Cloacal swabs and alcohol bird specimens are good proxies for compositional analyses of gut microbial communities of Great tits (Parus major)
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CF17-0248
Carlsbergfondet
18-23794Y
Grantová Agentura České Republiky
GAJU n.048/2019/P
Jihočeská Univerzita v Českých Budějovicích
PubMed
33499943
PubMed Central
PMC7807456
DOI
10.1186/s42523-020-00026-8
PII: 10.1186/s42523-020-00026-8
Knihovny.cz E-zdroje
- Klíčová slova
- Digestive tract microbiota, Microbiomes, Museum alcohol bird collections, Non-invasive sampling, Passeriformes,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Comprehensive studies of wild bird microbiomes are often limited by difficulties of sample acquisition. However, widely used non-invasive cloacal swab methods and under-explored museum specimens preserved in alcohol provide promising avenues to increase our understanding of wild bird microbiomes, provided that they accurately portray natural microbial community compositions. To investigate this assertion, we used 16S rRNA amplicon sequencing of Great tit (Parus major) gut microbiomes to compare 1) microbial communities obtained from dissected digestive tract regions and cloacal swabs, and 2) microbial communities obtained from freshly dissected gut regions and from samples preserved in alcohol for 2 weeks or 2 months, respectively. RESULTS: We found no significant differences in alpha diversities in communities of different gut regions and cloacal swabs (except in OTU richness between the dissected cloacal region and the cloacal swabs), or between fresh and alcohol preserved samples. However, we did find significant differences in beta diversity and community composition of cloacal swab samples compared to different gut regions. Despite these community-level differences, swab samples qualitatively captured the majority of the bacterial diversity throughout the gut better than any single compartment. Bacterial community compositions of alcohol-preserved specimens did not differ significantly from freshly dissected samples, although some low-abundant taxa were lost in the alcohol preserved specimens. CONCLUSIONS: Our findings suggest that cloacal swabs, similar to non-invasive fecal sampling, qualitatively depict the gut microbiota composition without having to collect birds to extract the full digestive tract. The satisfactory depiction of gut microbial communities in alcohol preserved samples opens up for the possibility of using an enormous resource readily available through museum collections to characterize bird gut microbiomes. The use of extensive museum specimen collections of birds for microbial gut analyses would allow for investigations of temporal patterns of wild bird gut microbiomes, including the potential effects of climate change and anthropogenic impacts. Overall, the utilization of cloacal swabs and museum alcohol specimens can positively impact bird gut microbiome research to help increase our understanding of the role and evolution of wild bird hosts and gut microbial communities.
Faculty of Science University of South Bohemia Branisovska 1760 Ceske Budejovice Czech Republic
Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
Section for Ecology and Evolution Department of Biology University of Copenhagen Copenhagen Denmark
Zobrazit více v PubMed
Song SJ, Amir A, Metcalf JL, Amato KR, Xu ZZ, Humphrey G, Knight R. Preservation methods differ in fecal microbiome stability, affecting suitability for field studies. mSystems. 2016;1(3):e00021–e00016. doi: 10.1128/mSystems.00021-16. PubMed DOI PMC
Videvall E, Strandh M, Engelbrecht A, Cloete S, Cornwallis CK. Measuring the gut microbiome in birds: comparison of faecal and cloacal sampling. Mol Ecol Resour. 2018;18(3):424–434. doi: 10.1111/1755-0998.12744. PubMed DOI
Blaser M, Bork P, Fraser C, Knight R, Wang J. The microbiome explored: recent insights and future challenges. Nat Rev Microbiol. 2013;11(3):213–217. doi: 10.1038/nrmicro2973. PubMed DOI
Hale VL, Tan CL, Knight R, Amato KR. Effect of preservation method on spider monkey (Ateles geoffroyi) fecal microbiota over 8 weeks. J Microbiol Meth. 2015;113:16–26. doi: 10.1016/j.mimet.2015.03.021. PubMed DOI
Drovetski SV, O'Mahoney M, Ransome EJ, Matterson KO, Lim HC, Chesser RT, Graves GR. Spatial organization of the gastrointestinal microbiota in urban Canada geese. Sci Rep. 2018;8:3713. doi: 10.1038/s41598-018-21892-y. PubMed DOI PMC
King GM, Judd C, Kuske CR, Smith C. Analysis of stomach and gut microbiomes of the eastern oyster (Crassostrea virginica) from coastal Louisiana, USA. Plos One. 2012;7(12):e51475. doi: 10.1371/journal.pone.0051475. PubMed DOI PMC
Liu Y, Zheng ZJ, Yu LH, Wu S, Sun L, Wu SL, Xu Q, Cai SF, Qin N, Bao WB. Examination of the temporal and spatial dynamics of the gut microbiome in newborn piglets reveals distinct microbial communities in six intestinal segments. Sci Rep. 2019;9:3453. doi: 10.1038/s41598-019-40235-z. PubMed DOI PMC
Pauli JN, Whiteman JP, Riley MD, Middleton AD. Defining noninvasive approaches for sampling of vertebrates. Conserv Biol. 2010;24(1):349–352. doi: 10.1111/j.1523-1739.2009.01298.x. PubMed DOI
Colston TJ, Jackson CR. Microbiome evolution along divergent branches of the vertebrate tree of life: what is known and unknown. Mol Ecol. 2016;25(16):3776–3800. doi: 10.1111/mec.13730. PubMed DOI
Muegge BD, Kuczynski J, Knights D, Clemente JC, Gonzalez A, Fontana L, Henrissat B, Knight R, Gordon JI. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332(6032):970–974. doi: 10.1126/science.1198719. PubMed DOI PMC
Kropackova L, Tesicky M, Albrecht T, Kubovciak J, Cizkova D, Tomasek O, Martin JF, Bobek L, Kralova T, Prochazka P, et al. Codiversification of gastrointestinal microbiota and phylogeny in passerines is not explained by ecological divergence. Mol Ecol. 2017;26(19):5292–5304. doi: 10.1111/mec.14144. PubMed DOI
Wei FW, Wang X, Wu Q. The giant panda gut microbiome. Trends Microbiol. 2015;23(8):450–452. doi: 10.1016/j.tim.2015.06.004. PubMed DOI
Zhao GH, Zhou LZ, Dong YQ, Cheng YY, Song YW. The gut microbiome of hooded cranes (Grus monacha) wintering at Shengjin Lake, China. Microbiologyopen. 2017;6(3):e00447. doi: 10.1002/mbo3.447. PubMed DOI PMC
Waite DW, Deines P, Taylor MW. Gut microbiome of the critically endangered New Zealand parrot, the Kakapo (Strigops habroptilus) PLoS One. 2012;7(4):e35803. doi: 10.1371/journal.pone.0035803. PubMed DOI PMC
Barelli C, Albanese D, Donati C, Pindo M, Dallago C, Rovero F, Cavalieri D, Tuohy KM, Hauffe HC, De Filippo C. Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: implications for conservation. Sci Rep. 2015;5:14862. doi: 10.1038/srep14862. PubMed DOI PMC
Kropackova L, Pechmanova H, Vinkler M, Svobodova J, Velova H, Tesicky M, Martin JF, Kreisinger J. Variation between the oral and faecal microbiota in a free-living passerine bird, the great tit (Parus major) PLoS One. 2017;12(6):e0179945. doi: 10.1371/journal.pone.0179945. PubMed DOI PMC
Garcia-Mazcorro JF, Castillo-Carranza SA, Guard B, Gomez-Vazquez JP, Dowd SE, Brigthsmith DJ. Comprehensive molecular characterization of bacterial communities in feces of pet birds using 16S marker sequencing. Microb Ecol. 2017;73(1):224–235. doi: 10.1007/s00248-016-0840-7. PubMed DOI
Grond K, Santo Domingo JW, Lanctot RB, Jumpponen A, Bentzen RL, Boldenow ML, Brown SC, Casler B, Cunningham JA, Doll AC, et al. Composition and drivers of gut microbial communities in Arctic-breeding shorebirds. Front Microbiol. 2019;10:2258. doi: 10.3389/fmicb.2019.02258. PubMed DOI PMC
Dewar ML, Arnould JPY, Dann P, Trathan P, Groscolas R, Smith S. Interspecific variations in the gastrointestinal microbiota in penguins. Microbiologyopen. 2013;2(1):195–204. doi: 10.1002/mbo3.66. PubMed DOI PMC
Dewar ML, Arnould JPY, Krause L, Dann P, Smith SC. Interspecific variations in the faecal microbiota of Procellariiform seabirds. FEMS Microbiol Ecol. 2014;89(1):47–55. doi: 10.1111/1574-6941.12332. PubMed DOI
Risely A, Waite D, Ujvari B, Klaassen M, Hoye B. Gut microbiota of a long-distance migrant demonstrates resistance against environmental microbe incursions. Mol Ecol. 2017;26(20):5842–5854. doi: 10.1111/mec.14326. PubMed DOI
Risely A, Waite DW, Ujvari B, Hoye BJ, Klaassen M. Active migration is associated with specific and consistent changes to gut microbiota in Calidris shorebirds. J Anim Ecol. 2018;87(2):428–437. doi: 10.1111/1365-2656.12784. PubMed DOI
Kreisinger J, Cizkova D, Kropackova L, Albrecht T. Cloacal microbiome structure in a long-distance migratory bird assessed using deep 16sRNA pyrosequencing. PLoS One. 2015;10(9):e0137401. doi: 10.1371/journal.pone.0137401. PubMed DOI PMC
Musitelli F, Ambrosini R, Rubolini D, Saino N, Franzetti A, Gandolfi I. Cloacal microbiota of barn swallows from northern Italy. Ethol Ecol Evol. 2018;30(4):362–372. doi: 10.1080/03949370.2017.1388294. DOI
Ambrosini R, Corti M, Franzetti A, Caprioli M, Rubolini D, Motta VM, Costanzo A, Saino N, Gandolfi I. Cloacal microbiomes and ecology of individual barn swallows. Fems Microbiol Ecol. 2019;95(6):fiz061. doi: 10.1093/femsec/fiz061. PubMed DOI
Barbosa A, Balague V, Valera F, Martinez A, Benzal J, Motas M, Diaz JI, Mira A, Pedros-Alio C. Age-related differences in the gastrointestinal microbiota of chinstrap penguins (Pygoscelis antarctica) PLoS One. 2016;11(4):e0153215. doi: 10.1371/journal.pone.0153215. PubMed DOI PMC
van Dongen WFD, White J, Brandl HB, Moodley Y, Merkling T, Leclaire S, Blanchard P, Danchin E, Hatch SA, Wagner RH. Age-related differences in the cloacal microbiota of a wild bird species. BMC Ecol. 2013;13:11. doi: 10.1186/1472-6785-13-11. PubMed DOI PMC
Merkeviciene L, Ruzauskaite N, Klimiene I, Siugzdiniene R, Dailidaviciene J, Virgailis M, Mockeliunas R, Ruzauskas M. Microbiome and antimicrobial resistance genes in microbiota of cloacal samples from European herring gulls (Larus argentatus) J Vet Res. 2017;61(1):27–35. doi: 10.1515/jvetres-2017-0004. PubMed DOI PMC
Klomp JE, Murphy MT, Smith SB, Mckay JE, Ferrera I, Reysenbach AL. Cloacal microbial communities of female spotted towhees Pipilo maculatus: microgeographic variation and individual sources of variability. J Avian Biol. 2008;39(5):530–538. doi: 10.1111/j.0908-8857.2008.04333.x. DOI
Drovetski SV, O’Mahoney MJV, Matterson KO, Schmidt BK, Greves GR. Distinct microbiotas of anatomical gut regions display idiosyncratic seasonal variation in an avian folivore. BMC Anim Microbiome. 2019;1:2. doi: 10.1186/s42523-019-0002-6. PubMed DOI PMC
Garcia-Amado MA, Shin H, Sanz V, Lentino M, Martinez LM, Contreras M, Michelangeli F, Dominguez-Bello MG. Comparison of gizzard and intestinal microbiota of wild neotropical birds. PLoS One. 2018;13(3):e0194857. doi: 10.1371/journal.pone.0194857. PubMed DOI PMC
Zhang Y, Simon SE, Johnson JA, Allen MS. Spatial microbial composition along the gastrointestinal tract of captive Attwater’s prairie chicken. Microb Ecol. 2017;73(4):966–977. doi: 10.1007/s00248-016-0870-1. PubMed DOI
Stanley D, Geier MS, Chen H, Hughes RJ, Moore RJ. Comparison of fecal and cecal microbiotas reveals qualitative similarities but quantitative differences. BMC Microbiol. 2015;15:51. doi: 10.1186/s12866-015-0388-6. PubMed DOI PMC
Youngblut ND, Reischer GH, Walters W, Schuster N, Walzer C, Stalder G, Ley RE, Farnleitner AH. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat Commun. 2019;10:2200. doi: 10.1038/s41467-019-10191-3. PubMed DOI PMC
Grond K, Sandercock BK, Jumpponen A, Zeglin LH. The avian gut microbiota: community, physiology and function in wild birds. J Avian Biol. 2018;49(11):e01788. doi: 10.1111/jav.01788. DOI
Hird SM. Evolutionary biology needs wild microbiomes. Front Microbiol. 2017;8:725. doi: 10.3389/fmicb.2017.00725. PubMed DOI PMC
Bodawatta KH, Sam K, Jonsson KA, Poulsen M. Comparative analyses of the digestive tract microbiota of new Guinean passerine birds. Front Microbiol. 2018;9:1830. doi: 10.3389/fmicb.2018.01830. PubMed DOI PMC
Lutz HL, Tkach VV, Weckstein JD. Methods for specimen-based studies of avian symbionts 1. In: Webster MS, editor. The extended specimen emerging frontiers in collections-based ornithological research. Boca Raton: CRC Press, Taylor and Francis Group; 2017.
Roselaar CS. An inventory of major European bird collections. Bull B O C. 2003;123:253–337.
Banks C, Clench MH, Barlow JC. Bird collections in the United States and Canada. Auk. 1973;90:136–170.
Gill BJ. Birds in Australian and New Zealand museums - a major resource for ornithology. New Zeal J Zool. 2006;33(4):299–315. doi: 10.1080/03014223.2006.9518458. DOI
Eriksson P, Mourkas E, González-Acuna D, Olsen B, Ellström P. Evaluation and optimization of microbial DNA from fecal samples an of wild Antarctic birds species. Infect Ecol Epidemiol. 2017;7(1):1386536. doi: 10.1080/20008686.2017.1386536. PubMed DOI PMC
Regnaut S, Lucas FS, Fumagalli L. DNA degradation in avian faecal samples and feasibility of non-invasive genetic studies of threatened capercaillie populations. Conserv Genet. 2006;7(3):449–453. doi: 10.1007/s10592-005-9023-7. DOI
Waite DW, Taylor MW. Exploring the avian gut microbiota: current trends and future directions. Front Microbiol. 2015;6:673. doi: 10.3389/fmicb.2015.00673. PubMed DOI PMC
Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microb. 2013;79(17):5112–5120. doi: 10.1128/AEM.01043-13. PubMed DOI PMC
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(D1):D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC
Team RC. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2019.
Team R . RStudio: integrated development for R. Boston: RStudio, Inc; 2015.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. vegan: community ecology package. R package version 2.5–4. 2019.
Arbizu MP. pairwiseAdonis: pairwise multilevel comparison using adonis. 2019.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Ssekagiri A, Sloan WT, Ljaz UZ. microbiomeSeq: an R package for microbial community analysis in an environmental contex. 2018.
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8(4):e61217. doi: 10.1371/journal.pone.0061217. PubMed DOI PMC
Specific gut bacterial responses to natural diets of tropical birds
Flexibility and resilience of great tit (Parus major) gut microbiomes to changing diets
Great Tit (Parus major) Uropygial Gland Microbiomes and Their Potential Defensive Roles