Cloacal Microbiome Structure in a Long-Distance Migratory Bird Assessed Using Deep 16sRNA Pyrosequencing
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26360776
PubMed Central
PMC4567286
DOI
10.1371/journal.pone.0137401
PII: PONE-D-15-00614
Knihovny.cz E-zdroje
- MeSH
- bakteriální RNA MeSH
- biodiverzita MeSH
- chov MeSH
- kloaka mikrobiologie MeSH
- metagenom MeSH
- migrace zvířat * MeSH
- mikrobiota * MeSH
- ptáci mikrobiologie MeSH
- RNA ribozomální 16S genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální RNA MeSH
- RNA ribozomální 16S MeSH
Effects of vertebrate-associated microbiota on physiology and health are of significant interest in current biological research. Most previous studies have focused on host-microbiota interactions in captive-bred mammalian models. These interactions and their outcomes are still relatively understudied, however, in wild populations and non-mammalian taxa. Using deep pyrosequencing, we described the cloacal microbiome (CM) composition in free living barn swallows Hirundo rustica, a long-distance migratory passerine bird. Barn swallow CM was dominated by bacteria of the Actinobacteria, Proteobacteria and Firmicutes phyla. Bacteroidetes, which represent an important proportion of the digestive tract microbiome in many vertebrate species, was relatively rare in barn swallow CM (< 5%). CM composition did not differ between males and females. A significant correlation of CM within breeding pair members is consistent with the hypothesis that cloacal contact during within-pair copulation may promote transfer of bacterial assemblages. This effect on CM composition had a relatively low effect size, however, possibly due to the species' high level of sexual promiscuity.
Zobrazit více v PubMed
Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial Community Variation in Human Body Habitats Across Space and Time. Science. 2009;326: 1694–1697. 10.1126/science.1177486 PubMed DOI PMC
Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332: 970–974. 10.1126/science.1198719 PubMed DOI PMC
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464: 59–65. 10.1038/nature08821 PubMed DOI PMC
Jumpertz R, Le DS, Turnbaugh PJ, Trinidad C, Bogardus C, Gordon JI, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr. 2011;94: 58–65. 10.3945/ajcn.110.010132 PubMed DOI PMC
Heijtz RD, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, et al. Normal gut microbiota modulates brain development and behavior. PNAS. 2011;108: 3047–3052. 10.1073/pnas.1010529108 PubMed DOI PMC
Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol. 2004;4: 478–485. 10.1038/nri1373 PubMed DOI
Koch H, Schmid-Hempel P. Bacterial communities in central European bumblebees: low diversity and high specificity. Microb Ecol. 2011;62: 121–133. 10.1007/s00248-011-9854-3 PubMed DOI
Chervonsky AV. Intestinal commensals: influence on immune system and tolerance to pathogens. Curr Opin Immunol. 2012;24: 255–260. 10.1016/j.coi.2012.03.002 PubMed DOI
Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307: 1915–1920. 10.1126/science.1104816 PubMed DOI
Sonnenburg JL, Xu J, Leip DD, Chen C-H, Westover BP, Weatherford J, et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science. 2005;307: 1955–1959. 10.1126/science.1109051 PubMed DOI
Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: Human gut microbes associated with obesity. Nature. 2006;444: 1022–1023. 10.1038/4441022a PubMed DOI
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444: 1027–1031. 10.1038/nature05414 PubMed DOI
Mathis D, Benoist C. Microbiota and autoimmune disease: the hosted self. Cell Host Microbe. 2011;10: 297–301. 10.1016/j.chom.2011.09.007 PubMed DOI
Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott DJ, et al. Bacterial infection causes stress-induced memory dysfunction in mice. Gut. 2011;60: 307–317. 10.1136/gut.2009.202515 PubMed DOI
De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences. 2010;107: 14691–14696. 10.1073/pnas.1005963107 PubMed DOI PMC
Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E. Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci USA. 2010;107: 20051–20056. 10.1073/pnas.1009906107 PubMed DOI PMC
Cunningham EJA. Female mate preferences and subsequent resistance to copulation in the mallard. Behavioral Ecology. 2003;14: 326–333. 10.1093/beheco/14.3.326 DOI
Kokko H, Ranta E, Ruxton G, Lundberg P. Sexually transmitted disease and the evolution of mating systems. Evolution. 2002;56: 1091–1100. PubMed
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457: 480–484. 10.1038/nature07540 PubMed DOI PMC
Friswell MK, Gika H, Stratford IJ, Theodoridis G, Telfer B, Wilson ID, et al. Site and strain-specific variation in gut microbiota profiles and metabolism in experimental mice. PLoS ONE. 2010;5: e8584 10.1371/journal.pone.0008584 PubMed DOI PMC
Lucas FS, Heeb P. Environmental factors shape cloacal bacterial assemblages in great tit Parus major and blue tit P. caeruleus nestlings. Journal of Avian Biology. 2005;36: 510–516. 10.1111/j.0908-8857.2005.03479.x DOI
Lombardo MP, Thorpe PA, Power HW. The beneficial sexually transmitted microbe hypothesis of avian copulation. Behavioral Ecology. 1999;10: 333–337. 10.1093/beheco/10.3.333 DOI
Poiani A. Sexually Transmitted Diseases: A Possible Cost of Promiscuity in Birds? The Auk. 2000;117: 1061–1065. 10.2307/4089652 DOI
Lombardo MP. Access to mutualistic endosymbiotic microbes: an underappreciated benefit of group living. Behav Ecol Sociobiol. 2008;62: 479–497. 10.1007/s00265-007-0428-9 DOI
White J, Mirleau P, Danchin E, Mulard H, Hatch SA, Heeb P, et al. Sexually transmitted bacteria affect female cloacal assemblages in a wild bird. Ecol Lett. 2010;13: 1515–1524. 10.1111/j.1461-0248.2010.01542.x PubMed DOI PMC
Banks JC, Cary SC, Hogg ID. The phylogeography of Adelie penguin faecal flora. Environ Microbiol. 2009;11: 577–588. 10.1111/j.1462-2920.2008.01816.x PubMed DOI
Møller AP. Sexual Selection and the Barn Swallow. Oxford England; New York: Oxford University Press; 1994.
Safran RJ, Adelman JS, McGraw KJ, Hau M. Sexual signal exaggeration affects physiological state in male barn swallows. Curr Biol. 2008;18: R461–462. 10.1016/j.cub.2008.03.031 PubMed DOI
Laskemoen T, Albrecht T, Bonisoli-Alquati A, Cepak J, Lope F de, Hermosell IG, et al. Variation in sperm morphometry and sperm competition among barn swallow (Hirundo rustica) populations. Behav Ecol Sociobiol. 2013;67: 301–309. 10.1007/s00265-012-1450-0 DOI
White J, Richard M, Massot M, Meylan S. Cloacal bacterial diversity increases with multiple mates: evidence of sexual transmission in female common lizards. PLoS ONE. 2011;6: e22339 10.1371/journal.pone.0022339 PubMed DOI PMC
Kulkarni S, Heeb P. Social and sexual behaviours aid transmission of bacteria in birds. Behav Processes. 2007;74: 88–92. 10.1016/j.beproc.2006.10.005 PubMed DOI
Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995;59: 143–169. PubMed PMC
Benskin CMH, Rhodes G, Pickup RW, Wilson K, Hartley IR. Diversity and temporal stability of bacterial communities in a model passerine bird, the zebra finch. Mol Ecol. 2010;19: 5531–5544. 10.1111/j.1365-294X.2010.04892.x PubMed DOI
Štastný K, Hudec K. Fauna ČR Ptáci III. Academia; Praha; 2011.
Yu Y, Lee C, Kim J, Hwang S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng. 2005;89: 670–679. 10.1002/bit.20347 PubMed DOI
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods. 2010;7: 335–336. 10.1038/nmeth.f.303 PubMed DOI PMC
Bragg L, Stone G, Imelfort M, Hugenholtz P, Tyson GW. Fast, accurate error-correction of amplicon pyrosequences using Acacia. Nat Meth. 2012;9: 425–426. 10.1038/nmeth.1990 PubMed DOI
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26: 2460–2461. 10.1093/bioinformatics/btq461 PubMed DOI
May A, Abeln S, Crielaard W, Heringa J, Brandt BW. Unraveling the outcome of 16S rDNA-based taxonomy analysis through mock data and simulations. Bioinformatics. 2014;30: 1530–1538. 10.1093/bioinformatics/btu085 PubMed DOI
Lee J-H, Yi H, Jeon Y-S, Won S, Chun J. TBC: a clustering algorithm based on prokaryotic taxonomy. J Microbiol. 2012;50: 181–185. 10.1007/s12275-012-1214-6 PubMed DOI
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8: e61217 10.1371/journal.pone.0061217 PubMed DOI PMC
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73: 5261–5267. 10.1128/AEM.00062-07 PubMed DOI PMC
Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics. 2010;26: 266–267. 10.1093/bioinformatics/btp636 PubMed DOI PMC
Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26: 1641–1650. 10.1093/molbev/msp077 PubMed DOI PMC
Lozupone C, Knight R. UniFrac: a New Phylogenetic Method for Comparing Microbial Communities. Appl Environ Microbiol. 2005;71: 8228–8235. 10.1128/AEM.71.12.8228-8235.2005 PubMed DOI PMC
Chao A, Shen T-J. Nonparametric estimation of Shannon’s index of diversity when there are unseen species in sample. Environmental and Ecological Statistics. 2003;10: 429–443. 10.1023/A:1026096204727 DOI
Bunge J, Woodard L, Böhning D, Foster JA, Connolly S, Allen HK. Estimating population diversity with CatchAll. Bioinformatics. 2012;28: 1045–1047. 10.1093/bioinformatics/bts075 PubMed DOI PMC
Good IJ. The Population Frequencies of Species and the Estimation of Population Parameters. Biometrika. 1953;40: 237–264. 10.1093/biomet/40.3-4.237 DOI
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. vegan: Community Ecology Package [Internet]. 2013. Available: http://cran.r-project.org/web/packages/vegan/index.html
Storey JD, Tibshirani R. Statistical significance for genomewide studies. PNAS. 2003;100: 9440–9445. 10.1073/pnas.1530509100 PubMed DOI PMC
Shaw DJ, Dobson AP. Patterns of macroparasite abundance and aggregation in wildlife populations: a quantitative review. Parasitology. 1995;111: S111–S133. 10.1017/S0031182000075855 PubMed DOI
Gotelli NJ, McCabe DJ. Species co-occurrence: a meta-analysis of j. m. diamond’s assembly rules model. Ecology. 2002;83: 2091–2096. 10.1890/0012-9658(2002)083[2091:SCOAMA]2.0.CO;2 DOI
R Development Core Team (2013). R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria: ISBN 3-900051-07-0, URL http://www.R-project.org.
Nelson TM, Rogers TL, Carlini AR, Brown MV. Diet and phylogeny shape the gut microbiota of Antarctic seals: a comparison of wild and captive animals. Environ Microbiol. 2013;15: 1132–1145. 10.1111/1462-2920.12022 PubMed DOI
Ley RE, Hamady M, Lozupone C, Turnbaugh P, Ramey RR, Bircher JS, et al. Evolution of mammals and their gut microbes. Science. 2008;320: 1647–1651. 10.1126/science.1155725 PubMed DOI PMC
Kreisinger J, Cížková D, Vohánka J, Piálek J. Gastrointestinal microbiota of wild and inbred individuals of two house mouse subspecies assessed using high-throughput parallel pyrosequencing. Mol Ecol. 2014; 10.1111/mec.12909 PubMed DOI
Waite DW, Deines P, Taylor MW. Gut microbiome of the critically endangered New Zealand parrot, the kakapo (Strigops habroptilus). PLoS ONE. 2012;7: e35803 10.1371/journal.pone.0035803 PubMed DOI PMC
Godoy-Vitorino F, Leal SJ, Díaz WA, Rosales J, Goldfarb KC, García-Amado MA, et al. Differences in crop bacterial community structure between hoatzins from different geographical locations. Res Microbiol. 2012;163: 211–220. 10.1016/j.resmic.2012.01.001 PubMed DOI
Xu B, Xu W, Yang F, Li J, Yang Y, Tang X, et al. Metagenomic analysis of the pygmy loris fecal microbiome reveals unique functional capacity related to metabolism of aromatic compounds. PLoS ONE. 2013;8: e56565 10.1371/journal.pone.0056565 PubMed DOI PMC
Dewar ML, Arnould JPY, Dann P, Trathan P, Groscolas R, Smith S. Interspecific variations in the gastrointestinal microbiota in penguins. Microbiologyopen. 2013;2: 195–204. 10.1002/mbo3.66 PubMed DOI PMC
Videnska P, Sisak F, Havlickova H, Faldynova M, Rychlik I. Influence of Salmonella enterica serovar Enteritidis infection on the composition of chicken cecal microbiota. BMC Vet Res. 2013;9: 140 10.1186/1746-6148-9-140 PubMed DOI PMC
Skraban J, Dzeroski S, Zenko B, Tusar L, Rupnik M. Changes of poultry faecal microbiota associated with Clostridium difficile colonisation. Vet Microbiol. 2013;165: 416–424. 10.1016/j.vetmic.2013.04.014 PubMed DOI
Hannigan GD, Grice EA. Microbial ecology of the skin in the era of metagenomics and molecular microbiology. Cold Spring Harb Perspect Med. 2013;3: a015362 10.1101/cshperspect.a015362 PubMed DOI PMC
Cho E-J, Sung H, Park S-J, Kim M- N, Lee S-O. Rothia mucilaginosa pneumonia diagnosed by quantitative cultures and intracellular organisms of bronchoalveolar lavage in a lymphoma patient. Ann Lab Med. 2013;33: 145–149. 10.3343/alm.2013.33.2.145 PubMed DOI PMC
Moran NA, Russell JA, Koga R, Fukatsu T. Evolutionary Relationships of Three New Species of Enterobacteriaceae Living as Symbionts of Aphids and Other Insects. Appl Environ Microbiol. 2005;71: 3302–3310. 10.1128/AEM.71.6.3302-3310.2005 PubMed DOI PMC
Cordaux R, Paces-Fessy M, Raimond M, Michel-Salzat A, Zimmer M, Bouchon D. Molecular Characterization and Evolution of Arthropod-Pathogenic Rickettsiella Bacteria. Appl Environ Microbiol. 2007;73: 5045–5047. 10.1128/AEM.00378-07 PubMed DOI PMC
Tóth EM, Schumann P, Borsodi AK, Kéki Z, Kovács AL, Márialigeti K. Wohlfahrtiimonas chitiniclastica gen. nov., sp. nov., a new gammaproteobacterium isolated from Wohlfahrtia magnifica (Diptera: Sarcophagidae). Int J Syst Evol Microbiol. 2008;58: 976–981. 10.1099/ijs.0.65324-0 PubMed DOI
Huse SM, Ye Y, Zhou Y, Fodor AA. A Core Human Microbiome as Viewed through 16S rRNA Sequence Clusters. Ahmed N, editor. PLoS ONE. 2012;7: e34242 10.1371/journal.pone.0034242 PubMed DOI PMC
Tap J, Mondot S, Levenez F, Pelletier E, Caron C, Furet J-P, et al. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol. 2009;11: 2574–2584. 10.1111/j.1462-2920.2009.01982.x PubMed DOI
Jalanka-Tuovinen J, Salonen A, Nikkilä J, Immonen O, Kekkonen R, Lahti L, et al. Intestinal Microbiota in Healthy Adults: Temporal Analysis Reveals Individual and Common Core and Relation to Intestinal Symptoms. PLoS ONE. 2011;6: e23035 10.1371/journal.pone.0023035 PubMed DOI PMC
Cepák J, Klvaňa P, Škopek J, Schröpfer J, Jelínek M, Hořák D, et al. Atlas migrace ptáků České a Slovenské republiky: Czech and Slovak bird migration atlas Praha: Aventinum; 2008.
Saino N, Szép T, Ambrosini R, Romano M, Møller AP. Ecological conditions during winter affect sexual selection and breeding in a migratory bird. Proc Biol Sci. 2004;271: 681–686. 10.1098/rspb.2003.2656 PubMed DOI PMC
Bangsgaard Bendtsen KM, Krych L, Sørensen DB, Pang W, Nielsen DS, Josefsen K, et al. Gut Microbiota Composition Is Correlated to Grid Floor Induced Stress and Behavior in the BALB/c Mouse. PLoS ONE. 2012;7: e46231 10.1371/journal.pone.0046231 PubMed DOI PMC
Markle JGM, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science. 2013;339: 1084–1088. 10.1126/science.1233521 PubMed DOI
Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Bäckhed HK, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150: 470–480. 10.1016/j.cell.2012.07.008 PubMed DOI PMC
Smith HG, Montgomerie R. Male Incubation in Barn Swallows: The Influence of Nest Temperature and Sexual Selection. The Condor. 1992;94: 750–759. 10.2307/1369260 DOI
Saino N, Cuervo JJ, Ninni P, De Lope F, Møller AP. Haematocrit correlates with tail ornament size in three populations of the Barn Swallow (Hirundo rustica). Functional Ecology. 1997;11: 604–610. 10.1046/j.1365-2435.1997.00131.x DOI
Rubolini D, Colombo G, Ambrosini R, Caprioli M, Clerici M, Colombo R, et al. Sex-related effects of reproduction on biomarkers of oxidative damage in free-living barn swallows (Hirundo rustica). PLoS ONE. 2012;7: e48955 10.1371/journal.pone.0048955 PubMed DOI PMC
Roggenbuck M, Schnell IB, Blom N, Bælum J, Bertelsen MF, Pontén TS, et al. The microbiome of New World vultures. Nat Commun. 2014;5 10.1038/ncomms6498 PubMed DOI
Gut microbiota variation between climatic zones and due to migration strategy in passerine birds
Variation in diet composition and its relation to gut microbiota in a passerine bird