Specific gut bacterial responses to natural diets of tropical birds
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
CF17-0248
Carlsbergfondet
CF17-0248
Carlsbergfondet
BABE 805189
European Research Council - International
BABE 805189
European Research Council - International
BABE 805189
European Research Council - International
BABE 805189
European Research Council - International
BABE 805189
European Research Council - International
PubMed
35027664
PubMed Central
PMC8758760
DOI
10.1038/s41598-022-04808-9
PII: 10.1038/s41598-022-04808-9
Knihovny.cz E-zdroje
- MeSH
- dieta * MeSH
- mikrobiota fyziologie MeSH
- přijímání potravy fyziologie MeSH
- ptáci klasifikace mikrobiologie fyziologie MeSH
- střevní mikroflóra fyziologie MeSH
- tropické klima * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The composition of gut bacterial communities is strongly influenced by the host diet in many animal taxa. For birds, the effect of diet on the microbiomes has been documented through diet manipulation studies. However, for wild birds, most studies have drawn on literature-based information to decipher the dietary effects, thereby, overlooking individual variation in dietary intake. Here we examine how naturally consumed diets influence the composition of the crop and cloacal microbiomes of twenty-one tropical bird species, using visual and metabarcoding-based identification of consumed diets and bacterial 16S rRNA microbiome sequencing. We show that diet intakes vary markedly between individuals of the same species and that literature-based dietary guilds grossly underestimate intraspecific diet variability. Furthermore, despite an effect of literature-based dietary guild assignment of host taxa, the composition of natural diets does not align with crop and cloacal microbiome similarity. However, host-taxon specific gut bacterial lineages are positively correlated with specific diet items, indicating that certain microbes associate with different diet components in specific avian hosts. Consequently, microbiome composition is not congruent with the overall consumed diet composition of species, but specific components of a consumed diet lead to host-specific effects on gut bacterial taxa.
Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
New Guinea Binatang Research Centre Madang Papua New Guinea
Section for Ecology and Evolution Department of Biology University of Copenhagen Copenhagen Denmark
Zobrazit více v PubMed
Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev. Microbiol. 2011;9:279–290. doi: 10.1038/nrmicro2540. PubMed DOI
Broom LJ, Kogut MH. The role of the gut microbiome in shaping the immune system of chickens. Vet. Immunol. Immunopathol. 2018;204:44–51. doi: 10.1016/j.vetimm.2018.10.002. PubMed DOI
Renelies-Hamilton J, Germer K, Sillam-Dusses D, Bodawatta KH, Poulsen M. Disentangling the relative roles of vertical transmission, subsequent colonizations, and diet on cockroach microbiome assembly. mSphere. 2021 doi: 10.1128/mSphere.01023-20. PubMed DOI PMC
Bodawatta KH, et al. Flexibility and resilience of Great tit (Parus major) gut microbiomes to changing diets. BMC Anim. Microbiome. 2021;3:20. doi: 10.1186/s42523-021-00076-6. PubMed DOI PMC
Grond K, et al. Composition and drivers of gut microbial communities in arctic-breeding shorebirds. Front Microbiol. 2019;10:2258. doi: 10.3389/fmicb.2019.02258. PubMed DOI PMC
Youngblut ND, et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 2019;10:2200. doi: 10.1038/s41467-019-10191-3. PubMed DOI PMC
Asnicar F, et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. Msystems. 2017 doi: 10.1128/mSystems.00164-16. PubMed DOI PMC
Teyssier A, Lens L, Matthysen E, White J. Dynamics of gut microbiota diversity during the early development of an avian host: Evidence from a cross-foster experiment. Front Microbiol. 2018;9:1524. doi: 10.3389/fmicb.2018.01524. PubMed DOI PMC
Song SJ, et al. Comparative analyses of vertebrate gut microbiomes reveal convergence between birds and bats. MBio. 2020 doi: 10.1128/mBio.02901-19. PubMed DOI PMC
Bodawatta KH, et al. Species-specific but not phylosymbiotic gut microbiomes of New Guinean passerines birds are shaped by diet and flight-associated gut modifications. Proc. Biol. Sci. 2021;288:20210446. PubMed PMC
Davidson GL, et al. Diet induces parallel changes to the gut microbiota and problem solving performance in a wild bird. Sci. Rep. 2020;10:20783. doi: 10.1038/s41598-020-77256-y. PubMed DOI PMC
Turjeman S, et al. Migration, pathogens and the avian microbiome: A comparative study in sympatric migrants and residents. Mol. Ecol. 2020;29:4706–4720. doi: 10.1111/mec.15660. PubMed DOI
Teyssier A, et al. Diet contributes to urban-induced alterations in gut microbiota: Experimental evidence from a wild passerine. Proc. Biol. Sci. 2020;287:20192182. doi: 10.1098/rspb.2019.2182. PubMed DOI PMC
Tung J, et al. Social networks predict gut microbiome composition in wild baboons. Elife. 2015 doi: 10.7554/eLife.05224. PubMed DOI PMC
Bodawatta KH, Hird SM, Grond K, Poulsen M, Jonsson KA. Avian gut microbiomes taking flight. Trends Microbiol. 2021 doi: 10.1016/j.tim.2021.07.003. PubMed DOI
Muegge BD, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332:970–974. doi: 10.1126/science.1198719. PubMed DOI PMC
Bodawatta KH, Sam K, Jønsson KA, Poulsen M. Comparative analyses of the digestive tract microbiota of new guinean passerine birds. Front Microbiol. 2018;9:1830. doi: 10.3389/fmicb.2018.01830. PubMed DOI PMC
Hird SM, Sanchez C, Carstens BC, Brumfield RT. Comparative gut microbiota of 59 neotropical bird species. Front Microbiol. 2015;6:1403. doi: 10.3389/fmicb.2015.01403. PubMed DOI PMC
Kropackova L, et al. Codiversification of gastrointestinal microbiota and phylogeny in passerines is not explained by ecological divergence. Mol. Ecol. 2017;26:5292–5304. doi: 10.1111/mec.14144. PubMed DOI
Loo WT, Garcia-Loor J, Dudaniec RY, Kleindorfer S, Cavanaugh CM. Host phylogeny, diet, and habitat differentiate the gut microbiomes of Darwin's finches on Santa Cruz Island. Sci. Rep. 2019;9:18781. doi: 10.1038/s41598-019-54869-6. PubMed DOI PMC
Gongora E, Elliott KH, Whyte L. Gut microbiome is affected by inter-sexual and inter-seasonal variation in diet for thick-billed murres (Uria lomvia) Sci. Rep. 2021;11:1200. doi: 10.1038/s41598-020-80557-x. PubMed DOI PMC
Sam K, Koane B, Jeppy S, Sykorova J, Novotny V. Diet of land birds along an elevational gradient in Papua New Guinea. Sci. Rep. 2017;7:44018. doi: 10.1038/srep44018. PubMed DOI PMC
Burin G, Kissling WD, Guimaraes PR, Jr, Sekercioglu CH, Quental TB. Omnivory in birds is a macroevolutionary sink. Nat. Commun. 2016;7:11250. doi: 10.1038/ncomms11250. PubMed DOI PMC
Grond K, Guilani H, Hird SM. Spatial heterogeneity of the shorebird gastrointestinal microbiome. R. Soc. Open Sci. 2020;7:191609. doi: 10.1098/rsos.191609. PubMed DOI PMC
Boyer F, et al. Obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 2016;16:176–182. doi: 10.1111/1755-0998.12428. PubMed DOI
McMurdie PJ, Holmes S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217. doi: 10.1371/journal.pone.0061217. PubMed DOI PMC
Callahan BJ, et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Bolyen E, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019;37:852–857. doi: 10.1038/s41587-019-0209-9. PubMed DOI PMC
Lahti, L. & Shetty, S. Tools for microbiome analysis in R. Version 2.1.24, http://microbiome.github.com/microbiome (2017).
Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–4, https://CRAN.R-project.org/package=vegan (2019).
Ssekagiri, A., Sloan, W. T. & Ljaz, U. Z. microbiomeSeq: An R package for microbial community analysis in an environmental contex. In ISCB Africa ASBCB conference.http://userweb.eng.gla.ac.uk/umer.ijaz/projects/microbiomeSeq_Tutorial.html (2017).
Sottas C, et al. Tracing the early steps of competition-driven eco-morphological divergence in two sister species of passerines. Evol. Ecol. 2020;34:501–524. doi: 10.1007/s10682-020-10050-4. DOI
Karr JR. Seasonality, resource availability, and community diversity in tropical bird communities. Am. Nat. 1976;110:973–994. doi: 10.1086/283121. DOI
Jaksic FM, El Fariña JM. Niño and the birds: A resource-based interpretation of climatic forcing in the Southeasteren Pacific. Anales Instituto Patagonia. 2010;38:121–140.
da Silva LP, et al. Advancing the integration of multi-marker metabarcoding data in dietary analysis of trophic generalists. Mol. Ecol. Resour. 2019;19:1420–1432. doi: 10.1111/1755-0998.13060. PubMed DOI PMC
Batovska J, Piper AM, Valenzuela I, Cunningham JP, Blacket MJ. Developing a non-destructive metabarcoding protocol for detection of pest insects in bulk trap catches. Sci. Rep. 2021;11:7946. doi: 10.1038/s41598-021-85855-6. PubMed DOI PMC
Galan M, et al. Metabarcoding for the parallel identification of several hundred predators and their prey: Application to bat species diet analysis. Mol. Ecol. Resour. 2018;18:474–489. doi: 10.1111/1755-0998.12749. PubMed DOI
Tercel M, Symondson WOC, Cuff JP. The problem of omnivory: A synthesis on omnivory and DNA metabarcoding. Mol. Ecol. 2021;30:2199–2206. doi: 10.1111/mec.15903. PubMed DOI
Lamb PD, et al. How quantitative is metabarcoding: A meta-analytical approach. Mol. Ecol. 2019;28:420–430. doi: 10.1111/mec.14920. PubMed DOI PMC
Dion-Phenix H, et al. Bacterial microbiota similarity between predators and prey in a blue tit trophic network. ISME J. 2021;15:1098–1107. doi: 10.1038/s41396-020-00836-3. PubMed DOI PMC
Fukui A. Relationship between seed retention time in bird’s gut and fruit characteristics. Ornithol. Sci. 2003;2:41–48. doi: 10.2326/osj.2.41. DOI
Fukui A. Retention time of seeds in bird guts: Costs and benefits for fruiting plants and frugivorous birds. Plant Spec. Biol. 1996;11:141–147. doi: 10.1111/j.1442-1984.1996.tb00139.x. DOI
Powell GVN. Sociobiology and adaptive significance of interspecific foraging flocks in the neotropics. Ornithol. Monogr. 1985;36:713–732. doi: 10.2307/40168313. DOI
Saracco JF, Collazo JA, Groom MJ. How do frugivores track resources? Insights from spatial analyses of bird foraging in a tropical forest. Oecologia. 2004;139:235–245. doi: 10.1007/s00442-004-1493-7. PubMed DOI
Olivé-Muñiz M, Pagano-Núñez E, Senar JC. Breeding great Tit Parus major individuals have moderately consistent foraging niches across years. Ardeola. 2021;68:409–422. doi: 10.13157/arla.68.2.2021.ra6. DOI
Drovetski SV, et al. Spatial organization of the gastrointestinal microbiota in Urban Canada Geese. Sci. Rep. 2018;8:3713. doi: 10.1038/s41598-018-24859-1. PubMed DOI PMC
Drovetski SV, O’Mahoney MJV, Matterson KO, Schmidt BK, Grant BR. Distinct microbiotas of anatomical gut regions display idiosyncratic seasonal variation in an avian folivore. BMC Anim. Microbiome. 2019;1:2. doi: 10.1186/s42523-019-0002-6. PubMed DOI PMC
Videvall E, Strandh M, Engelbrecht A, Cloete S, Cornwallis CK. Measuring the gut microbiome in birds: Comparison of faecal and cloacal sampling. Mol. Ecol. Resour. 2018;18:424–434. doi: 10.1111/1755-0998.12744. PubMed DOI
Clench MH, Mathias JR. The avian cecum: A review. Wilson Bull. 1995;107:93–121.
Bodawatta KH, Puzejova K, Sam K, Poulsen M, Jønsson KA. Cloacal swabs and alcohol bird specimens are good proxies for compositional analyses of gut microbial communities of Great tits (Parus major) BMC Anim. Microbiome. 2020;2:9. doi: 10.1186/s42523-020-00026-8. PubMed DOI PMC
Pratt TK, Beehler BM. Birds of New Guinea. Princeton University Press; 2014.
Leray M, et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Front Zool. 2013;10:34. doi: 10.1186/1742-9994-10-34. PubMed DOI PMC
Yu DW, et al. Biodiversity soup: Metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol. Evol. 2012;3:613–623. doi: 10.1111/j.2041-210X.2012.00198.x. DOI
Elbrecht V, et al. Validation of COI metabarcoding primers for terrestrial arthropods. PeerJ. 2019;7:e7745. doi: 10.7717/peerj.7745. PubMed DOI PMC
Chen S, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE. 2010;5:e8613. doi: 10.1371/journal.pone.0008613. PubMed DOI PMC
Taberlet P, Bonin A, Zinger L, Coissac E. Environmental DNA: For Biodiversity Research and Monitoring. Oxford University Press; 2018.
Kitson JJN, et al. Detecting host-parasitoid interactions in an invasive Lepidopteran using nested tagging DNA metabarcoding. Mol. Ecol. 2019;28:471–483. doi: 10.1111/mec.14518. PubMed DOI
Bell KL, et al. Applying pollen DNA metabarcoding to the study of plant-pollinator interactions. Appl. Plant. Sci. 2017;5:1600124. doi: 10.3732/apps.1600124. PubMed DOI PMC
De Barba M, et al. DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: Application to omnivorous diet. Mol. Ecol. Resour. 2014;14:306–323. doi: 10.1111/1755-0998.12188. PubMed DOI
Mercier, C., Boyer, F., Bonin, A. & Coissac, E. SUMATRA and SUMACLUST: Fast and exact comparison and clustering of sequences. In The SeqBio 2013 workshop.https://git.metabarcoding.org/obitools/sumatra/wikis/home/ (2013).
Buchner D, Leese F. BOLDigger–a Python package to identify and organise sequences with the Barcode of Life Data systems. Metabarcoding Metagenomics. 2020;4:e53535. doi: 10.3897/mbmg.4.53535. DOI
Quast C, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC
R Core Team. R: A language and environment for statistical computing.https://www.R-project.org/ (2020).
Ogle, P. H., Wheeler, P. & Dinno, A. FSA: Fisheries stock analysis. R package version 0.8.30, https://github.com/droglenc/FSA (2020).
Hoyo DJ, Elliott J, Sargatal J, Christie DA. Handbook of the Birds of the World. Lynx Editions; 1992.
Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer; 2016.
Garnier S. viridis: Default Color Maps from 'matplotlib'. [Available from: https://CRAN.R-project.org/package=viridis] (2018).