Zinc ion flux during mammalian sperm capacitation
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 HD084353
NICHD NIH HHS - United States
PubMed
29802294
PubMed Central
PMC5970269
DOI
10.1038/s41467-018-04523-y
PII: 10.1038/s41467-018-04523-y
Knihovny.cz E-zdroje
- MeSH
- analýza spermatu MeSH
- chelátory farmakologie MeSH
- chloridy farmakologie MeSH
- kapacitace spermií účinky léků fyziologie MeSH
- kationty dvojmocné metabolismus MeSH
- prasata MeSH
- průtoková cytometrie metody MeSH
- sloučeniny zinku farmakologie MeSH
- spermie metabolismus MeSH
- zinek metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- chelátory MeSH
- chloridy MeSH
- kationty dvojmocné MeSH
- sloučeniny zinku MeSH
- zinc chloride MeSH Prohlížeč
- zinek MeSH
Sperm capacitation, the ultimate maturation event preparing mammalian spermatozoa for fertilization, was first described in 1951, yet its regulatory mechanisms remain poorly understood. The capacitation process encompasses an influx of bicarbonate and calcium ions, removal of decapacitating factors, changes of pH and sperm proteasomal activities, and the increased protein tyrosine phosphorylation. Here, we document a novel biological phenomenon of a unique zinc (Zn2+) ion redistribution associated with mammalian sperm in vitro capacitation (IVC). Using image-based flow cytometry (IBFC), we identified four distinct types of sperm zinc ion distribution patterns (further zinc signature) and their changes during IVC. The zinc signature was altered after sperm capacitation, reduced by proteasomal inhibitors, removed by zinc chelators, and maintained with addition of external ZnCl2. These findings represent a fundamental shift in the understanding of mammalian fertilization, paving the way for improved semen analysis, in vitro fertilization (IVF), and artificial insemination (AI).
Zobrazit více v PubMed
Que EL, et al. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks. Nat. Chem. 2015;7:130–139. doi: 10.1038/nchem.2133. PubMed DOI PMC
Zhang N, Duncan FE, Que EL, O’Halloran TV, Woodruff TK. The fertilization-induced zinc spark is a novel biomarker of mouse embryo quality and early development. Sci. Rep. 2016;6:22772. doi: 10.1038/srep22772. PubMed DOI PMC
Lishko PV, Botchkina IL, Fedorenko A, Kirichok Y. Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel. Cell. 2010;140:327–337. doi: 10.1016/j.cell.2009.12.053. PubMed DOI
Tardif S, Dube C, Bailey JL. Porcine sperm capacitation and tyrosine kinase activity are dependent on bicarbonate and calcium but protein tyrosine phosphorylation is only associated with calcium. Biol. Reprod. 2003;68:207–213. doi: 10.1095/biolreprod.102.005082. PubMed DOI
Boerke A, Tsai PS, Garcia-Gil N, Brewis IA, Gadella BM. Capacitation-dependent reorganization of microdomains in the apical sperm head plasma membrane: functional relationship with zona binding and the zona-induced acrosome reaction. Theriogenology. 2008;70:1188–1196. doi: 10.1016/j.theriogenology.2008.06.021. PubMed DOI
Sutovsky P. Sperm proteasome and fertilization. Reproduction. 2011;142:1–14. doi: 10.1530/REP-11-0041. PubMed DOI
Kerns K, Morales P, Sutovsky P. Regulation of sperm capacitation by the 26S proteasome: an emerging new paradigm in spermatology. Biol. Reprod. 2016;94:117. doi: 10.1095/biolreprod.115.136622. PubMed DOI
Hillman P, Ickowicz D, Vizel R, Breitbart H. Dissociation between AKAP3 and PKARII promotes AKAP3 degradation in sperm capacitation. PLoS ONE. 2013;8:e68873. doi: 10.1371/journal.pone.0068873. PubMed DOI PMC
Yi YJ, et al. Ubiquitin-activating enzyme (UBA1) is required for sperm capacitation, acrosomal exocytosis and sperm-egg coat penetration during porcine fertilization. Int. J. Androl. 2012;35:196–210. doi: 10.1111/j.1365-2605.2011.01217.x. PubMed DOI
Jaiswal, B. S. & Eisenbach, M. in Fertilization (ed Daniel M. Hardy) Ch. 3, 57–117 (Academic Press, San Diego, 2002).
Zimmerman SW, et al. Sperm proteasomes degrade sperm receptor on the egg zona pellucida during mammalian fertilization. PLoS ONE. 2011;6:e17256. doi: 10.1371/journal.pone.0017256. PubMed DOI PMC
Yi YJ, et al. Sperm-surface ATP in boar spermatozoa is required for fertilization: relevance to sperm proteasomal function. Syst. Biol. Reprod. Med. 2009;55:85–96. doi: 10.1080/19396360802699074. PubMed DOI
Miles EL, et al. Transgenic pig carrying green fluorescent proteasomes. Proc. Natl Acad. Sci. USA. 2013;110:6334–6339. doi: 10.1073/pnas.1220910110. PubMed DOI PMC
Stoltenberg M, Sørensen M, Danscher G. Histochemical demonstration of zinc ions in ejaculated human semen. Int. J. Androl. 1997;20:229–236. doi: 10.1046/j.1365-2605.1997.00060.x. PubMed DOI
Zimmerman SW, et al. Identification and characterization of RING-finger ubiquitin ligase UBR7 in mammalian spermatozoa. Cell Tissue Res. 2014;356:261–278. doi: 10.1007/s00441-014-1808-x. PubMed DOI
Bianchi F, Rousseaux-Prevost R, Sautiere P, Rousseaux J. P2 protamines from human sperm are zinc -finger proteins with one CYS2/HIS2 motif. Biochem. Biophys. Res. Commun. 1992;182:540–547. doi: 10.1016/0006-291X(92)91766-J. PubMed DOI
Nanassy L, Liu L, Griffin J, Carrell DT. The clinical utility of the protamine 1/protamine 2 ratio in sperm. Protein Pept. Lett. 2011;18:772–777. doi: 10.2174/092986611795713934. PubMed DOI
Ambroggio XI, Rees DC, Deshaies RJ. JAMM: a metalloprotease-like zinc site in the proteasome and signalosome. PLoS Biol. 2003;2:e2. doi: 10.1371/journal.pbio.0020002. PubMed DOI PMC
Nagase H, Woessner JF., Jr. Matrix metalloproteinases. J. Biol. Chem. 1999;274:21491–21494. doi: 10.1074/jbc.274.31.21491. PubMed DOI
Shimokawa Ki K, et al. Matrix metalloproteinase (MMP)-2 and MMP-9 activities in human seminal plasma. Mol. Hum. Reprod. 2002;8:32–36. doi: 10.1093/molehr/8.1.32. PubMed DOI
Beek J, Nauwynck H, Maes D, Van Soom A. Inhibitors of zinc-dependent metalloproteases hinder sperm passage through the cumulus oophorus during porcine fertilization in vitro. Reproduction. 2012;144:687–697. doi: 10.1530/REP-12-0311. PubMed DOI
Bjorndahl L, Kvist U. Human sperm chromatin stabilization: a proposed model including zinc bridges. Mol. Hum. Reprod. 2010;16:23–29. doi: 10.1093/molehr/gap099. PubMed DOI
Kvist U. Importance of spermatozoal zinc as temporary inhibitor of sperm nuclear chromatin decondensation ability in man. Acta Physiol. Scand. 1980;109:79–84. doi: 10.1111/j.1748-1716.1980.tb06567.x. PubMed DOI
Holt WV, North RD. Thermotropic phase transitions in the plasma membrane of ram spermatozoa. J. Reprod. Fertil. 1986;78:447–457. doi: 10.1530/jrf.0.0780447. PubMed DOI
Qi H, et al. All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility. Proc. Natl Acad. Sci. USA. 2007;104:1219–1223. doi: 10.1073/pnas.0610286104. PubMed DOI PMC
Buffone MG, Calamera JC, Verstraeten SV, Doncel GF. Capacitation-associated protein tyrosine phosphorylation and membrane fluidity changes are impaired in the spermatozoa of asthenozoospermic patients. Reproduction. 2005;129:697–705. doi: 10.1530/rep.1.00584. PubMed DOI
Suarez SS. Regulation of sperm storage and movement in the mammalian oviduct. Int. J. Dev. Biol. 2008;52:455–462. doi: 10.1387/ijdb.072527ss. PubMed DOI
Leemans B, et al. An alkaline follicular fluid fraction induces capacitation and limited release of oviduct epithelium-bound stallion sperm. Reproduction. 2015;150:193–208. doi: 10.1530/REP-15-0178. PubMed DOI
Giojalas LC, Rovasio RA, Fabro G, Gakamsky A, Eisenbach M. Timing of sperm capacitation appears to be programmed according to egg availability in the female genital tract. Fertil. Steril. 2004;82:247–249. doi: 10.1016/j.fertnstert.2003.11.046. PubMed DOI
Andreychenko SV, et al. Post-chornobyl remote radiation effects on human sperm and seminal plasma characteristics. Exp. Oncol. 2016;38:245–251. PubMed
Nenkova, G., Petrov, L. & Alexandrova, A. Role of trace elements for oxidative status and quality of human sperm. Balkan Med. J. 34, 343–348 (2017). PubMed PMC
Colagar AH, Marzony ET, Chaichi MJ. Zinc levels in seminal plasma are associated with sperm quality in fertile and infertile men. Nutr. Res. 2009;29:82–88. doi: 10.1016/j.nutres.2008.11.007. PubMed DOI
Zhao, J. et al. Zinc levels in seminal plasma and their correlation with male infertility: a systematic review and meta-analysis. Sci. Rep. 6, 22386 (2016). PubMed PMC
Harrison RA, Dott HM, Foster GC. Effect of ionic strength, serum albumin and other macromolecules on the maintenance of motility and the surface of mammalian spermatozoa in a simple medium. J. Reprod. Fertil. 1978;52:65–73. doi: 10.1530/jrf.0.0520065. PubMed DOI
Beyersmann D, Haase H. Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals. 2001;14:331–341. doi: 10.1023/A:1012905406548. PubMed DOI
Kim I, et al. Pyrrolidine dithiocarbamate and zinc inhibit proteasome-dependent proteolysis. Exp. Cell Res. 2004;298:229–238. doi: 10.1016/j.yexcr.2004.04.017. PubMed DOI
Massanyi P, et al. Concentration of copper, iron, zinc, cadmium, lead, and nickel in boar semen and relation to the spermatozoa quality. J. Environ. Sci. Health A Tox Hazard. Subst. Environ. Eng. 2003;38:2643–2651. doi: 10.1081/ESE-120024453. PubMed DOI
Mogielnicka-Brzozowska M, Wysocki P, Strzezek J, Kordan W. Zinc-binding proteins from boar seminal plasma -- isolation, biochemical characteristics and influence on spermatozoa stored at 4 °C. Acta Biochim. Pol. 2011;58:171–177. PubMed
Henkel R, Bittner J, Weber R, Hüther F, Miska W. Relevance of zinc in human sperm flagella and its relation to motility. Fertil. Steril. 1999;71:1138–1143. doi: 10.1016/S0015-0282(99)00141-7. PubMed DOI
Sørensen MB, Stoltenberg M, Danscher G, Ernst E. Chelation of intracellular zinc ions affects human sperm cell motility. Mol. Hum. Reprod. 1999;5:338–341. doi: 10.1093/molehr/5.4.338. PubMed DOI
Que EL, et al. Zinc sparks induce physiochemical changes in the egg zona pellucida that prevent polyspermy. Integr. Biol. 2017;9:135–144. doi: 10.1039/C6IB00212A. PubMed DOI PMC
Guidobaldi HA, et al. Sperm chemorepulsion, a supplementary mechanism to regulate fertilization. Hum. Reprod. 2017;32:1560–1573. doi: 10.1093/humrep/dex232. PubMed DOI
Ferrer M, et al. MMP2 and acrosin are major proteinases associated with the inner acrosomal membrane and may cooperate in sperm penetration of the zona pellucida during fertilization. Cell Tissue Res. 2012;349:881–895. doi: 10.1007/s00441-012-1429-1. PubMed DOI PMC
Steven FS, Griffin MM, Chantler EN. Inhibition of human and bovine sperm acrosin by divalent metal ions. Possible role of zinc as a regulator of acrosin activity. Int. J. Androl. 1982;5:401–412. doi: 10.1111/j.1365-2605.1982.tb00270.x. PubMed DOI
Ciereszko A, Dabrowski K, Mims SD, Glogowski J. Characteristics of sperm acrosin-like activity of paddlefish (Polyodon spathula Walbaum) Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2000;125:197–203. doi: 10.1016/S0305-0491(99)00167-4. PubMed DOI
Backstrom JR, Miller CA, Tokes ZA. Characterization of neutral proteinases from Alzheimer-affected and control brain specimens: identification of calcium-dependent metalloproteinases from the hippocampus. J. Neurochem. 1992;58:983–992. doi: 10.1111/j.1471-4159.1992.tb09352.x. PubMed DOI
Stephenson JL, Brackett BG. Influences of zinc on fertilisation and development of bovine oocytes in vitro. Zygote. 1999;7:195–201. doi: 10.1017/S096719949900057X. PubMed DOI
Noguchi S, Nakano M. Structure of the acidic N-linked carbohydrate chains of the 55-kDa glycoprotein family (PZP3) from porcine zona pellucida. Eur. J. Biochem. 1992;209:883–894. doi: 10.1111/j.1432-1033.1992.tb17361.x. PubMed DOI
Yurewicz EC, Pack BA, Sacco AG. Isolation, composition, and biological activity of sugar chains of porcine oocyte zona pellucida 55K glycoproteins. Mol. Reprod. Dev. 1991;30:126–134. doi: 10.1002/mrd.1080300209. PubMed DOI
Noguchi S, Hatanaka Y, Tobita T, Nakano M. Structural analysis of the N-linked carbohydrate chains of the 55-kDa glycoprotein family (PZP3) from porcine zona pellucida. Eur. J. Biochem. 1992;204:1089–1100. doi: 10.1111/j.1432-1033.1992.tb16733.x. PubMed DOI
Amari S, et al. Essential role of the nonreducing terminal alpha-mannosyl residues of the N-linked carbohydrate chain of bovine zona pellucida glycoproteins in sperm-egg binding. Mol. Reprod. Dev. 2001;59:221–226. doi: 10.1002/mrd.1026. PubMed DOI
Flesch FM, Colenbrander B, van Golde LMG, Gadella BM. Capacitation induces tyrosine phosphorylation of proteins in the boar sperm plasma membrane. Biochem. Biophys. Res. Commun. 1999;262:787–792. doi: 10.1006/bbrc.1999.1300. PubMed DOI
Tardif S, Dube C, Chevalier S, Bailey JL. Capacitation is associated with tyrosine phosphorylation and tyrosine kinase-like activity of pig sperm proteins. Biol. Reprod. 2001;65:784–792. doi: 10.1095/biolreprod65.3.784. PubMed DOI
Dube C, Tardif S, LeClerc P, Bailey JL. The importance of calcium in the appearance of p32, a boar sperm tyrosine phosphoprotein, during in vitro capacitation. J. Androl. 2003;24:727–733. doi: 10.1002/j.1939-4640.2003.tb02734.x. PubMed DOI
Kennedy CE, et al. Protein expression pattern of PAWP in bull spermatozoa is associated with sperm quality and fertility following artificial insemination. Mol. Reprod. Dev. 2014;81:436–449. doi: 10.1002/mrd.22309. PubMed DOI
Perfect date-the review of current research into molecular bases of mammalian fertilization
Fluorescent analysis of boar sperm capacitation process in vitro
Compartmentalization of the proteasome-interacting proteins during sperm capacitation