Bottom-up approach to deciphering the targets of the ubiquitin-proteasome system in porcine sperm capacitation
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
39215164
PubMed Central
PMC11364869
DOI
10.1038/s41598-024-71056-4
PII: 10.1038/s41598-024-71056-4
Knihovny.cz E-zdroje
- Klíčová slova
- Pig, Sperm capacitation, Sperm proteomics, Ubiquitin-proteasome system,
- MeSH
- kapacitace spermií * fyziologie MeSH
- prasata MeSH
- proteasomový endopeptidasový komplex * metabolismus MeSH
- proteom metabolismus MeSH
- proteomika * metody MeSH
- spermie * metabolismus fyziologie MeSH
- ubikvitin * metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteasomový endopeptidasový komplex * MeSH
- proteom MeSH
- ubikvitin * MeSH
Capacitation is an essential post-testicular maturation event endowing spermatozoa with fertilizing capacity within the female reproductive tract, significant for fertility, reproductive health, and contraception. By using a human-relevant large animal model, the domestic boar, this study focuses on furthering our understanding of the involvement of the ubiquitin-proteasome system (UPS) in sperm capacitation. The UPS is a universal, evolutionarily conserved, cellular proteome-wide degradation and recycling machinery, that has been shown to play a significant role in reproduction during the past two decades. Herein, we have used a bottom-up proteomic approach to (i) monitor the capacitation-related changes in the sperm protein levels, and (ii) identify the targets of UPS regulation during sperm capacitation. Spermatozoa were capacitated under proteasomal activity-permissive and inhibiting conditions and extracted sperm proteins were subjected to high-resolution mass spectrometry. We report that 401 individual proteins differed at least two-fold in abundance (P < 0.05) after in vitro capacitation (IVC) and 13 proteins were found significantly different (P < 0.05) between capacitated spermatozoa with proteasomal inhibition compared to the vehicle control. These proteins were associated with biological processes including sperm capacitation, sperm motility, metabolism, binding to zona pellucida, and proteasome-mediated catabolism. Changes in RAB2A, CFAP161, and TTR during IVC were phenotyped by immunocytochemistry, image-based flow cytometry, and Western blotting. We conclude that (i) the sperm proteome is subjected to extensive remodeling during sperm capacitation, and (ii) the UPS has a narrow range of distinct protein substrates during capacitation. This knowledge highlights the importance of the UPS in sperm capacitation and offers opportunities to identify novel pharmacological targets to modulate sperm fertilizing ability for the benefit of human reproductive health, assisted reproductive therapy, and contraception, as well as reproductive management in food animal agriculture.
Department of Animal Science Iowa State University Ames IA 50011 USA
Department of Obstetrics Gynecology and Women's Health University of Missouri Columbia MO 65211 USA
Division of Animal Sciences University of Missouri Columbia MO 65211 5300 USA
HMRI Infertility and Reproduction Research Program University of Newcastle Callaghan NSW Australia
Zobrazit více v PubMed
Austin, C. R. Observations on the penetration of the sperm in the mammalian egg. Aust. J. Sci. Res. Ser. B Biol. Sci.4, 581–596 (1951). PubMed
Chang, M. C. Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature168, 697–698 (1951). 10.1038/168697b0 PubMed DOI
Suarez, S. S. The oviductal sperm reservoir in mammals: Mechanisms of formation. Biol. Reprod.58, 1105–1107. 10.1095/biolreprod58.5.1105 (1998). 10.1095/biolreprod58.5.1105 PubMed DOI
Florman, H. M. & Ducibella, T. Fertilization in Mammals. In Knobil and Neill’s Physiology of Reproduction Vol. 1 (ed. Neill, J. D.) 55–112 (Elsevier Academic Press, Inc., 2006).
Florman, H. M. & Fissore, R. A. Fertilization in Mammals. In Knobil and Neill’s Physiology of Reproduction (eds Plant, T. N. & Zeleznik, A. J.) 149–196 (Elsevier, 2015).
Yanagimachi, R. in The Physiology of Reproduction Vol. 1 (eds E. Knobil & J.D. Neill) Ch. 2, 189–317 (Raven Press, 1994).
Guidobaldi, H. A., Teves, M. E., Uñates, D. R., Anastasía, A. & Giojalas, L. C. Progesterone from the cumulus cells is the sperm chemoattractant secreted by the rabbit oocyte cumulus complex. PloS One3, e3040. 10.1371/journal.pone.0003040 (2008). 10.1371/journal.pone.0003040 PubMed DOI PMC
Oren-Benaroya, R., Orvieto, R., Gakamsky, A., Pinchasov, M. & Eisenbach, M. The sperm chemoattractant secreted from human cumulus cells is progesterone. Hum. Reproduct.23, 2339–2345. 10.1093/humrep/den265 (2008).10.1093/humrep/den265 PubMed DOI
Pérez-Cerezales, S., López-Cardona, A. P. & Gutiérrez-Adán, A. Progesterone effects on mouse sperm kinetics in conditions of viscosity. Reproduction151, 501–507. 10.1530/rep-15-0582 (2016). 10.1530/rep-15-0582 PubMed DOI
Teves, M. E. et al. Progesterone at the picomolar range is a chemoattractant for mammalian spermatozoa. Fertil. Steril.86, 745–749. 10.1016/j.fertnstert.2006.02.080 (2006). 10.1016/j.fertnstert.2006.02.080 PubMed DOI
Villanueva-Díaz, C., Arias-Martínez, J., Bermejo-Martínez, L. & Vadillo-Ortega, F. Progesterone induces human sperm chemotaxis. Fertil. Steril.64, 1183–1188. 10.1016/s0015-0282(16)57982-5 (1995). 10.1016/s0015-0282(16)57982-5 PubMed DOI
Kerns, K., Zigo, M., Drobnis, E. Z., Sutovsky, M. & Sutovsky, P. Zinc ion flux during mammalian sperm capacitation. Nat. Commun.9, 2061. 10.1038/s41467-018-04523-y (2018). 10.1038/s41467-018-04523-y PubMed DOI PMC
Kerns, K., Zigo, M. & Sutovsky, P. Zinc: A necessary ion for mammalian sperm fertilization competency. Int. J. Mol. Sci.19, 4097. 10.3390/ijms19124097 (2018). 10.3390/ijms19124097 PubMed DOI PMC
Bhakta, H. H., Refai, F. H. & Avella, M. A. The molecular mechanisms mediating mammalian fertilization. Development10.1242/dev.176966 (2019). 10.1242/dev.176966 PubMed DOI
Siu, K. K., Serrão, V. H. B., Ziyyat, A. & Lee, J. E. The cell biology of fertilization: Gamete attachment and fusion. J. Cell Biol.10.1083/jcb.202102146 (2021). 10.1083/jcb.202102146 PubMed DOI PMC
Tumova, L., Zigo, M., Sutovsky, P., Sedmikova, M. & Postlerova, P. Ligands and receptors involved in the sperm-zona pellucida interactions in mammals. Cells10, 133. 10.3390/cells10010133 (2021). 10.3390/cells10010133 PubMed DOI PMC
Bailey, J. L. Factors regulating sperm capacitation. Syst. Biol. Reproduct. Med.56, 334–348. 10.3109/19396368.2010.512377 (2010).10.3109/19396368.2010.512377 PubMed DOI
Hunt, L. T. & Dayhoff, M. O. Amino-terminal sequence identity of ubiquitin and the nonhistone component of nuclear protein A24. Biochem. Biophys. Res. Commun.74, 650–655. 10.1016/0006-291x(77)90352-7 (1977). 10.1016/0006-291x(77)90352-7 PubMed DOI
Hershko, A. & Heller, H. Occurrence of a polyubiquitin structure in ubiquitin-protein conjugates. Biochem. Biophys. Res. Commun.128, 1079–1086. 10.1016/0006-291x(85)91050-2 (1985). 10.1016/0006-291x(85)91050-2 PubMed DOI
Hough, R., Pratt, G. & Rechsteiner, M. Ubiquitin-lysozyme conjugates. Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates. J. Biol. Chem.261, 2400–2408 (1986). 10.1016/S0021-9258(17)35950-1 PubMed DOI
Waxman, L., Fagan, J. M. & Goldberg, A. L. Demonstration of two distinct high molecular weight proteases in rabbit reticulocytes, one of which degrades ubiquitin conjugates. J. Biol. Chem.262, 2451–2457 (1987). 10.1016/S0021-9258(18)61525-X PubMed DOI
Ciechanover, A., Elias, S., Heller, H. & Hershko, A. “Covalent affinity” purification of ubiquitin-activating enzyme. J. Biol. Chem.257, 2537–2542 (1982). 10.1016/S0021-9258(18)34957-3 PubMed DOI
Hershko, A., Heller, H., Elias, S. & Ciechanover, A. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J. Biol. Chem.258, 8206–8214 (1983). 10.1016/S0021-9258(20)82050-X PubMed DOI
Ciechanover, A. Intracellular protein degradation: From a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Best Pract. Res. Clin. Haematol.30, 341–355. 10.1016/j.beha.2017.09.001 (2017). 10.1016/j.beha.2017.09.001 PubMed DOI
Sutovsky, P. Sperm proteasome and fertilization. Reproduction142, 1–14. 10.1530/rep-11-0041 (2011). 10.1530/rep-11-0041 PubMed DOI
Glickman, M. H. & Ciechanover, A. The ubiquitin-proteasome proteolytic pathway: Destruction for the sake of construction. Physiol. Rev.82, 373–428. 10.1152/physrev.00027.2001 (2002). 10.1152/physrev.00027.2001 PubMed DOI
Pickart, C. M. & Cohen, R. E. Proteasomes and their kin: Proteases in the machine age. Nat. Rev. Mol. Cell Biol.5, 177–187. 10.1038/nrm1336 (2004). 10.1038/nrm1336 PubMed DOI
Ciechanover, A. Proteolysis: From the lysosome to ubiquitin and the proteasome. Nat. Rev. Mol. Cell Biol.6, 79–87. 10.1038/nrm1552 (2005). 10.1038/nrm1552 PubMed DOI
Manandhar, G., Schatten, H. & Sutovsky, P. Centrosome reduction during gametogenesis and its significance. Biol. Reproduct.72, 2–13. 10.1095/biolreprod.104.031245 (2005).10.1095/biolreprod.104.031245 PubMed DOI
Mtango, N. R., Latham, K. E. & Sutovsky, P. Deubiquitinating enzymes in oocyte maturation, fertilization and preimplantation embryo development. Adv. Exp. Med. Biol.759, 89–110. 10.1007/978-1-4939-0817-2_5 (2014). 10.1007/978-1-4939-0817-2_5 PubMed DOI
Sutovsky, P. Ubiquitin-dependent proteolysis in mammalian spermatogenesis, fertilization, and sperm quality control: Killing three birds with one stone. Microscopy Res. Tech.61, 88–102. 10.1002/jemt.10319 (2003).10.1002/jemt.10319 PubMed DOI
Kerns, K., Morales, P. & Sutovsky, P. Regulation of sperm capacitation by the 26S proteasome: An emerging new paradigm in spermatology. Biol. Reproduct.94, 117. 10.1095/biolreprod.115.136622 (2016).10.1095/biolreprod.115.136622 PubMed DOI
Song, W. H., Ballard, J. W., Yi, Y. J. & Sutovsky, P. Regulation of mitochondrial genome inheritance by autophagy and ubiquitin-proteasome system: implications for health, fitness, and fertility. BioMed Res. Int.2014, 981867. 10.1155/2014/981867 (2014). 10.1155/2014/981867 PubMed DOI PMC
Sutovsky, P. Sperm-egg adhesion and fusion in mammals. Expert Rev. Mol. Med.11, e11. 10.1017/s1462399409001045 (2009). 10.1017/s1462399409001045 PubMed DOI
Sutovsky, P. & Song, W. H. Post-fertilisation sperm mitophagy: the tale of Mitochondrial Eve and Steve. Reproduct. Fertil. Dev.30, 56–63. 10.1071/rd17364 (2017).10.1071/rd17364 PubMed DOI
Sutovsky, P., Van Leyen, K., McCauley, T., Day, B. N. & Sutovsky, M. Degradation of paternal mitochondria after fertilization: Implications for heteroplasmy, assisted reproductive technologies and mtDNA inheritance. Reproduct. Biomed. Online8, 24–33 (2004).10.1016/S1472-6483(10)60495-6 PubMed DOI
Yi, Y. J., Manandhar, G., Oko, R. J., Breed, W. G. & Sutovsky, P. Mechanism of sperm-zona pellucida penetration during mammalian fertilization: 26S proteasome as a candidate egg coat lysin. Soc. Reproduct. Fertil. Suppl.63, 385–408 (2007). PubMed
Zigo, M. et al. Porcine model for the study of sperm capacitation, fertilization and male fertility. Cell Tissue Res.380, 237–262. 10.1007/s00441-020-03181-1 (2020). 10.1007/s00441-020-03181-1 PubMed DOI
Zimmerman, S. & Sutovsky, P. The sperm proteasome during sperm capacitation and fertilization. J. Reproduct. Immunol.83, 19–25. 10.1016/j.jri.2009.07.006 (2009).10.1016/j.jri.2009.07.006 PubMed DOI
Sutovsky, P. et al. A putative, ubiquitin-dependent mechanism for the recognition and elimination of defective spermatozoa in the mammalian epididymis. J. Cell Sci.114, 1665–1675 (2001). 10.1242/jcs.114.9.1665 PubMed DOI
Baska, K. M. et al. Mechanism of extracellular ubiquitination in the mammalian epididymis. J. Cell. Physiol.215, 684–696. 10.1002/jcp.21349 (2008). 10.1002/jcp.21349 PubMed DOI
Sharif, M. et al. Hyperactivation is sufficient to release porcine sperm from immobilized oviduct glycans. Sci. Rep.12, 6446. 10.1038/s41598-022-10390-x (2022). 10.1038/s41598-022-10390-x PubMed DOI PMC
Sharif, M., Kerns, K., Sutovsky, P., Bovin, N. & Miller, D. J. Progesterone induces porcine sperm release from oviduct glycans in a proteasome-dependent manner. Reproduction161, 449–457. 10.1530/rep-20-0474 (2021). 10.1530/rep-20-0474 PubMed DOI PMC
Zigo, M., Jonakova, V., Manaskova-Postlerova, P., Kerns, K. & Sutovsky, P. Ubiquitin-proteasome system participates in the de-aggregation of spermadhesin and DQH protein during boar sperm capacitation. Reproduction157, 283–295. 10.1530/rep-18-0413 (2019). 10.1530/rep-18-0413 PubMed DOI
Zigo, M., Kerns, K., Sutovsky, M. & Sutovsky, P. Modifications of the 26S proteasome during boar sperm capacitation. Cell Tissue Res.372, 591–601. 10.1007/s00441-017-2786-6 (2018). 10.1007/s00441-017-2786-6 PubMed DOI PMC
Zigo, M., Kerns, K. & Sutovsky, P. The ubiquitin-proteasome system participates in sperm surface subproteome remodeling during boar sperm capacitation. Biomolecules13, 996. 10.3390/biom13060996 (2023). 10.3390/biom13060996 PubMed DOI PMC
Zigo, M., Manaskova-Postlerova, P., Jonakova, V., Kerns, K. & Sutovsky, P. Compartmentalization of the proteasome-interacting proteins during sperm capacitation. Sci. Rep.9, 12583. 10.1038/s41598-019-49024-0 (2019). 10.1038/s41598-019-49024-0 PubMed DOI PMC
Song, W. H. & Sutovsky, P. Porcine cell-free system to study mammalian sperm mitophagy. Methods Mol. Biol.1854, 197–207. 10.1007/7651_2018_158 (2019). 10.1007/7651_2018_158 PubMed DOI
Song, W. H., Yi, Y. J., Sutovsky, M., Meyers, S. & Sutovsky, P. The ART and science of sperm mitophagy. Autophagy12, 2510–2511. 10.1080/15548627.2016.1239004 (2016). 10.1080/15548627.2016.1239004 PubMed DOI PMC
Song, W. H., Yi, Y. J., Sutovsky, M., Meyers, S. & Sutovsky, P. Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization. Proc. Natl. Acad. Sci. USA113, E5261-5270. 10.1073/pnas.1605844113 (2016). 10.1073/pnas.1605844113 PubMed DOI PMC
Zuidema, D., Jones, A., Song, W. H., Zigo, M. & Sutovsky, P. Identification of candidate mitochondrial inheritance determinants using the mammalian cell-free system. Elife10.7554/eLife.85596 (2023). 10.7554/eLife.85596 PubMed DOI PMC
Mao, J. et al. Ubiquitin A-52 residue ribosomal protein fusion product 1 (Uba52) is essential for preimplantation embryo development. Biol. Open10.1242/bio.035717 (2018). 10.1242/bio.035717 PubMed DOI PMC
Benesova, V., Kinterova, V., Kanka, J. & Toralova, T. Potential involvement of SCF-complex in zygotic genome activation during early bovine embryo development. Methods Mol. Biol.1605, 245–257. 10.1007/978-1-4939-6988-3_17 (2017). 10.1007/978-1-4939-6988-3_17 PubMed DOI
Hillman, P., Ickowicz, D., Vizel, R. & Breitbart, H. Dissociation between AKAP3 and PKARII promotes AKAP3 degradation in sperm capacitation. PloS One8, e68873. 10.1371/journal.pone.0068873 (2013). 10.1371/journal.pone.0068873 PubMed DOI PMC
Zapata-Carmona, H., Barón, L., Kong, M. & Morales, P. Protein kinase a (PRKA) activity is regulated by the proteasome at the onset of human sperm capacitation. Cells10, 3501. 10.3390/cells10123501 (2021). 10.3390/cells10123501 PubMed DOI PMC
Qu, X. et al. Inhibition of 26S proteasome enhances AKAP3-mediated cAMP-PKA signaling during boar sperm capacitation. Anim Reprod. Sci.247, 107079. 10.1016/j.anireprosci.2022.107079 (2022). 10.1016/j.anireprosci.2022.107079 PubMed DOI
Sanchez, R. et al. Participation of the sperm proteasome during in vitro fertilisation and the acrosome reaction in cattle. Andrologia43, 114–120. 10.1111/j.1439-0272.2009.01031.x (2011). 10.1111/j.1439-0272.2009.01031.x PubMed DOI
Yi, Y. J., Sutovsky, M., Kennedy, C. & Sutovsky, P. Identification of the inorganic pyrophosphate metabolizing, ATP substituting pathway in mammalian spermatozoa. PloS One7, e34524. 10.1371/journal.pone.0034524 (2012). 10.1371/journal.pone.0034524 PubMed DOI PMC
Hackerova, L. et al. Modulatory effect of MG-132 proteasomal inhibition on boar sperm motility during in vitro capacitation. Front. Vet. Sci.10.3389/fvets.2023.1116891 (2023). 10.3389/fvets.2023.1116891 PubMed DOI PMC
Taraschi, A. et al. Two-player game in a complex landscape: 26S Proteasome, PKA, and intracellular calcium concentration modulate mammalian sperm capacitation by creating an integrated dialogue-a computational analysis. Int. J. Mol. Sci.21, 6256. 10.3390/ijms21176256 (2020). 10.3390/ijms21176256 PubMed DOI PMC
Kong, M., Diaz, E. S. & Morales, P. Participation of the human sperm proteasome in the capacitation process and its regulation by protein kinase A and tyrosine kinase. Biol. Reproduct.80, 1026–1035. 10.1095/biolreprod.108.073924 (2009).10.1095/biolreprod.108.073924 PubMed DOI
Zapata-Carmona, H. et al. The activation of the chymotrypsin-like activity of the proteasome is regulated by soluble adenyl cyclase/cAMP/protein kinase a pathway and required for human sperm capacitation. Mol. Hum. Reproduct.25, 587–600. 10.1093/molehr/gaz037 (2019).10.1093/molehr/gaz037 PubMed DOI PMC
Blighe, K., Rana, S. & Lewis, M. EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling. R package version 1.8.0, 2020).
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res.28, 27–30. 10.1093/nar/28.1.27 (2000). 10.1093/nar/28.1.27 PubMed DOI PMC
Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci.28, 1947–1951. 10.1002/pro.3715 (2019). 10.1002/pro.3715 PubMed DOI PMC
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res.51, D587-d592. 10.1093/nar/gkac963 (2023). 10.1093/nar/gkac963 PubMed DOI PMC
He, M. et al. Identification and characterization of new long chain acyl-CoA dehydrogenases. Mol. Genet. Metab.102, 418–429. 10.1016/j.ymgme.2010.12.005 (2011). 10.1016/j.ymgme.2010.12.005 PubMed DOI PMC
Arroteia, K. F. et al. Albumin is synthesized in epididymis and aggregates in a high molecular mass glycoprotein complex involved in sperm-egg fertilization. PloS One9, e103566. 10.1371/journal.pone.0103566 (2014). 10.1371/journal.pone.0103566 PubMed DOI PMC
Beckers, A. et al. The highly conserved FOXJ1 target CFAP161 is dispensable for motile ciliary function in mouse and Xenopus. Sci. Rep.11, 13333. 10.1038/s41598-021-92495-3 (2021). 10.1038/s41598-021-92495-3 PubMed DOI PMC
Strittmatter, L. et al. CLYBL is a polymorphic human enzyme with malate synthase and β-methylmalate synthase activity. Hum. Mol. Genet.23, 2313–2323. 10.1093/hmg/ddt624 (2014). 10.1093/hmg/ddt624 PubMed DOI PMC
Lee, R. K. et al. Expression of cystatin C in the female reproductive tract and its effect on human sperm capacitation. Reproduct. Biol. Endocrinol. RB&E16, 8. 10.1186/s12958-018-0327-0 (2018).10.1186/s12958-018-0327-0 PubMed DOI PMC
Eckhardt, K. et al. Male germ cell expression of the PAS domain kinase PASKIN and its novel target eukaryotic translation elongation factor eEF1A1. Cell Physiol. Biochem.20, 227–240. 10.1159/000104169 (2007). 10.1159/000104169 PubMed DOI
Tovich, P. R. & Oko, R. J. Somatic histones are components of the perinuclear theca in bovine spermatozoa. J. Biol. Chem.278, 32431–32438. 10.1074/jbc.M303786200 (2003). 10.1074/jbc.M303786200 PubMed DOI
Hamilton, L. E. et al. Core histones are constituents of the perinuclear theca of murid spermatozoa: an assessment of their synthesis and assembly during spermiogenesis and function after gametic fusion. Int. J. Mol. Sci.22, 8119. 10.3390/ijms22158119 (2021). 10.3390/ijms22158119 PubMed DOI PMC
Torres-Flores, U. & Hernández-Hernández, A. The interplay between replacement and retention of histones in the sperm genome. Front. Genet.11, 780. 10.3389/fgene.2020.00780 (2020). 10.3389/fgene.2020.00780 PubMed DOI PMC
Hirst, J. Mitochondrial complex I. Ann. Rev. Biochem.82, 551–575. 10.1146/annurev-biochem-070511-103700 (2013). 10.1146/annurev-biochem-070511-103700 PubMed DOI
Morohoshi, A. et al. FAM71F1 binds to RAB2A and RAB2B and is essential for acrosome formation and male fertility in mice. Development10.1242/dev.199644 (2021). 10.1242/dev.199644 PubMed DOI PMC
Mountjoy, J. R., Xu, W., McLeod, D., Hyndman, D. & Oko, R. RAB2A: A major subacrosomal protein of bovine spermatozoa implicated in acrosomal biogenesis. Biol. Reproduct.79, 223–232. 10.1095/biolreprod.107.065060 (2008).10.1095/biolreprod.107.065060 PubMed DOI
Zhang, M. et al. High resolution proteomic analysis of subcellular fractionated boar spermatozoa provides comprehensive insights into perinuclear theca-residing proteins. Front. Cell Dev. Biol.10, 836208. 10.3389/fcell.2022.836208 (2022). 10.3389/fcell.2022.836208 PubMed DOI PMC
Zigo, M. et al. Panel of monoclonal antibodies to sperm surface proteins as a tool for monitoring localization and identification of sperm-zona pellucida receptors. Cell Tissue Res.359, 895–908. 10.1007/s00441-014-2072-9 (2015). 10.1007/s00441-014-2072-9 PubMed DOI
Miles, E. L. et al. Transgenic pig carrying green fluorescent proteasomes. Proc. Natl. Acad. Sci. USA110, 6334–6339. 10.1073/pnas.1220910110 (2013). 10.1073/pnas.1220910110 PubMed DOI PMC
Kisselev, A. F. & Goldberg, A. L. Proteasome inhibitors: From research tools to drug candidates. Chem. Biol.8, 739–758. 10.1016/s1074-5521(01)00056-4 (2001). 10.1016/s1074-5521(01)00056-4 PubMed DOI
Kongmanas, K. et al. Proteomic characterization of pig sperm anterior head plasma membrane reveals roles of acrosomal proteins in ZP3 binding. J. Cell. Physiol.230, 449–463. 10.1002/jcp.24728 (2015). 10.1002/jcp.24728 PubMed DOI
Tanphaichitr, N. et al. Remodeling of the plasma membrane in preparation for sperm-egg recognition: Roles of acrosomal proteins. Asian J. Androl.17, 574–582. 10.4103/1008-682x.152817 (2015). 10.4103/1008-682x.152817 PubMed DOI PMC
Nixon, B. et al. Composition and significance of detergent resistant membranes in mouse spermatozoa. J. Cell. Physiol.218, 122–134. 10.1002/jcp.21575 (2009). 10.1002/jcp.21575 PubMed DOI
Asano, A., Nelson, J. L., Zhang, S. & Travis, A. J. Characterization of the proteomes associating with three distinct membrane raft sub-types in murine sperm. Proteomics10, 3494–3505. 10.1002/pmic.201000002 (2010). 10.1002/pmic.201000002 PubMed DOI PMC
van Gestel, R. A. et al. Capacitation-dependent concentration of lipid rafts in the apical ridge head area of porcine sperm cells. Mol. Hum. Reproduct.11, 583–590. 10.1093/molehr/gah200 (2005).10.1093/molehr/gah200 PubMed DOI
Sleight, S. B. et al. Isolation and proteomic analysis of mouse sperm detergent-resistant membrane fractions: Evidence for dissociation of lipid rafts during capacitation. Biol. Reproduct.73, 721–729. 10.1095/biolreprod.105.041533 (2005).10.1095/biolreprod.105.041533 PubMed DOI
Bou Khalil, M. et al. Sperm capacitation induces an increase in lipid rafts having zona pellucida binding ability and containing sulfogalactosylglycerolipid. Dev. Biol.290, 220–235. 10.1016/j.ydbio.2005.11.030 (2006). 10.1016/j.ydbio.2005.11.030 PubMed DOI
Nixon, B. & Aitken, R. J. The biological significance of detergent-resistant membranes in spermatozoa. J. Reproduct. Immunol.83, 8–13. 10.1016/j.jri.2009.06.258 (2009).10.1016/j.jri.2009.06.258 PubMed DOI
Nixon, B. et al. Proteomic and functional analysis of human sperm detergent resistant membranes. J. Cell. Physiol.226, 2651–2665. 10.1002/jcp.22615 (2011). 10.1002/jcp.22615 PubMed DOI
Zigo, M. et al. Zinc is a master-regulator of sperm function associated with binding, motility, and metabolic modulation during porcine sperm capacitation. Commun. Biol.5, 538. 10.1038/s42003-022-03485-8 (2022). 10.1038/s42003-022-03485-8 PubMed DOI PMC
Bae, J. W. et al. Ras-related proteins (Rab) are key proteins related to male fertility following a unique activation mechanism. Reproduct. Biol.19, 356–362. 10.1016/j.repbio.2019.10.001 (2019).10.1016/j.repbio.2019.10.001 PubMed DOI
Kwon, W. S. et al. A comprehensive proteomic approach to identifying capacitation related proteins in boar spermatozoa. BMC Genom.15, 897. 10.1186/1471-2164-15-897 (2014).10.1186/1471-2164-15-897 PubMed DOI PMC
Yunes, R., Michaut, M., Tomes, C. & Mayorga, L. S. Rab3A triggers the acrosome reaction in permeabilized human spermatozoa. Biol. Reproduct.62, 1084–1089. 10.1095/biolreprod62.4.1084 (2000).10.1095/biolreprod62.4.1084 PubMed DOI
Belmonte, S. A. et al. Cholesterol content regulates acrosomal exocytosis by enhancing Rab3A plasma membrane association. Dev. Biol.285, 393–408. 10.1016/j.ydbio.2005.07.001 (2005). 10.1016/j.ydbio.2005.07.001 PubMed DOI
Lopez, C. I., Belmonte, S. A., De Blas, G. A. & Mayorga, L. S. Membrane-permeant Rab3A triggers acrosomal exocytosis in living human sperm. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol.21, 4121–4130. 10.1096/fj.06-7716com (2007).10.1096/fj.06-7716com PubMed DOI
Kwon, W. S., Rahman, M. S., Ryu, D. Y., Park, Y. J. & Pang, M. G. Increased male fertility using fertility-related biomarkers. Sci. Rep.5, 15654. 10.1038/srep15654 (2015). 10.1038/srep15654 PubMed DOI PMC
Kwon, W. S., Rahman, M. S., Ryu, D. Y., Khatun, A. & Pang, M. G. Comparison of markers predicting litter size in different pig breeds. Andrology5, 568–577. 10.1111/andr.12332 (2017). 10.1111/andr.12332 PubMed DOI
Zoca, S. M., Northrop-Albrecht, E. J., Walker, J. A., Cushman, R. A. & Perry, G. A. Proteomic analyses identify differences between bovine epididymal and ejaculated spermatozoa that contribute to longevity. Theriogenology184, 51–60. 10.1016/j.theriogenology.2022.02.021 (2022). 10.1016/j.theriogenology.2022.02.021 PubMed DOI
Magalhães, J., Eira, J. & Liz, M. A. The role of transthyretin in cell biology: Impact on human pathophysiology. Cell. Mol. Life Sci. CMLS78, 6105–6117. 10.1007/s00018-021-03899-3 (2021). 10.1007/s00018-021-03899-3 PubMed DOI PMC
Wang, Q., Liu, C. & Zhang, Z. Transthyretin and normal human pregnancy: Mini review. Crit. Rev. Eukaryot. Gene. Expr.26, 273–277. 10.1615/CritRevEukaryotGeneExpr.2016017323 (2016). 10.1615/CritRevEukaryotGeneExpr.2016017323 PubMed DOI
Choi, Y. J. et al. Cytochrome c upregulation during capacitation and spontaneous acrosome reaction determines the fate of pig sperm cells: linking proteome analysis. J. Reproduct. Dev.54, 68–83. 10.1262/jrd.19116 (2008).10.1262/jrd.19116 PubMed DOI
Zigo, M., Jonakova, V. & Manaskova-Postlerova, P. Electrophoretic and zymographic characterization of proteins isolated by various extraction methods from ejaculated and capacitated boar sperms. Electrophoresis32, 1309–1318. 10.1002/elps.201000558 (2011). 10.1002/elps.201000558 PubMed DOI
Zigo, M., Jonakova, V., Sulc, M. & Manaskova-Postlerova, P. Characterization of sperm surface protein patterns of ejaculated and capacitated boar sperm, with the detection of ZP binding candidates. Int. J. Biol. Macromol.61, 322–328. 10.1016/j.ijbiomac.2013.07.014 (2013). 10.1016/j.ijbiomac.2013.07.014 PubMed DOI
Kennedy, C. E. et al. Protein expression pattern of PAWP in bull spermatozoa is associated with sperm quality and fertility following artificial insemination. Mol. Reproduct. Dev.81, 436–449. 10.1002/mrd.22309 (2014).10.1002/mrd.22309 PubMed DOI