto, P.F., Bizarro, C.V., Sontag, E.R., Koetz Junior, C., Menegassi, S.R.O., Barcellos, J.O.J., Bustamante-Filho, I.C.: Effect of scrotal insulation on sperm quality and seminal plasma proteome of Brangus bulls. Theriogenology. 144, 194–203 (2020) PubMed DOI
Peña Jr., S.T., Stone, F., Gummow, B., Parker, A.J., Paris, D.: Susceptibility of boar spermatozoa to heat stress using in vivo and in vitro experimental models. Trop. Anim. Health Prod. 53, 97 (2021) PubMed DOI
Harrison, T.D., Chaney, E.M., Brandt, K.J., Ault-Seay, T.B., Schneider, L.G., Strickland, L.G., Schrick, F.N., McLean, K.J.: The effects of differing nutritional levels and body condition score on scrotal circumference, motility, and morphology of bovine sperm. Transl. Anim. Sci. 6, txac001 (2022) PubMed DOI PMC
Kennedy, C., Ahlering, P., Rodriguez, H., Levy, S., Sutovsky, P.: Sperm chromatin structure correlates with spontaneous abortion and multiple pregnancy rates in assisted reproduction. Reprod. Biomed. Online. 22, 272–276 (2011) PubMed DOI
Ahlering, P., Sutovsky, M., Gliedt, D., Branson, K., Miranda Vizuete, A., Sutovsky, P.: Sperm content of TXNDC8 reflects sperm chromatin structure, pregnancy establishment, and incidence of multiple births after ART. Syst Biol Reprod Med. 66, 311–321 (2020) PubMed DOI
Rubessa, M., Wheeler, M.B.: Label-free microscopy: a non-invasive new tool to assess gametes and embryo quality. Theriogenology. 150, 241–246 (2020) PubMed DOI
Sharara, F., Seaman, E., Morris, R., Schinfeld, J., Nichols, J., Sobel, M., Lee, A., Somkuti, S., Hirshberg, S., Budinetz, T., Barmat, L., Palermo, G., et al.: Multicentric, prospective observational data show sperm capacitation predicts male fertility, and cohort comparison reveals a high prevalence of impaired capacitation in men questioning their fertility. Reprod. Biomed. Online. 41, 69–79 (2020) PubMed DOI
Blommaert, D., Sergeant, N., Delehedde, M., Jouy, N., Mitchell, V., Franck, T., Donnay, I., Lejeune, J.P., Serteyn, D.: Expression, localization, and concentration of A-kinase anchor protein 4 (AKAP4) and its precursor (proAKAP4) in equine semen: promising marker correlated to the total and progressive motility in thawed spermatozoa. Theriogenology. 131, 52–60 (2019) PubMed DOI
Kerns, K., Zigo, M., Sutovsky, P.: Zinc: a necessary ion for mammalian sperm fertilization competency. Int. J. Mol. Sci., 19 (2018)
Lawlor, M., Zigo, M., Kerns, K., Cho, I.K., Easley Iv, C.A., Sutovsky, P.: Spermatozoan metabolism as a non-traditional model for the study of Huntington's disease. Int. J. Mol. Sci. 23 (2022)
Buckman, C., George, T.C., Friend, S., Sutovsky, M., Miranda-Vizuete, A., Ozanon, C., Morrissey, P., Sutovsky, P.: High throughput, parallel imaging and biomarker quantification of human spermatozoa by ImageStream flow cytometry. Syst. Biol. Reprod. Med. 55, 244–251 (2009) PubMed DOI
Teixeira, D.M., Hadyme Miyague, A., Barbosa, M.A., Navarro, P.A., Raine-Fenning, N., Nastri, C.O., Martins, W.P.: Regular (ICSI) versus ultra-high magnification (IMSI) sperm selection for assisted reproduction. Cochrane Database Syst. Rev. 2, CD010167 (2020) PubMed
Costa-Borges, N., Munne, S., Albo, E., Mas, S., Castello, C., Giralt, G., Lu, Z., Chau, C., Acacio, M., Mestres, E., Matia, Q., Marques, L., et al.: First babies conceived with automated intracytoplasmic sperm injection. Reprod. Biomed. Online. 47, 103237 (2023) PubMed DOI
Miles, E.L., O'Gorman, C., Zhao, J., Samuel, M., Walters, E., Yi, Y.J., Sutovsky, M., Prather, R.S., Wells, K.D., Sutovsky, P.: Transgenic pig carrying green fluorescent proteasomes. Proc. Natl. Acad. Sci. USA. 110, 6334–6339 (2013) PubMed DOI PMC
Zigo, M., Manaskova-Postlerova, P., Jonakova, V., Kerns, K., Sutovsky, P.: Compartmentalization of the proteasome-interacting proteins during sperm capacitation. Sci. Rep. 9, 12583 (2019) PubMed DOI PMC
Yi, Y.J., Zimmerman, S.W., Manandhar, G., Odhiambo, J.F., Kennedy, C., Jonakova, V., Manaskova-Postlerova, P., Sutovsky, M., Park, C.S., Sutovsky, P.: Ubiquitin-activating enzyme (UBA1) is required for sperm capacitation, acrosomal exocytosis and sperm-egg coat penetration during porcine fertilization. Int. J. Androl. 35, 196–210 (2012) PubMed DOI
Yi, Y.J., Manandhar, G., Sutovsky, M., Jonakova, V., Park, C.S., Sutovsky, P.: Inhibition of 19S proteasomal regulatory complex subunit PSMD8 increases polyspermy during porcine fertilization in vitro. J. Reprod. Immunol. 84, 154–163 (2010) PubMed DOI
Yi, Y.J., Manandhar, G., Sutovsky, M., Li, R., Jonakova, V., Oko, R., Park, C.S., Prather, R.S., Sutovsky, P.: Ubiquitin C-terminal hydrolase-activity is involved in sperm acrosomal function and anti-polyspermy defense during porcine fertilization. Biol. Reprod. 77, 780–793 (2007) PubMed DOI
Thompson, W.E., Ramalho-Santos, J., Sutovsky, P.: Ubiquitination of prohibitin in mammalian sperm mitochondria: possible roles in the regulation of mitochondrial inheritance and sperm quality control. Biol. Reprod. 69, 254–260 (2003) PubMed DOI
Antelman, J., Manandhar, G., Yi, Y.J., Li, R., Whitworth, K.M., Sutovsky, M., Agca, C., Prather, R.S., Sutovsky, P.: Expression of mitochondrial transcription factor A (TFAM) during porcine gametogenesis and preimplantation embryo development. J. Cell. Physiol. 217, 529–543 (2008) PubMed DOI
Hillman, P., Ickowicz, D., Vizel, R., Breitbart, H.: Dissociation between AKAP3 and PKARII promotes AKAP3 degradation in sperm capacitation. PLoS One. 8, e68873 (2013) PubMed DOI PMC
Qu, X., Han, Y., Chen, X., Lv, Y., Zhang, Y., Cao, L., Zhang, J., Jin, Y.: Inhibition of 26S proteasome enhances AKAP3-mediated cAMP-PKA signaling during boar sperm capacitation. Anim. Reprod. Sci. 247, 107079 (2022) PubMed DOI
Zapata-Carmona, H., Barón, L., Kong, M., Morales, P.: Protein kinase a (PRKA) activity is regulated by the proteasome at the onset of human sperm capacitation. Cells. 10 (2021)