Time to revise: impact of methodology on boar sperm capacitation in vitro via phosphotyrosine patterns
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
LUAUS25072
Ministry of Education, Youth and Sports of the Czech Republic
LUAUS25072
Ministry of Education, Youth and Sports of the Czech Republic
LUAUS25072
Ministry of Education, Youth and Sports of the Czech Republic
LUAUS25072
Ministry of Education, Youth and Sports of the Czech Republic
LUAUS25072
Ministry of Education, Youth and Sports of the Czech Republic
LUAUS25072
Ministry of Education, Youth and Sports of the Czech Republic
LUAUS25072
Ministry of Education, Youth and Sports of the Czech Republic
GA22-31156S
Grantová Agentura České Republiky
GA22-31156S
Grantová Agentura České Republiky
GA22-31156S
Grantová Agentura České Republiky
GA22-31156S
Grantová Agentura České Republiky
GA22-31156S
Grantová Agentura České Republiky
GA22-31156S
Grantová Agentura České Republiky
SV24-21-21230
Fakulta Agrobiologie, Potravinových a Přírodních Zdrojů, Česká Zemědělská Univerzita v Praze
SV24-21-21230
Fakulta Agrobiologie, Potravinových a Přírodních Zdrojů, Česká Zemědělská Univerzita v Praze
SV24-21-21230
Fakulta Agrobiologie, Potravinových a Přírodních Zdrojů, Česká Zemědělská Univerzita v Praze
SV24-21-21230
Fakulta Agrobiologie, Potravinových a Přírodních Zdrojů, Česká Zemědělská Univerzita v Praze
SV24-21-21230
Fakulta Agrobiologie, Potravinových a Přírodních Zdrojů, Česká Zemědělská Univerzita v Praze
SV24-21-21230
Fakulta Agrobiologie, Potravinových a Přírodních Zdrojů, Česká Zemědělská Univerzita v Praze
SV24-21-21230
Fakulta Agrobiologie, Potravinových a Přírodních Zdrojů, Česká Zemědělská Univerzita v Praze
RVO: 86652036
Czech Academy of Sciences, Institute of Biotechnology
RVO: 86652036
Czech Academy of Sciences, Institute of Biotechnology
RVO: 86652036
Czech Academy of Sciences, Institute of Biotechnology
PubMed
40624494
PubMed Central
PMC12232637
DOI
10.1186/s12917-025-04900-y
PII: 10.1186/s12917-025-04900-y
Knihovny.cz E-zdroje
- Klíčová slova
- Capacitation media, Immunofluorescence, Protein phosphorylation, Reproduction, Signaling pathway, Sperm fixation,
- MeSH
- analýza spermatu veterinární MeSH
- fosforylace MeSH
- fosfotyrosin * metabolismus MeSH
- kapacitace spermií * fyziologie MeSH
- prasata fyziologie MeSH
- spermie * fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- fosfotyrosin * MeSH
Capacitation is a crucial sperm maturation process occurring in vivo in the female reproductive tract, enabling spermatozoa to fertilize the oocyte. In vitro, capacitation can be induced using defined capacitation media (CM), with further assessment of protein tyrosine phosphorylation (PTyr) patterns widely used as a marker to evaluate sperm capacitation. This review critically examines the factors influencing PTyr detection in boar spermatozoa variability introduced by different methodological approaches. Discrepancies in PTyr patterns may be a result of different sperm handling, including preservation methods, selection techniques, and capacitation protocols. Semen extenders, which may contain unknown components, can affect the variability in capacitation status. Selection techniques commonly employed to isolate viable spermatozoa may initiate different capacitation regulatory pathways, resulting in variability in analyzed sperm subpopulations and inconsistencies in PTyr detection. Similarly, the lack of standardization in CM composition significantly impacts capacitation outcomes. Fixation protocols further increase variability in PTyr pattern detection, as aldehydic fixatives potentially alter protein structures, while alcohol-based fixatives cause protein aggregation and plasma membrane disruption. While PTyr immunofluorescence remains a valuable tool for capacitation assessment, its reliability is limited by methodological variability. Mimicking in vivo conditions is crucial, and even minor modifications in the sperm capacitation process may provide inconsistent results in PTyr patterns across studies. This review offers valuable insights into often-disregarded methodological details and highlights the need for improved for better standardization of capacitation protocols. The uniform methodological approach improves reproducibility and reliability in capacitation studies and stimulates further investigation leading to the discovery of alternative additional markers to determine the capacitation status in mammalian spermatozoa.
Zobrazit více v PubMed
Baldi E. Intracellular events and signaling pathways involved in sperm acquisition of fertilizing capacity and acrosome reaction. Front Biosci. 2000. 10.2741/baldi. PubMed
López-Úbeda R, García-Vázquez FA, Gadea J, Matás C. Oviductal epithelial cells selected Boar sperm according to their functional characteristics. Asian J Androl. 2017. 10.4103/1008-682X.173936. PubMed PMC
Tardif S, Dubé C, Chevalier S, Bailey JL. Capacitation is associated with tyrosine phosphorylation and tyrosine Kinase-Like activity of pig sperm proteins. Biol Reprod. 2001. 10.1095/biolreprod65.3.784. PubMed
Yanagimachi R. Mysteries and unsolved problems of mammalian fertilization and related topics. Biol Reprod. 2022. 10.1093/biolre/ioac037. PubMed PMC
Yanagimachi R. Fertility of mammalian spermatozoa: its development and relativity. Zygote. 1994. 10.1017/S0967199400002240. PubMed
Ded L, Dostalova P, Zatecka E, Dorosh A, Komrskova K, Peknicova J. Fluorescent analysis of Boar sperm capacitation process in vitro. Reprod Biol Endocrinol. 2019. 10.1186/s12958-019-0554-z. PubMed PMC
Soriano-Úbeda C, Romero-Aguirregomezcorta J, Matás C, Visconti PE, García-Vázquez FA. Manipulation of bicarbonate concentration in sperm capacitation media improves in vitro fertilisation output in Porcine species. J Anim Sci Biotechnol. 2019. 10.1186/s40104-019-0324-y. PubMed PMC
Luño V, López-Úbeda R, García-Vázquez FA, Gil L, Matás C. Boar sperm tyrosine phosphorylation patterns in the presence of oviductal epithelial cells: in vitro, ex vivo, and in vivo models. Reproduction. 2013. 10.1530/REP-13-0159. PubMed
Piehler E, Petrunkina AM, Ekhlasi-Hundrieser M, Töpfer‐Petersen E. Dynamic quantification of the tyrosine phosphorylation of the sperm surface proteins during capacitation. Cytometry A. 2006. 10.1002/cyto.a.20338. PubMed
Jones R, James PS, Oxley D, Coadwell J, Suzuki-Toyota F, Howes EA. The Equatorial subsegment in mammalian spermatozoa is enriched in tyrosine phosphorylated Proteins1. Biol Reprod. 2008. 10.1095/biolreprod.107.067314. PubMed
Jones R, James PS, Howes L, Bruckbauer A, Klenerman D. Supramolecular organization of the sperm plasma membrane during maturation and capacitation. Asian J Androl. 2007. 10.1111/j.1745-7262.2007.00282.x. PubMed
Xu Y, Han Q, Ma C, Wang Y, Zhang P, Li C, et al. Comparative proteomics and phosphoproteomics analysis reveal the possible breed difference in Yorkshire and duroc Boar spermatozoa. Front Cell Dev Biol. 2021. 10.3389/fcell.2021.652809. PubMed PMC
Arcelay E, Salicioni AM, Wertheimer E, Visconti PE. Identification of proteins undergoing tyrosine phosphorylation during mouse sperm capacitation. Int J Dev Biol. 2008. 10.1387/ijdb.072555ea. PubMed
Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P, Kopf GS. Capacitation of mouse spermatozoa: I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development. 1995. 10.1242/dev.121.4.1129. PubMed
Leemans B, Stout TAE, De Schauwer C, Heras S, Nelis H, Hoogewijs M, et al. Update on mammalian sperm capacitation: how much does the horse differ from other species? Reproduction. 2019. 10.1530/REP-18-0541. PubMed
McPartlin LA, Littell J, Mark E, Nelson JL, Travis AJ, Bedford-Guaus SJ. A defined medium supports changes consistent with capacitation in stallion sperm, as evidenced by increases in protein tyrosine phosphorylation and high rates of acrosomal exocytosis. Theriogenology. 2008. 10.1016/j.theriogenology.2007.11.016. PubMed
Pommer AC, Rutllant J, Meyers SA. Phosphorylation of protein tyrosine residues in fresh and cryopreserved stallion spermatozoa under capacitating Conditions1. Biol Reprod. 2003. 10.1095/biolreprod.102.011106. PubMed
Romar R, Cánovas S, Matás C, Gadea J, Coy P. Pig in vitro fertilization: where are we and where do we go? Theriogenology. 2019. 10.1016/j.theriogenology.2019.05.045. PubMed
Zigo M, Maňásková-Postlerová P, Zuidema D, Kerns K, Jonáková V, Tůmová L, et al. Porcine model for the study of sperm capacitation, fertilization and male fertility. Cell Tissue Res. 2020. 10.1007/s00441-020-03181-1. PubMed
Romero-Aguirregomezcorta J, Matás C, Coy P. Α-L-fucosidase enhances capacitation-associated events in Porcine spermatozoa. Vet J. 2015. 10.1016/j.tvjl.2014.11.006. PubMed
Oseguera-López I, Pérez-Cerezales S, Ortiz-Sánchez PB, Mondragon-Payne O, Sánchez-Sánchez R, Jiménez-Morales I, et al. Perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) alters protein phosphorylation, increase ROS levels and DNA fragmentation during in vitro capacitation of Boar spermatozoa. Animals. 2020. 10.3390/ani10101934. PubMed PMC
Ramírez AR, Castro MA, Angulo C, Ramió L, Rivera MM, Torres M, et al. The presence and function of dopamine type 2 receptors in Boar sperm: A possible role for dopamine in viability, capacitation, and modulation of sperm motility. Biol Reprod. 2009. 10.1095/biolreprod.108.070961. PubMed
Matás C, Vieira L, García-Vázquez FA, Avilés-López K, López-Úbeda R, Carvajal JA, et al. Effects of centrifugation through three different discontinuous Percoll gradients on Boar sperm function. Anim Reprod Sci. 2011. 10.1016/j.anireprosci.2011.06.009. PubMed
De Maistre E, Béné MC, Foliguet B, Touati F, Faure GC. Centrifugation on Percoll gradient enhances fluorescent lectin binding on human sperm: A flow cytometric analysis. Arch Androl. 2009. 10.3109/01485019608988520. PubMed
Tardif S, Dubé C, Bailey JL. Porcine sperm capacitation and tyrosine kinase activity are dependent on bicarbonate and calcium but protein tyrosine phosphorylation is only associated with calcium. Biol Reprod. 2003. 10.1095/biolreprod.102.005082. PubMed
Tardif S, Lefièvre L, Gagnon C, Bailey JL. Implication of cAMP during Porcine sperm capacitation and protein tyrosine phosphorylation. Mol Reprod Dev. 2004. 10.1002/mrd.20178. PubMed
Dubé C, Tardif S, Leclerc P, Bailey JL. The importance of calcium in the appearance of p32, a Boar sperm tyrosine phosphoprotein, during in vitro capacitation. J Androl. 2003. 10.1002/j.1939-4640.2003.tb02734.x. PubMed
Awda BJ, Mackenzie-Bell M, Buhr MM. Reactive oxygen species and Boar sperm function. Biol Reprod. 2009. 10.1095/biolreprod.109.076471. PubMed
Flesch FM, Colenbrander B, van Golde LMG, Gadella BM. Capacitation induces tyrosine phosphorylation of proteins in the Boar sperm plasma membrane. Biochem Biophys Res Commun. 1999. 10.1006/bbrc.1999.1300. PubMed
Staicu F-D, Lopez-Úbeda R, Romero-Aguirregomezcorta J, Martínez-Soto JC, Matás Parra C. Regulation of Boar sperm functionality by the nitric oxide synthase/nitric oxide system. J Assist Reprod Genet. 2019. 10.1007/s10815-019-01526-6. PubMed PMC
Kalab P, Peknicova J, Geussova G. Regulation of protein tyrosine phosphorylation in Boar sperm through a cAMP-Dependent pathway. Mol Reprod Dev. 1998. 10.1002/(SICI)1098-2795(199811)51:3-304::AID-MRD10-3.0.CO;2-2. PubMed
Xie Y, Xu Z, Wu C, Zhou C, Zhang X, Gu T, et al. Extracellular vesicle-encapsulated miR-21-5p in seminal plasma prevents sperm capacitation via vinculin Inhibition. Theriogenology. 2022. 10.1016/j.theriogenology.2022.09.014. PubMed
Aitken RJ. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol Reprod Dev. 2017. 10.1002/mrd.22871. PubMed
Bustani GS, Baiee FH. Semen extenders: an evaluative overview of preservative mechanisms of semen and semen extenders. Veterinary World. 2021. 10.14202/vetworld.2021.1220-1233. PubMed PMC
Ros-Santaella JL, Pintus E. Plant extracts as alternative additives for sperm preservation. Antioxidants. 2021. 10.3390/antiox10050772. PubMed PMC
Bebas W, Gorda W. Penambahan bovine serum albumin Pada Beltsville thawing solution Dapat Mempertahankan Kualitas semen Babi Yang disimpan Pada 15°C. J Veteriner. 2019. 10.19087/jveteriner.2019.20.3.330.
Prieto-Martínez N, Bussalleu E, Garcia-Bonavila E, Bonet S, Yeste M. Effects of Enterobacter cloacae on Boar sperm quality during liquid storage at 17°C. Anim Reprod Sci. 2014. 10.1016/j.anireprosci.2014.05.008. PubMed
Dziekońska A, Kinder M, Fraser L, Strzeżek J, Kordan W. Metabolic activity of Boar semen stored in different extenders supplemented with ostrich egg yolk lipoproteins. J Vet Res. 2017. 10.1515/jvetres-2017-0016. PubMed PMC
Yeste M. State-of-the-artof Boar sperm preservation in liquid and frozen state. Anim Reprod. 2017. 10.21451/1984-3143-AR895.
Gilmore JA, Du J, Tao J, Peter AT, Critser JK. Osmotic properties of Boar spermatozoa and their relevance to cryopreservation. Reproduction. 1996. 10.1530/jrf.0.1070087. PubMed
Holt WV. Fundamental aspects of sperm cryobiology: the importance of species and individual differences. Theriogenology. 2000. 10.1016/S0093-691X(99)00239-3. PubMed
Watson PF. The causes of reduced fertility with cryopreserved semen. Anim Reprod Sci. 2000. 10.1016/S0378-4320(00)00099-3. PubMed
Gautier C, Aurich C. Fine feathers make fine birds – The mammalian sperm plasma membrane lipid composition and effects on assisted reproduction. Anim Reprod Sci. 2022. 10.1016/j.anireprosci.2021.106884. PubMed
Johnson LA, Weitze KF, Fiser P, Maxwell WMC. Storage of Boar semen. Anim Reprod Sci. 2000. 10.1016/s0378-4320(00)00157-3. PubMed
Silva ECB, Cajueiro JFP, Silva SV, Soares PC, Guerra MMP. Effect of antioxidants Resveratrol and Quercetin on in vitro evaluation of frozen Ram sperm. Theriogenology. 2012. 10.1016/j.theriogenology.2011.11.023. PubMed
Matas C, Coy P, Romar R, Marco M, Gadea J, Ruiz S. Effect of sperm Preparation method on in vitro fertilization in pigs. Reproduction. 2003. 10.1530/rep.0.1250133. PubMed
Fàbrega A, Puigmulé M, Yeste M, Casas I, Bonet S, Pinart E. Impact of epididymal maturation, ejaculation and in vitro capacitation on tyrosine phosphorylation patterns exhibited of Boar (Sus domesticus) spermatozoa. Theriogenology. 2011. 10.1016/j.theriogenology.2011.06.007. PubMed
Murgas LDS, Miliorini AB, de Freitas RTF, Pereira GJM. Cryopreservation of Curimba (Prochilodus lineatus) semen after addition of different diluters, activators and cryoprotectants. Rev Bras Zootec. 2007. 10.1590/S1516-35982007000300002.
Sokunbi OA, Alaba O, Ogunwumiju B, Eboh S, Iruo T. Cytoprotective effects of Garlic on spermatozoa quality and fertilizing ability of extended Porcine semen. Niger J Anim Prod. 2020. 10.51791/njap.v47i5.1344.
Pommer AC, Linfor JJ, Meyers SA. Capacitation and acrosomal exocytosis are enhanced by incubation of stallion spermatozoa in a commercial semen extender. Theriogenology. 2002. 10.1016/S0093-691X(02)00659-3. PubMed
Luongo C, González-Brusi L, Cots-Rodríguez P, Izquierdo-Rico Mª J, Avilés M, García-Vázquez FA. Sperm proteome after interaction with reproductive fluids in porcine: from the ejaculation to the fertilization site. Int J Mol Sci. 2020. 10.3390/ijms21176060. PubMed PMC
Navarro-Serna S, París-Oller E, Simonik O, Romar R, Gadea J. Replacement of albumin by preovulatory oviductal fluid in Swim-Up sperm Preparation method modifies Boar sperm parameters and improves in vitro penetration of oocytes. Animals. 2021. 10.3390/ani11051202. PubMed PMC
Romar R, Funahashi H, Coy P. In vitro fertilization in pigs: new molecules and protocols to consider in the forthcoming years. Theriogenology. 2016. 10.1016/j.theriogenology.2015.07.017. PubMed
Petrunkina AM, Friedrich J, Drommer W, Bicker G, Waberski D, Topfer-Petersen E. Kinetic characterization of the changes in protein tyrosine phosphorylation of membranes, cytosolic Ca2 + concentration and viability in Boar sperm populations selected by binding to oviductal epithelial cells. Reproduction. 2001. 10.1530/rep.0.1220469. PubMed
Naz RK, Rajesh PB. Role of tyrosine phosphorylation in sperm capacitation/acrosome reaction. Reprod Biol Endocrinol. 2004. 10.1186/1477-7827-2-75. PubMed PMC
Gadella BM, Luna C. Cell biology and functional dynamics of the mammalian sperm surface. Theriogenology. 2014. 10.1016/j.theriogenology.2013.09.005. PubMed
Henkel RR, Schill W-B. Sperm Preparation for ART. Reprod Biol Endocrinol. 2003. 10.1186/1477-7827-1-108. PubMed PMC
Grant SA, Long SE, Parkinson TJ. Fertilizability and structural properties of Boar spermatozoa prepared by Percoll gradient centrifugation. Reproduction. 1994. 10.1530/jrf.0.1000477. PubMed
Morrell JM. Update on semen technologies for animal breeding**. Reprod Domest Anim. 2006. 10.1111/j.1439-0531.2006.00621.x. PubMed
Urner F, Sakkas D. Protein phosphorylation in mammalian spermatozoa. Reproduction. 2003. 10.1530/rep.0.1250017. PubMed
Matás C, Sansegundo M, Ruiz S, García-Vázquez FA, Gadea J, Romar R, et al. Sperm treatment affects capacitation parameters and penetration ability of ejaculated and epididymal Boar spermatozoa. Theriogenology. 2010. 10.1016/j.theriogenology.2010.06.002. PubMed
Furimsky A, Vuong N, Xu H, Kumarathasan P, Xu M, Weerachatyanukul W, et al. Percoll Gradient-Centrifuged capacitated mouse sperm have increased fertilizing ability and higher contents of sulfogalactosylglycerolipid and docosahexaenoic Acid-Containing phosphatidylcholine compared to washed capacitated mouse sperm. Biol Reprod. 2005. 10.1095/biolreprod.104.036095. PubMed
Tanphaichitr N, Millette CF, Agulnick A, Fitzgerald LM. Egg-penetration ability and structural properties of human sperm prepared by Percoll‐gradient centrifugation. Gamete Res. 1988. 10.1002/mrd.1120200107. PubMed
Tanphaichitr N, Smith J, Kates M. Levels of sulfogalactosylglycerolipid in capacitated motile and immotile mouse spermatozoa. Biochem Cell Biol. 1990. 10.1139/o90-075. PubMed
Mortimer D. Sperm Preparation techniques and iatrogenic failures of in-vitro fertilization. Hum Reprod. 1991. 10.1093/oxfordjournals.humrep.a137300. PubMed
Park C-H, Lee S-G, Choi D-H, Lee C-K. A modified swim-up method reduces polyspermy during in vitro fertilization of Porcine oocytes. Anim Reprod Sci. 2009. 10.1016/j.anireprosci.2008.12.004. PubMed
Magdanz V, Boryshpolets S, Ridzewski C, Eckel B, Reinhardt K, Kues WA. The motility-based swim-up technique separates bull sperm based on differences in metabolic rates and tail length. PLoS ONE. 2019. 10.1371/journal.pone.0223576. PubMed PMC
Boerke A, Tsai PS, Garcia-Gil N, Brewis IA, Gadella BM. Capacitation-dependent reorganization of microdomains in the apical sperm head plasma membrane: functional relationship with Zona binding and the Zona-induced acrosome reaction. Theriogenology. 2008. 10.1016/j.theriogenology.2008.06.021. PubMed
Espinosa F, López-González I, Muñoz-Garay C, Felix R, De La Vega-Beltrán JL, Kopf GS, et al. Dual regulation of the T-type Ca2 + current by serum albumin and β-estradiol in mammalian spermatogenic cells. FEBS Lett. 2000. 10.1016/s0014-5793(00)01688-4. PubMed
Dostalova Z, Calvete JJ, Sanz L, Töpfer-Petersen E. Quantitation of Boar spermadhesins in accessory sex gland fluids and on the surface of epididymal, ejaculated and capacitated spermatozoa. Biochim Biophys Acta. 1994. 10.1016/0304-4165(94)90026-4. PubMed
Grunewald S, Paasch U. Sperm selection for ICSI using Annexin V. Methods Mol Biol. 2013. 10.1007/978-1-62703-038-0_23. PubMed
Deori S, Ntallaris T, Wallgren M, Morrell JM, Johannisson A. Comparison of single layer centrifugation and magnetic activated cell sorting for selecting viable Boar spermatozoa after thawing. Livest Sci. 2022. 10.1016/j.livsci.2022.104853.
Johannisson A, Morrell JM, Wallgren M. Enrichment of thawed Boar spermatozoa with an intact membrane using magnetic activated cell sorting. Anim Reprod Sci. 2024. 10.1016/j.anireprosci.2024.107493. PubMed
Mrkun J, Dolenšek T, Knific T, Pišlar A, Kosec M, Kos J, et al. Elimination of apoptotic Boar spermatozoa using magnetic activated cell sorting. Acta Vet Brno. 2014. 10.2754/avb201483010013.
Morrell JM, Kumaresan A, Johannisson A. Practical implications of sperm selection techniques for improving reproduction. Anim Reprod. 2017. 10.21451/1984-3143-AR1000.
Kang T-Y. Evaluation of extended Boar semen after glass wool filtration. J Vet Clin. 2015. 10.17555/jvc.2014.02.32.1.45.
Bussalleu E, Pinart E, Rivera MM, Briz M, Sancho S, Yeste M, et al. Effects of matrix filtration of Low-Quality Boar semen doses on sperm quality. Reprod Domest Anim. 2009. 10.1111/j.1439-0531.2008.01221.x. PubMed
Satorre MM, Breininger E, Cetica PD, Córdoba M. Relation between respiratory activity and sperm parameters in Boar spermatozoa cryopreserved with alpha-tocopherol and selected by Sephadex. Reprod Domest Anim. 2018. 10.1111/rda.13197. PubMed
Loseth KJ, Wolff L, Hamilton DW, Crabo BG. Trapping of in vitro capacitated boar spermatozoa in Sephadex and glass wool filters. InProc. 12th Int. Congress of Animal Reproduction and AI, The Hague, Netherlands 1992 (Vol. 1, pp. 1575–1577).
Samper JC, Hamilton DW, Pryor JL, Loseth KJ, Troedsson MHT, Crabo BG. Mechanism of Sephadex trapping of capacitated stallion spermatozoa. Biol Reprod. 1995. 10.1093/biolreprod/52.monograph_series1.729.
Schuster TG, Cho B, Keller LM, Takayama S, Smith GD. Isolation of motile spermatozoa from semen samples using microfluidics. Reprod BioMed Online. 2003;7(1):75–81. PubMed
Xie L, Ma R, Han C, Su K, Zhang Q, Qiu T, et al. Integration of sperm motility and chemotaxis screening with a Microchannel-Based device. Clin Chem. 2010. 10.1373/clinchem.2010.146902. PubMed
Huang J, Chen H, Li N, Zhao Y. Emerging microfluidic technologies for sperm sorting. Eng Regen. 2023. 10.1016/j.engreg.2023.02.001.
Sano H, Matsuura K, Naruse K, Funahashi H. Application of a microfluidic sperm sorter to the in-vitro fertilization of Porcine oocytes reduced the incidence of polyspermic penetration. Theriogenology. 2010. 10.1016/j.theriogenology.2010.04.011. PubMed
Flesch FM, Wijnand E, van de Lest CHA, Colenbrander B, van Golde LMG, Gadella BM. Capacitation dependent activation of tyrosine phosphorylation generates two sperm head plasma membrane proteins with high primary binding affinity for the Zona pellucida. Mol Reprod Dev. 2001. 10.1002/mrd.1067. PubMed
Funahashi H, Fujiwara T, Nagai T. Modulation of the function of Boar spermatozoa via adenosine and fertilization promoting peptide receptors reduce the incidence of polyspermic penetration into Porcine oocytes. Biol Reprod. 2000. 10.1095/biolreprod63.4.1157. PubMed
Visconti PE, Krapf D, de la Vega-Beltrán JL, Acevedo JJ, Darszon A. Ion channels, phosphorylation and mammalian sperm capacitation. Asian J Androl. 2011. 10.1038/aja.2010.69. PubMed PMC
Wennemuth G, Carlson AE, Harper AJ, Babcock DF. Bicarbonate actions on flagellar and Ca2+-channel responses: initial events in sperm activation. Development. 2003. 10.1242/dev.00353. PubMed
Martinez CA, Alvarez-Rodriguez M, Wright D, Rodriguez-Martinez H. Does the Pre-Ovulatory pig oviduct rule sperm capacitation in vivo mediating transcriptomics of Catsper channels?? Int J Mol Sci. 2020. 10.3390/ijms21051840. PubMed PMC
Carracedo S, Briand-Amirat L, Dordas-Perpinyà M, Ramos Escuredo Y, Delcombel R, Sergeant N, et al. ProAKAP4 protein marker: towards a functional approach to male fertility. Anim Reprod Sci. 2022. 10.1016/j.anireprosci.2022.107074. PubMed
Vijayaraghavan S, Goueli SA, Davey MP, Carr DW. Protein kinase A-anchoring inhibitor peptides arrest mammalian sperm motility. J Biol Chem. 1997. 10.1074/jbc.272.8.4747. PubMed
Hillman P, Ickowicz D, Vizel R, Breitbart H, Sun Q-Y. Dissociation between AKAP3 and PKARII promotes AKAP3 degradation in sperm capacitation. PLoS ONE. 2013. 10.1371/journal.pone.0068873. PubMed PMC
Luconi M. Role of a-kinase anchoring proteins (AKAPs) in reproduction. Front Biosci. 2011. 10.2741/3791. PubMed
Chaves BR, Pinoti Pavaneli AP, Blanco-Prieto O, Pinart E, Bonet S, Zangeronimo MG et al. Exogenous Albumin Is Crucial for Pig Sperm to Elicit In Vitro Capacitation Whereas Bicarbonate Only Modulates Its Efficiency. Biology. 2021; 10.3390/biology10111105 PubMed PMC
Lacalle E, Consuegra C, Martínez CA, Hidalgo M, Dorado J, Martínez-Pastor F, et al. Bicarbonate-Triggered in vitro capacitation of Boar spermatozoa conveys an increased relative abundance of the canonical transient receptor potential cation (TRPC) channels 3, 4, 6 and 7 and of CatSper-γ subunit mRNA transcripts. Animals. 2022. 10.3390/ani12081012. PubMed PMC
Signorelli J, Diaz ES, Morales P. Kinases, phosphatases and proteases during sperm capacitation. Cell Tissue Res. 2012. 10.1007/s00441-012-1370-3. PubMed
Grahn E, Kaufmann SV, Askarova M, Ninov M, Welp LM, Berger TK, et al. Control of intracellular pH and bicarbonate by CO2 diffusion into human sperm. Nat Commun. 2023. 10.1038/s41467-023-40855-0. PubMed PMC
López-Albors O, Llamas-López PJ, Ortuño JÁ, Latorre R, García-Vázquez FA. In vivo measurement of pH and CO2 levels in the uterus of sows through the estrous cycle and after insemination. Sci Reprod. 2021. 10.1038/s41598-021-82620-7. PubMed PMC
Gadella BM, Harrison RAP. Capacitation induces Cyclic adenosine 3′,5′-Monophosphate-Dependent, but Apoptosis-Unrelated, exposure of aminophospholipids at the apical head plasma membrane of Boar sperm cells. Biol Reprod. 2002. 10.1095/biolreprod67.1.340. PubMed
Lapointe S, Ahmad I, Buhr MM, Sirard MA. Modulation of postthaw motility, survival, calcium uptake, and fertility of bovine sperm by magnesium and manganese. J Dairy Sci. 1996. 10.3168/JDS.S0022-0302(96)76592-X. PubMed
Brown MA, Casillas ER. Manganese and manganese-ATP interactions with bovine sperm adenylate cyclase. Arch Biochem Biophys. 1986. 10.1016/0003-9861(86)90641-7. PubMed
Flesch FM, Brouwers JFHM, Nievelstein PFEM, Verkleij AJ, van Golde LMG, Colenbrander B, et al. Bicarbonate stimulated phospholipid scrambling induces cholesterol redistribution and enables cholesterol depletion in the sperm plasma membrane. J Cell Sci. 2001. 10.1242/jcs.114.19.3543. PubMed
Kawano N, Yoshida K, Miyado K, Yoshida M. Lipid rafts: keys to sperm maturation, fertilization, and early embryogenesis. J Lipids. 2011. 10.1155/2011/264706. PubMed PMC
Shadan S, James PS, Howes EA, Jones R. Cholesterol efflux alters lipid raft stability and distribution during capacitation of Boar spermatozoa. Biol Reprod. 2004. 10.1095/biolreprod.103.026435. PubMed
van Gestel RA, Brewis IA, Ashton PR, Helms JB, Brouwers JF, Gadella BM. Capacitation-dependent concentration of lipid rafts in the apical ridge head area of Porcine sperm cells. Mol Hum Reprod. 2005. 10.1093/molehr/gah200. PubMed
Ramió-Lluch L, Fernández‐Novell JM, Peña A, Colás C, Cebrián‐Pérez JA, Muiño‐Blanco T, et al. In vitro ’ capacitation and acrosome reaction are concomitant with specific changes in mitochondrial activity in Boar sperm: evidence for a nucleated mitochondrial activation and for the existence of a capacitation‐Sensitive subpopulational structure. Reprod Domest Anim. 2011. 10.1111/j.1439-0531.2010.01725.x. PubMed
Brackett BG, Oliphant G. Capacitation of rabbit spermatozoa in vitro. Biol Reprod. 1975. 10.1095/biolreprod12.2.260. PubMed
Vadnais ML, Roberts KP. Effects of seminal plasma on Cooling-Induced capacitative changes in Boar sperm. J Androl. 2007. 10.2164/jandrol.106.001826. PubMed
Christova Y, James PS, Cooper TG, Jones R. Lipid diffusion in the plasma membrane of mouse spermatozoa: changes during epididymal maturation, effects of pH, osmotic pressure, and knockout of the c-ros gene. J Androl. 2002. 10.1002/j.1939-4640.2002.tb02245.x. PubMed
Miller DJ, Hunter AG. Effect of osmolality and glycosaminoglycans on motility, capacitation, acrosome reaction, and in vitro fertilizability of bovine ejaculated sperm. J Dairy Sci. 1986. 10.3168/jds.S0022-0302(86)80747-0. PubMed
del Neri-Vidaurri C, Torres-Flores P, González-Martínez V. A remarkable increase in the pHi sensitivity of voltage-dependent calcium channels occurs in human sperm incubated in capacitating conditions. Biochem Biophys Res Commun. 2006. 10.1016/j.bbrc.2006.02.095. PubMed
Lishko PV, Kirichok Y. The role of Hv1 and CatSper channels in sperm activation. J Physiol. 2010. 10.1113/jphysiol.2010.194142. PubMed PMC
Sutovsky P, Kerns K, Zigo M, Zuidema D. Boar semen improvement through sperm capacitation management, with emphasis on zinc ion homeostasis. Theriogenology. 2019. 10.1016/j.theriogenology.2019.05.037. PubMed
Salicioni AM, Platt M, Wertheimer EV, Allaire A, Sosnik J, et al. Signalling pathways involved in sperm capacitation. Soc Reprod Fertil Suppl. 2007;65:245–59. PubMed
Noto F, Recuero S, Valencia J, Saporito B, Robbe D, Bonet S, et al. Inhibition of potassium channels affects the ability of pig spermatozoa to elicit capacitation and trigger the acrosome exocytosis induced by progesterone. Int J Mol Sci. 2021. 10.3390/ijms22041992. PubMed PMC
de Hurtado A, Martin-Hidalgo D, Gil MC, Garcia-Marin LJ, Bragado MJ. New insights into transduction pathways that regulate Boar sperm function. Theriogenology. 2016. 10.1016/j.theriogenology.2015.05.008. PubMed
Bragado MJ, Gil MC, Martin-Hidalgo D, Hurtado de Llera A, Bravo N, Moreno AD, et al. Src family tyrosine kinase regulates acrosome reaction but not motility in Porcine spermatozoa. Reproduction. 2012. 10.1530/REP-11-0075. PubMed
Prieto OB, Algieri C, Spinaci M, Trombetti F, Nesci S, Bucci D. Cell bioenergetics and ATP production of Boar spermatozoa. Theriogenology. 2023. 10.1016/j.theriogenology.2023.07.018. PubMed
Kim Y-H, Haidl G, Schaefer M, Egner U, Mandal A, Herr JC. Compartmentalization of a unique ADP/ATP carrier protein SFEC (Sperm flagellar energy carrier, AAC4) with glycolytic enzymes in the fibrous sheath of the human sperm flagellar principal piece. Dev Biol. 2007. 10.1016/j.ydbio.2006.10.004. PubMed PMC
Ferramosca A, Zara V. Bioenergetics of mammalian sperm capacitation. Biomed Res Int. 2014. 10.1155/2014/902953. PubMed PMC
Ni F, Chenling G, Fang H, Xun L, Xiaoye W, Yinsheng T, et al. Analysis of differential proteins between non-capacitated and capacitated Boar sperm and verification of the effect of phosphofructokinase on capacitation. Theriogenology. 2023. 10.1016/j.theriogenology.2022.12.038. PubMed
Passarella S, de Bari L, Valenti D, Pizzuto R, Paventi G, Atlante A. Mitochondria and l -lactate metabolism. FEBS Lett. 2008. 10.1016/j.febslet.2008.09.042. PubMed
Medrano A, García-Gil N, Ramió L, Montserrat Rivera M, Fernández‐Novell JM, Ramírez A, et al. Hexose‐specificity of hexokinase and ADP‐dependence of pyruvate kinase play important roles in the control of monosaccharide utilization in freshly diluted Boar spermatozoa. Mol Reprod Dev. 2006. 10.1002/mrd.20480. PubMed
Fraser LR, Herod JE. Expression of capacitation-dependent changes in Chlortetracycline fluorescence patterns in mouse spermatozoa requires a suitable glycolysable substrate. Reproduction. 1990. 10.1530/jrf.0.0880611. PubMed
Katoh Y, Takebayashi K, Kikuchi A, Iki A, Kikuchi K, Tamba M, et al. Porcine sperm capacitation involves tyrosine phosphorylation and activation of aldose reductase. Reproduction. 2014. 10.1530/REP-14-0199. PubMed
Katoh Y, Kikuchi K, Matsuda M, Tamba M, Tsukamoto K, Okamura N. Tyrosine phosphorylation of the flagellar aldose reductase is involved in the Boar sperm capacitation. J Reprod Eng. 2016;18:11–9.
Katoh Y, Tamba M, Matsuda M, Kikuchi K, Okamura N. Decrease in the cytosolic NADP+-dependent isocitrate dehydrogenase activity through Porcine sperm capacitation. Biochem Biophys Res Commun. 2018. 10.1016/j.bbrc.2018.02.087. PubMed
Ford WCL, Harrison A. The presence of glucose increases the lethal effect of alpha-chlorohydrin on Ram and Boar spermatozoa in vitro. Reproduction. 1985. 10.1530/jrf.0.0730197. PubMed
Tsuji H, Ohta E, Miah A, Hossain S, Salma U. Effect of Fructose on motility, acrosome reaction and in vitro fertilization capability of Boar spermatozoa. Reprod Med Biol. 2006. 10.1111/j.1447-0578.2006.00150.x. PubMed PMC
Mann T. The biochemistry of semen and of the male reproductive tract. London: Methuen & Go Ltd. New York: John Wiley & Sons;; 1964.
Cappello AR, Guido C, Santoro A, Santoro M, Capobianco L, Montanaro D, et al. The mitochondrial citrate carrier (CIC) is present and regulates insulin secretion by human male gamete. Endocrinology. 2012. 10.1210/en.2011-1562. PubMed
Harayama H, Nakamura K. Changes of PKA and PDK1 in the principal piece of Boar spermatozoa treated with a cell-permeable cAMP analog to induce flagellar hyperactivation. Mol Reprod Dev. 2008. 10.1002/mrd.20882. PubMed
Teijeiro JM, Cabada MO, Marini PE. Sperm binding glycoprotein (SBG) produces calcium and bicarbonate dependent alteration of acrosome morphology and protein tyrosine phosphorylation on Boar sperm. J Cell Biochem. 2008. 10.1002/jcb.21524. PubMed
Hackerova L, Klusackova B, Zigo M, Zelenkova N, Havlikova K, Krejcirova R, et al. Modulatory effect of MG-132 proteasomal Inhibition on Boar sperm motility during in vitro capacitation. Front Vet Sci. 2023. 10.3389/fvets.2023.1116891. PubMed PMC
Singh H, Bishen KA, Garg D, Sukhija H, Sharma D, Tomar U. Fixation and fixatives: roles and Functions—A short review. Dent J Adv Stud. 2019. 10.1055/s-0039-1693098.
Thavarajah R, Mudimbaimannar VK, Elizabeth J, Rao UK, Ranganathan K. Chemical and physical basics of routine formaldehyde fixation. J Oral Maxillofac Pathol. 2012. 10.4103/0973-029X.102496. PubMed PMC
Berod A, Hartman BK, Pujol JF. Importance of fixation in immunohistochemistry: use of formaldehyde solutions at variable pH for the localization of tyrosine hydroxylase. J Histochem Cytochem. 1981. 10.1177/29.7.6167611. PubMed
Lozano MD, Argueta A, Robledano R, García J, Ocon V, Gómez N, et al. Practical issues related to immunocytochemistry on cytological smears: tips and recommendations. Cytopathol. 2024. 10.1111/cyt.13419. PubMed
Stadler C, Skogs M, Brismar H, Uhlén M, Lundberg E. A single fixation protocol for proteome-wide Immunofluorescence localization studies. J Proteom. 2010. 10.1016/j.jprot.2009.10.012. PubMed
Tagliaferro P, Tandler CJ, Ramos AJ, Pecci Saavedra J, Brusco A. Immunofluorescence and glutaraldehyde fixation. A new procedure based on the Schiff-quenching method. J Neurosci Methods. 1997. 10.1016/s0165-0270(97)00126-x. PubMed
Tayri-Wilk T, Slavin M, Zamel J, Blass A, Cohen S, Motzik A, et al. Mass spectrometry reveals the chemistry of formaldehyde cross-linking in structured proteins. Nat Commun. 2020. 10.1038/s41467-020-16935-w. PubMed PMC
Bhat AH, Hussein S. Fixation and different types of fixatives: their role and functions: A review. Int J Clin Diagn Pathol. 2021. 10.33545/pathol.2021.v4.i4b.433.
Fox CH, Johnson FB, Whiting J, Roller PP. Formaldehyde fixation. J Histochem Cytochem. 1985. 10.1177/33.8.3894502. PubMed
Sompuram SR, Vani K, Messana E, Bogen SA. A molecular mechanism of formalin fixation and antigen retrieval. Am J Clin Pathol. 2004. 10.1309/BRN7CTX1E84NWWPL. PubMed
Mason JT, O’Leary TJ. Effects of formaldehyde fixation on protein secondary structure: a calorimetric and infrared spectroscopic investigation. J Histochem Cytochem. 1991. 10.1177/39.2.1987266. PubMed
Ramos-Vara JA, Miller MA. When tissue antigens and antibodies get along. Vet Pathol. 2014. 10.1177/0300985813505879. PubMed
Sutovsky P. Visualization of sperm accessory structures in the mammalian spermatids, spermatozoa, and zygotes by immunofluorescence, confocal, and Immunoelectron microscopy. In: Shatten H, editor. Germ cell protocols: volume 1: sperm and oocyte analysis. Totowa, NJ: Humana Press Inc.; 2004. pp. 59–77. PubMed
Kiernan JA, Formaldehyde. Formalin, paraformaldehyde and glutaraldehyde: what they are and what they do. Microsc Today. 2000. 10.1017/S1551929500057060.
Dan S, Pant M, Kaur T, Pant S. Toxic effect of formaldehyde: A systematic review. IRJMETS. 2020;2:179–89.
Stanly TA, Fritzsche M, Banerji S, García E, Bernardino de la Serna J, Jackson DG, et al. Critical importance of appropriate fixation conditions for faithful imaging of receptor microclusters. Biol Open. 2016. 10.1242/bio.019943. PubMed PMC
Tanaka KAK, Suzuki KGN, Shirai YM, Shibutani ST, Miyahara MSH, Tsuboi H, et al. Membrane molecules mobile even after chemical fixation. Nat Methods. 2010. 10.1038/nmeth.f.314. PubMed
Haque Z, Rahman A, Khan ZI, Hussan MT, Alam M. Alcohol-Based fixatives can better preserve tissue morphology than formalin. Int J Morphol. 2020. 10.4067/S0717-95022020000501371.
Oliver C, Jamur MC. Overview of antibodies for immunochemistry. Immunochemical methods and protocols. Totowa, Nj: Humana; 2010. pp. 3–9. PubMed
Gabriel LK, Franken DR, Horst G, Kruger TF, Oehninger SC. Wheat germ agglutinin receptors on human sperm membranes and sperm morphology. Andrologia. 1994. 10.1111/j.1439-0272.1994.tb00745.x. PubMed
Chohan KR, Griffin JT, Lafromboise M, De Jonge CJ, Carrell DT. Sperm DNA damage relationship with embryo quality and pregnancy outcome in IVF patients. Fertil Steril. 2004. 10.1016/j.fertnstert.2004.07.142.
Yamanushi TT, Boyett MR, Yamamoto Y, Ohsaki H, Hirakawa E, Dobrzynski H. Comparison of formaldehyde and methanol fixatives used in the detection of ion channel proteins in isolated rat ventricular myocytes by Immunofluorescence labelling and confocal microscopy. Folia Morphol. 2015. 10.5603/FM.2015.0041. PubMed
Alvau A, Battistone MA, Gervasi MG, Navarrete FA, Xu X, Sánchez-Cárdenas C, et al. The tyrosine kinase FER is responsible for the capacitation-associated increase in tyrosine phosphorylation in murine sperm. Development. 2016. 10.1242/dev.136499. PubMed PMC
Mariappa D, Aladakatti RH, Dasari SK, Sreekumar A, Wolkowicz M, Van Der Hoorn F, Seshagiri PB. Inhibition of tyrosine phosphorylation of sperm flagellar proteins, outer dense fiber protein-2 and tektin‐2, is associated with impaired motility during capacitation of hamster spermatozoa. Mol Reprod Dev. 2010. 10.1016/j.anireprosci.2010.11.013. PubMed
Roy SC, Atreja SK. Capacitation-associated protein tyrosine phosphorylation starts early in Buffalo (Bubalus bubalis) spermatozoa as compared to cattle. Anim Reprod Sci. 2009. 10.1016/j.anireprosci.2008.01.021. PubMed
Bravo MM, Aparicio IM, Garcia-Herreros M, Gil MC, Pena FJ, Garcia‐Marin LJ. Changes in tyrosine phosphorylation associated with true capacitation and capacitation‐like state in Boar spermatozoa. Mol Reprod Dev. 2005. 10.1002/mrd.20286. PubMed
Grunewald S, Reinhardt M, Blumenauer V, Said TM, Agarwal A, Hmeidan FA, et al. Increased sperm chromatin decondensation in selected nonapoptotic spermatozoa of patients with male infertility. Fertil Steril. 2009. 10.1016/j.fertnstert.2008.07.1705. PubMed
Mattioli M, Barboni B, Lucidi P, Seren E. Identification of capacitation in Boar spermatozoa by Chlortetracycline staining. Theriogenology. 1996. 10.1016/0093-691X(96)81099-5. PubMed
Maxwell WMC, Johnson LA. Membrane status of Boar spermatozoa after cooling or cryopreservation. Theriogenology. 1997. 10.1016/S0093-691X(97)84068-X. PubMed
Kerns K, Zigo M, Sutovsky P, Zinc. A necessary ion for mammalian sperm fertilization competency. Int J Mol Sci. 2018. 10.3390/ijms19124097. PubMed PMC
Kerns K, Zigo M, Drobnis EZ, Sutovsky M, Sutovsky P. Zinc ion flux during mammalian sperm capacitation. Nat Commun. 2018. 10.1038/s41467-018-04523-y. PubMed PMC
Zoca SM, Geary TW, Zezeski AL, Kerns KC, Dalton JC, Harstine BR, et al. Bull field fertility differences can be estimated with in vitro sperm capacitation and flow cytometry. Front Anim Sci. 2023. 10.3389/fanim.2023.1180975.
Bernecic NC, Zhang M, Gadella BM, Brouwers JFHM, Jansen JWA, Arkesteijn GJA, et al. BODIPY-cholesterol can be reliably used to monitor cholesterol efflux from capacitating mammalian spermatozoa. Sci Rep. 2019. 10.1038/s41598-019-45831-7. PubMed PMC
Amundson DM, Zhou M. Fluorometric method for the enzymatic determination of cholesterol. J Biochem Biophys Met. 1999. 10.1016/S0165-022X(98)00036-0. PubMed
Bernecic NC, Gadella BM, Leahy T, de Graaf SP. Novel methods to detect capacitation-related changes in spermatozoa. Theriogenology. 2019. 10.1016/j.theriogenology.2019.05.038. PubMed
Ho CS, Lam CWK, Chan MHM, Cheung RCK, Law LK, Lit LCW et al. Electrospray ionisation mass spectrometry: principles and clinical applications. Clin Biochem Rev. 2003; PMID: 18568044; PMCID: PMC1853331. PubMed PMC
Osheroff JE. Regulation of human sperm capacitation by a cholesterol efflux-stimulated signal transduction pathway leading to protein kinase A-mediated up-regulation of protein tyrosine phosphorylation. Mol Hum Rep. 1999. 10.1093/molehr/5.11.1017. PubMed
Castellani-Ceresa L, Mattioli M, Radaelli G, Barboni B, Brivio MF. Actin polymerization in Boar spermatozoa: fertilization is reduced with use of cytochalasin D. Mol Reprod Dev. 1993. 10.1002/mrd.1080360211. PubMed
Brener E, Rubinstein S, Cohen G, Shternall K, Rivlin J, Breitbart H. Remodeling of the actin cytoskeleton during mammalian sperm capacitation and acrosome reaction. Biol Reprod. 2003. 10.1095/biolreprod.102.009233. PubMed
Breitbart H, Cohen G, Rubinstein S. Role of actin cytoskeleton in mammalian sperm capacitation and the acrosome reaction. Reproduction. 2005. 10.1530/rep.1.00269. PubMed
Saling PM. Involvement of trypsin-like activity in binding of mouse spermatozoa to Zonae Pellucidae. Proc Nat Acad Sci. 1981. 10.1073/pnas.78.10.6231. PubMed PMC
Peknicova J, Moos J, Mollova M, Srsen V, Capkova J. Changes in immunochemical localisation of acrosomal and sperm proteins in Boar spermatozoa during capacitation and induced acrosome reaction. Anim Reprod Sci. 1994. 10.1016/0378-4320(94)90041-8.
Peknicova J, Moos J. Monoclonal antibodies against Boar acrosomal antigens labelling undamaged acrosomes of spermatozoa in Immunofluorescence test. Andrologia. 1990. 10.1111/j.1439-0272.1990.tb02022.x. PubMed
Kerns K, Zigo M, Drobnis EZ, Sutovsky M, Sutovsky P. Zinc ion flux during mammalian sperm capacitation. Nat Commun. 2018. 10.1038/s41467-018-04523-y. PubMed PMC
Cross NL, Watson SK. Assessing acrosomal status of bovine sperm using fluoresceinated lectins. Theriogenology. 1994. 10.1016/0093-691X(94)90665-6. PubMed
Robles-Gómez L, González-Brusi L, Sáez-Espinosa P, Huerta-Retamal N, Cots-Rodríguez P, Avilés M, Gómez-Torres MJ. Specific lectin binding sites during in vitro capacitation and acrosome reaction in Boar spermatozoa. Ital J Anim Sci. 2021. 10.1080/1828051X.2021.1886611.