Exposure to endocrine disruptor induces transgenerational epigenetic deregulation of microRNAs in primordial germ cells
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25897752
PubMed Central
PMC4405367
DOI
10.1371/journal.pone.0124296
PII: PONE-D-14-49946
Knihovny.cz E-zdroje
- MeSH
- apoptóza MeSH
- buněčná diferenciace MeSH
- endokrinní disruptory toxicita MeSH
- epigeneze genetická účinky léků MeSH
- látky znečišťující životní prostředí toxicita MeSH
- metylace DNA MeSH
- mikro RNA genetika metabolismus MeSH
- myši MeSH
- oxazoly toxicita MeSH
- protein PRDI-BF1 MeSH
- těhotenství MeSH
- testis účinky léků patologie MeSH
- transkripční faktory genetika metabolismus MeSH
- zárodečné buňky účinky léků fyziologie MeSH
- zpožděný efekt prenatální expozice chemicky indukované genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- endokrinní disruptory MeSH
- látky znečišťující životní prostředí MeSH
- mikro RNA MeSH
- oxazoly MeSH
- Prdm1 protein, mouse MeSH Prohlížeč
- protein PRDI-BF1 MeSH
- transkripční faktory MeSH
- vinclozolin MeSH Prohlížeč
In mammals, germ cell differentiation is initiated in the Primordial Germ Cells (PGCs) during fetal development. Prenatal exposure to environmental toxicants such as endocrine disruptors may alter PGC differentiation, development of the male germline and induce transgenerational epigenetic disorders. The anti-androgenic compound vinclozolin represents a paradigmatic example of molecule causing transgenerational effects on germ cells. We performed prenatal exposure to vinclozolin in mice and analyzed the phenotypic and molecular changes in three successive generations. A reduction in the number of embryonic PGCs and increased rate of apoptotic cells along with decrease of fertility rate in adult males were observed in F1 to F3 generations. Blimp1 is a crucial regulator of PGC differentiation. We show that prenatal exposure to vinclozolin deregulates specific microRNAs in PGCs, such as miR-23b and miR-21, inducing disequilibrium in the Lin28/let-7/Blimp1 pathway in three successive generations of males. As determined by global maps of cytosine methylation, we found no evidence for prominent changes in DNA methylation in PGCs or mature sperm. Our data suggest that embryonic exposure to environmental endocrine disruptors induces transgenerational epigenetic deregulation of expression of microRNAs affecting key regulatory pathways of germ cells differentiation.
Biotechnology and Cell Signaling CNRS UMR7242 University of Strasbourg Strasbourg France
Department of Cellular and Molecular Biology Centro de Investigaciones Biológicas Madrid Spain
Institute of Biotechnology AS CR v v i Prague Czech Republic
Zobrazit více v PubMed
Saitou M, Yamaji M (2012) Primordial germ cells in mice. Cold Spring Harb Perspect Biol 4. PubMed PMC
Matzuk MM (2009) LIN28 lets BLIMP1 take the right course. Dev Cell 17: 160–161. 10.1016/j.devcel.2009.07.020 PubMed DOI
Ginsburg M, Snow MHL, McLaren A (1990) Primordial germ cells in the mouse embryo during gastrulation. Development 110: 521–528. PubMed
Richardson BE, Lehmann R (2010) Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nat Rev Mol Cell Biol 11: 37–49. 10.1038/nrm2815 PubMed DOI PMC
Guibert S, Forne T, Weber M (2012) Global profiling of DNA methylation erasure in mouse primordial germ cells. Genome Res 22: 633–641. 10.1101/gr.130997.111 PubMed DOI PMC
Seki Y, Yamaji M, Yabuta Y, Sano M, Shigeta M, Matsui Y et al. (2007) Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice. Development 134: 2627–2638. PubMed
Skinner MK, Manikkam M, Guerrero-Bosagna C (2011) Epigenetic transgenerational actions of endocrine disruptors. Reprod Toxicol 31: 337–343. 10.1016/j.reprotox.2010.10.012 PubMed DOI PMC
Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293: 1089–1093. PubMed
del Mazo J, Brieño-Enriquez MA, Garcia-Lopez J, Lopez-Fernandez LA, De Felici M (2013) Endocrine disruptors, gene deregulation and male germ cell tumors. Int J Dev Biol 57: 225–239. 10.1387/ijdb.130042jd PubMed DOI
Kelce WR, Lambright CR, Gray LE Jr., Roberts KP (1997) Vinclozolin and p,p'-DDE alter androgen-dependent gene expression: in vivo confirmation of an androgen receptor-mediated mechanism. Toxicol Appl Pharmacol 142: 192–200. PubMed
Buckley J, Willingham E, Agras K, Baskin LS (2006) Embryonic exposure to the fungicide vinclozolin causes virilization of females and alteration of progesterone receptor expression in vivo: an experimental study in mice. Environ Health 5: 4 PubMed PMC
Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308: 1466–1469. PubMed PMC
Matsuura I, Saitoh T, Ashina M, Wako Y, Iwata H, Toyota Y et al. (2005) Evaluation of a two-generation reproduction toxicity study adding endpoints to detect endocrine disrupting activity using vinclozolin. J Toxicol Sci 30 Spec No.: 163–188. PubMed
Stouder C, Paoloni-Giacobino A (2010) Transgenerational effects of the endocrine disruptor vinclozolin on the methylation pattern of imprinted genes in the mouse sperm. Reproduction 139: 373–379. 10.1530/REP-09-0340 PubMed DOI
Guerrero-Bosagna C, Covert TR, Haque MM, Settles M, Nilsson EE, Anway MD et al. (2012) Epigenetic transgenerational inheritance of vinclozolin induced mouse adult onset disease and associated sperm epigenome biomarkers. Reprod Toxicol 34: 694–707. 10.1016/j.reprotox.2012.09.005 PubMed DOI PMC
Skinner MK, Haque CG, Nilsson E, Bhandari R, McCarrey JR (2013) Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line. PLoS ONE 8: e66318 10.1371/journal.pone.0066318 PubMed DOI PMC
Hou L, Wang D, Baccarelli A (2011) Environmental chemicals and microRNAs. Mutat Res 714: 105–112. 10.1016/j.mrfmmm.2011.05.004 PubMed DOI PMC
Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13: 271–282. 10.1038/nrg3162 PubMed DOI
Xu Z, Jiang J, Xu C, Wang Y, Sun L, Guo X et al. (2013) MicroRNA-181 regulates CARM1 and histone arginine methylation to promote differentiation of human embryonic stem cells. PLoS ONE 8: e53146 10.1371/journal.pone.0053146 PubMed DOI PMC
Liu X, Chen X, Yu X, Tao Y, Bode AM, Dong Z et al. (2013) Regulation of microRNAs by epigenetics and their interplay involved in cancer. J Exp Clin Cancer Res 32: 96 10.1186/1756-9966-32-96 PubMed DOI PMC
Zinchuk V, Wu Y, Grossenbacher-Zinchuk O (2013) Bridging the gap between qualitative and quantitative colocalization results in fluorescence microscopy studies. Sci Rep 3: 1365 10.1038/srep01365 PubMed DOI PMC
Ohinata Y, Payer B, O'Carroll D, Ancelin K, Ono Y, Sano M et al. (2005) Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436: 207–213. PubMed
Kurimoto K, Yabuta Y, Ohinata Y, Shigeta M, Yamanaka K, Saitou M (2008) Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice. Genes Dev 22: 1617–1635. 10.1101/gad.1649908 PubMed DOI PMC
Vincent JJ, Li Z, Lee SA, Liu X, Etter MO, Diaz-Perez SK et al. (2011) Single cell analysis facilitates staging of Blimp1-dependent primordial germ cells derived from mouse embryonic stem cells. PLoS ONE 6: e28960 10.1371/journal.pone.0028960 PubMed DOI PMC
West JA, Viswanathan SR, Yabuuchi A, Cunniff K, Takeuchi A, Park JE et al. (2009) A role for Lin28 in primordial germ-cell development and germ-cell malignancy. Nature 460: 909–913. 10.1038/nature08210 PubMed DOI PMC
Newman MA, Thomson JM, Hammond SM (2008) Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14: 1539–1549. 10.1261/rna.1155108 PubMed DOI PMC
Nam Y, Chen C, Gregory RI, Chou JJ, Sliz P (2011) Molecular basis for interaction of let-7 microRNAs with Lin28. Cell 147: 1080–1091. 10.1016/j.cell.2011.10.020 PubMed DOI PMC
Piskounova E, Polytarchou C, Thornton JE, LaPierre RJ, Pothoulakis C, Hagan JP et al. (2011) Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell 147: 1066–1079. 10.1016/j.cell.2011.10.039 PubMed DOI PMC
Niu Z, Goodyear SM, Rao S, Wu X, Tobias JW, Avarbock MR et al. (2011) MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells. Proc Natl Acad Sci USA 108: 12740–12745. 10.1073/pnas.1109987108 PubMed DOI PMC
Barnes NA, Stephenson S, Cocco M, Tooze RM, Doody GM (2012) BLIMP-1 and STAT3 counterregulate microRNA-21 during plasma cell differentiation. J Immunol 189: 253–260. 10.4049/jimmunol.1101563 PubMed DOI
Heo I, Joo C, Kim YK, Ha M, Yoon MJ, Cho J et al. (2009) TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138: 696–708. 10.1016/j.cell.2009.08.002 PubMed DOI
Heo I, Ha M, Lim J, Yoon MJ, Park JE, Kwon SC et al. (2012) Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell 151: 521–532. 10.1016/j.cell.2012.09.022 PubMed DOI
Romanuik TL, Wang G, Holt RA, Jones SJ, Marra MA, Sadar MD. (2009) Identification of novel androgen-responsive genes by sequencing of LongSAGE libraries. BMC Genomics 10: 476 10.1186/1471-2164-10-476 PubMed DOI PMC
Elzeinova F, Novakova V, Buckiova D, Kubatova A, Peknicova J (2008) Effect of low dose of vinclozolin on reproductive tract development and sperm parameters in CD1 outbred mice. Reprod Toxicol 26: 231–238. 10.1016/j.reprotox.2008.09.007 PubMed DOI
Cowin PA, Gold E, Aleksova J, O'Bryan MK, Foster PM, Scott S et al. (2010) Vinclozolin exposure in utero induces postpubertal prostatitis and reduces sperm production via a reversible hormone-regulated mechanism. Endocrinology 151: 783–792. 10.1210/en.2009-0982 PubMed DOI PMC
Merlet J, Racine C, Moreau E, Moreno SG, Habert R (2007) Male fetal germ cells are targets for androgens that physiologically inhibit their proliferation. Proc Natl Acad Sci USA 104: 3615–3620. PubMed PMC
Skogen JC, Overland S (2012) The fetal origins of adult disease: a narrative review of the epidemiological literature. JRSM Short Rep 3: 59 10.1258/shorts.2012.012048 PubMed DOI PMC
Ohinata Y, Ohta H, Shigeta M, Yamanaka K, Wakayama T, Saitou M (2009) A signaling principle for the specification of the germ cell lineage in mice. Cell 137: 571–584. 10.1016/j.cell.2009.03.014 PubMed DOI
Shinoda G, De Soysa TY, Seligson MT, Yabuuchi A, Fujiwara Y, Huang J et al. (2013) Lin28a regulates germ cell pool size and fertility. Stem Cells 31: 1001–1009. 10.1002/stem.1343 PubMed DOI PMC
Avissar-Whiting M, Veiga KR, Uhl KM, Maccani MA, Gagne LA, Moen EL et al. (2010) Bisphenol A exposure leads to specific microRNA alterations in placental cells. Reprod Toxicol 29: 401–406. 10.1016/j.reprotox.2010.04.004 PubMed DOI PMC
Cao D, Allan RW, Cheng L, Peng Y, Guo CC, Dahiya N et al. (2011) RNA-binding protein LIN28 is a marker for testicular germ cell tumors. Hum Pathol 42: 710–718. 10.1016/j.humpath.2010.09.007 PubMed DOI
Xue D, Peng Y, Wang F, Allan RW, Cao D (2011) RNA-binding protein LIN28 is a sensitive marker of ovarian primitive germ cell tumours. Histopathology 59: 452–459. 10.1111/j.1365-2559.2011.03949.x PubMed DOI
Vincent SD, Dunn NR, Sciammas R, Shapiro-Shalef M, Davis MM, Calame EK et al. (2005) The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in the mouse. Development 132: 1315–1325. PubMed
Zhang H, Hao Y, Yang J, Zhou Y, Li J, Yin C et al. (2011) Genome-wide functional screening of miR-23b as a pleiotropic modulator suppressing cancer metastasis. Nat Commun 2: 554 10.1038/ncomms1555 PubMed DOI
Wang KC, Garmire LX, Young A, Nguyen P, Trinh A, Subramaniam N et al. (2010) Role of microRNA-23b in flow-regulation of Rb phosphorylation and endothelial cell growth. Proc Natl Acad Sci USA 107: 3234–3239. 10.1073/pnas.0914825107 PubMed DOI PMC
Majid S, Dar AA, Saini S, Deng G, Chang I, Greene K et al. (2013) MicroRNA-23b functions as a tumor suppressor by regulating Zeb1 in bladder cancer. PLoS ONE 8: e67686 10.1371/journal.pone.0067686 PubMed DOI PMC
Teng Y, Manavalan TT, Hu C, Medjakovic S, Jungbauer A, Klinge CM (2013) Endocrine disruptors fludioxonil and fenhexamid stimulate miR-21 expression in breast cancer cells. Toxicol Sci 131: 71–83. 10.1093/toxsci/kfs290 PubMed DOI PMC
Popp C, Dean W, Feng S, Cokus SJ, Andrews S, Pellegrini M et al. (2010) Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463: 1101–1105. 10.1038/nature08829 PubMed DOI PMC
Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F et al. (2012) The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell 48: 849–862. 10.1016/j.molcel.2012.11.001 PubMed DOI PMC
Radford EJ, Isganaitis E, Jimenez-Chillaron J, Schroeder J, Molla M, Andrews N.et al. (2012) An unbiased assessment of the role of imprinted genes in an intergenerational model of developmental programming. PLoS Genet 8: e1002605 10.1371/journal.pgen.1002605 PubMed DOI PMC
Ivanova E, Chen JH, Segonds-Pichon A, Ozanne SE, Kelsey G (2012) DNA methylation at differentially methylated regions of imprinted genes is resistant to developmental programming by maternal nutrition. Epigenetics 7: 1200–1210. 10.4161/epi.22141 PubMed DOI PMC
Radford EJ, Ito M, Shi H, Corish JA, Yamazawa K, Isganaitis E et al. (2014) In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 345: 1255903 10.1126/science.1255903 PubMed DOI PMC
Brykczynska U, Hisano M, Erkek S, Ramos L, Oakeley EJ, Roloff TC et al. (2010) Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol 17: 679–687. 10.1038/nsmb.1821 PubMed DOI
Anderson AM, Carter KW, Anderson D, Wise MJ (2012) Coexpression of nuclear receptors and histone methylation modifying genes in the testis: implications for endocrine disruptor modes of action. PLoS ONE 7: e34158 10.1371/journal.pone.0034158 PubMed DOI PMC
Kiani J, Grandjean V, Liebers R, Tuorto F, Ghanbarian H, Lyko F et al. (2013) RNA-mediated epigenetic heredity requires the cytosine methyltransferase Dnmt2. PLoS Genet 9: e1003498 10.1371/journal.pgen.1003498 PubMed DOI PMC
Grandjean V, Gounon P, Wagner N, Martin L, Wagner KD, Bernex F et al. (2009) The miR-124-Sox9 paramutation: RNA-mediated epigenetic control of embryonic and adult growth. Development 136: 3647–3655. 10.1242/dev.041061 PubMed DOI
Rodgers AB, Morgan CP, Bronson SL, Revello S, Bale TL (2013) Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J Neurosci 33: 9003–9012. 10.1523/JNEUROSCI.0914-13.2013 PubMed DOI PMC
Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J et al. (2014) Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 17: 667–669. 10.1038/nn.3695 PubMed DOI PMC
Pesce M, De Felici M (1995) Purification of mouse primordial germ cells by MiniMACS magnetic separation system. Dev Biol 170: 722–725. PubMed
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408. PubMed
van den Bergen JA, Miles DC, Sinclair AH, Western PS (2009) Normalizing gene expression levels in mouse fetal germ cells. Biol Reprod 81: 362–370. 10.1095/biolreprod.109.076224 PubMed DOI PMC
Auclair G, Guibert S, Bender A, Weber M (2014) Ontogeny of CpG island methylation and specificity of DNMT3 methyltransferases during embryonic development in the mouse. Genome Biol 15: 545 PubMed PMC
Borgel J, Guibert S, Li Y, Chiba H, Schubeler D, Sasaki H et al. (2010) Targets and dynamics of promoter DNA methylation during early mouse development. Nat Genet 42: 1093–1100. 10.1038/ng.708 PubMed DOI
17α-Ethynylestradiol alters testicular epigenetic profiles and histone-to-protamine exchange in mice