Variation between the oral and faecal microbiota in a free-living passerine bird, the great tit (Parus major)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28662106
PubMed Central
PMC5491070
DOI
10.1371/journal.pone.0179945
PII: PONE-D-17-03514
Knihovny.cz E-zdroje
- MeSH
- feces mikrobiologie MeSH
- mikrobiota * MeSH
- Passeriformes mikrobiologie MeSH
- RNA ribozomální 16S genetika MeSH
- ústa mikrobiologie MeSH
- výpočetní biologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
The gastrointestinal tract of vertebrates is inhabited by diverse bacterial communities that induce marked effects on the host physiology and health status. The composition of the gastrointestinal microbiota is characterized by pronounced taxonomic and functional variability among different regions of the vertebrate gastrointestinal tract. Despite the relatively solid knowledge on the among-region variations of the gastrointestinal microbiota in model mammalian species, there are only a few studies concerning among-region variations of the gastrointestinal microbiota in free-living non-mammalian vertebrate taxa. We used Illumina MiSeq sequencing of bacterial 16S rRNA amplicons to compare the diversity as well as taxonomic composition of bacterial communities in proximal vs. distal parts of the gastrointestinal tract (represented by oral swabs and faecal samples, respectively) in a wild passerine bird, the great tit (Parus major). The diversity of the oral microbiota was significantly higher compared to the faecal microbiota, whereas interindividual variation was higher in faecal than in oral samples. We also observed a pronounced difference in taxonomic content between the oral and faecal microbiota. Bacteria belonging to the phyla Proteobacteria, Firmicutes and Actinobacteria typically dominated in both oral and faecal samples. A high abundance of bacteria belonging to Tenericutes was observed only in faecal samples. Surprisingly, we found only a slight correlation between the faecal and oral microbiota at the within-individual level, suggesting that the microbial composition in these body sites is shaped by independent regulatory processes. Given the independence of these two communities at the individual level, we propose that simultaneous sampling of the faecal and oral microbiota will extend our understanding of host vs. microbiota interactions in wild populations.
Zobrazit více v PubMed
Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326: 1694–1697. doi: 10.1126/science.1177486 PubMed DOI PMC
Ochman H, Worobey M, Kuo C-H, Ndjango J-BN, Peeters M, Hahn BH, et al. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol. 2010;8: e1000546 doi: 10.1371/journal.pbio.1000546 PubMed DOI PMC
Waite DW, Taylor MW. Characterizing the avian gut microbiota: membership, driving influences, and potential function. Microb Symbioses. 2014;5: 223 doi: 10.3389/fmicb.2014.00223 PubMed DOI PMC
Guarner F, Malagelada J-R. Gut flora in health and disease. Lancet. 2003;361: 512–519. doi: 10.1016/S0140-6736(03)12489-0 PubMed DOI
Sommer F, Bäckhed F. The gut microbiota-masters of host development and physiology. Nat Rev Microbiol. 2013;11: 227–238. doi: 10.1038/nrmicro2974 PubMed DOI
Lu L, Walker WA. Pathologic and physiologic interactions of bacteria with the gastrointestinal epithelium. Am J Clin Nutr. 2001;73: 1124S–1130S. PubMed
Rampelli S, Candela M, Severgnini M, Biagi E, Turroni S, Roselli M, et al. A probiotics-containing biscuit modulates the intestinal microbiota in the elderly. J Nutr Health Aging. 2013;17: 166–172. doi: 10.1007/s12603-012-0372-x PubMed DOI
Wang J, Kalyan S, Steck N, Turner LM, Harr B, Künzel S, et al. Analysis of intestinal microbiota in hybrid house mice reveals evolutionary divergence in a vertebrate hologenome. Nat Commun. 2015;6: 6440 doi: 10.1038/ncomms7440 PubMed DOI PMC
Li Z, Zhang Z, Xu C, Zhao J, Liu H, Fan Z, et al. Bacteria and methanogens differ along the gastrointestinal tract of Chinese roe deer (Capreolus pygargus). PLoS ONE. 2014;9: e114513 doi: 10.1371/journal.pone.0114513 PubMed DOI PMC
Roggenbuck M, Schnell IB, Blom N, Bælum J, Bertelsen MF, Pontén TS, et al. The microbiome of New World vultures. Nat Commun. 2014;5 doi: 10.1038/ncomms6498 PubMed DOI
Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R, Bell JT, et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 2015;16: 191 doi: 10.1186/s13059-015-0759-1 PubMed DOI PMC
Kienzle E, Schrag I, Butterwick R, Opitz B. Calculation of gross energy in pet foods: new data on heat combustion and fibre analysis in a selection of foods for dogs and cats. J Anim Physiol Anim Nutr. 2001;85: 148–157. doi: 10.1046/j.1439-0396.2001.00311.x PubMed DOI
van Schijndel RJMS, Wierdsma NJ, van Heijningen EMB, Weijs PJM, de Groot SDW, Girbes ARJ. Fecal energy losses in enterally fed intensive care patients: an explorative study using bomb calorimetry. Clin Nutr. 2006;25: 758–764. doi: 10.1016/j.clnu.2005.11.012 PubMed DOI
Wichert B, Müller L, Gebert S, Wenk C, Wanner M. Additional data on energy requirements of young adult cats measured by indirect calorimetry. J Anim Physiol Anim Nutr. 2007;91: 278–281. doi: 10.1111/j.1439-0396.2007.00705.x PubMed DOI
Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A, Bridonneau C, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009;31: 677–689. doi: 10.1016/j.immuni.2009.08.020 PubMed DOI
Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol. 2004;4: 478–485. doi: 10.1038/nri1373 PubMed DOI
Koch H, Schmid-Hempel P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc Natl Acad Sci. 2011;108: 19288–19292. doi: 10.1073/pnas.1110474108 PubMed DOI PMC
Kamada N, Chen GY, Inohara N, Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 2013;14: 685–690. doi: 10.1038/ni.2608 PubMed DOI PMC
Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13: 701–712. doi: 10.1038/nrn3346 PubMed DOI
Matthews DM, Jenks SM. Ingestion of Mycobacterium vaccae decreases anxiety-related behavior and improves learning in mice. Behav Processes. 2013;96: 27–35. doi: 10.1016/j.beproc.2013.02.007 PubMed DOI
Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: Human gut microbes associated with obesity. Nature. 2006;444: 1022–1023. doi: 10.1038/4441022a PubMed DOI
Jumpertz R, Le DS, Turnbaugh PJ, Trinidad C, Bogardus C, Gordon JI, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr. 2011;94: 58–65. doi: 10.3945/ajcn.110.010132 PubMed DOI PMC
Wu H-J, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012;3: 4–14. doi: 10.4161/gmic.19320 PubMed DOI PMC
Wade WG. The oral microbiome in health and disease. Pharmacol Res. 2013;69: 137–143. doi: 10.1016/j.phrs.2012.11.006 PubMed DOI
Wells CL, Maddaus MA, Simmons RL. Proposed mechanisms for the translocation of intestinal bacteria. Rev Infect Dis. 1988;10: 958–979. PubMed
Kim JM, Eckmann L, Savidge TC, Lowe DC, Witthöft T, Kagnoff MF. Apoptosis of human intestinal epithelial cells after bacterial invasion. J Clin Invest. 1998;102: 1815–1823. doi: 10.1172/JCI2466 PubMed DOI PMC
Weinberger M, Andorn N, Agmon V, Cohen D, Shohat T, Pitlik SD. Blood invasiveness of Salmonella enterica as a function of age and serotype. Epidemiol Infect. 2004;132: 1023–1028. PubMed PMC
Ley RE, Hamady M, Lozupone C, Turnbaugh P, Ramey RR, Bircher JS, et al. Evolution of mammals and their gut microbes. Science. 2008;320: 1647–1651. doi: 10.1126/science.1155725 PubMed DOI PMC
Hird SM, Sánchez C, Carstens BC, Brumfield RT. Comparative gut microbiota of 59 neotropical bird species. Front Microbiol. 2015; 1403 doi: 10.3389/fmicb.2015.01403 PubMed DOI PMC
Kropáčková L, Těšický M, Albrecht T, Kubovčiak J, Čížková D, Tomášek O, et al. Co-diversification of gastrointestinal microbiota and phylogeny in passerines is not explained by ecological divergence. Mol Ecol. 2017;00: 1–1. doi: 10.1111/mec.14144 PubMed DOI
Godoy-Vitorino F, Goldfarb KC, Karaoz U, Leal S, Garcia-Amado MA, Hugenholtz P, et al. Comparative analyses of foregut and hindgut bacterial communities in hoatzins and cows. ISME J. 2012;6: 531–541. doi: 10.1038/ismej.2011.131 PubMed DOI PMC
Colston TJ, Noonan BP, Jackson CR. Phylogenetic analysis of bacterial communities in different regions of the gastrointestinal tract of Agkistrodon piscivorus, the cottonmouth snake. PLoS ONE. 2015;10: e0128793 doi: 10.1371/journal.pone.0128793 PubMed DOI PMC
Han GG, Kim EB, Lee J, Lee J-Y, Jin G, Park J, et al. Relationship between the microbiota in different sections of the gastrointestinal tract, and the body weight of broiler chickens. SpringerPlus. 2016;5: 911 doi: 10.1186/s40064-016-2604-8 PubMed DOI PMC
Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90: 859–904. doi: 10.1152/physrev.00045.2009 PubMed DOI
Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol. 2012;9: 577–589. doi: 10.1038/nrgastro.2012.156 PubMed DOI
Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol. 2014;14: 667–685. doi: 10.1038/nri3738 PubMed DOI
Suzuki TA, Nachman MW. Spatial heterogeneity of gut microbial composition along the gastrointestinal tract in natural populations of house mice. PLoS ONE. 2016;11: e0163720 doi: 10.1371/journal.pone.0163720 PubMed DOI PMC
Claus SP, Tsang TM, Wang Y, Cloarec O, Skordi E, Martin F- P, et al. Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes. Mol Syst Biol. 2008;4: 219 doi: 10.1038/msb.2008.56 PubMed DOI PMC
Wang M, Ahrné S, Jeppsson B, Molin G. Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol. 2005;54: 219–231. doi: 10.1016/j.femsec.2005.03.012 PubMed DOI
Stearns JC, Lynch MDJ, Senadheera DB, Tenenbaum HC, Goldberg MB, Cvitkovitch DG, et al. Bacterial biogeography of the human digestive tract. Sci Rep. 2011;1: 170 doi: 10.1038/srep00170 PubMed DOI PMC
Zhang Z, Geng J, Tang X, Fan H, Xu J, Wen X, et al. Spatial heterogeneity and co-occurrence patterns of human mucosal-associated intestinal microbiota. ISME J. 2014;8: 881–893. doi: 10.1038/ismej.2013.185 PubMed DOI PMC
Gu S, Chen D, Zhang J- N, Lv X, Wang K, Duan L-P, et al. Bacterial community mapping of the mouse gastrointestinal tract. PLoS ONE. 2013;8: e74957 doi: 10.1371/journal.pone.0074957 PubMed DOI PMC
Bik EM, Costello EK, Switzer AD, Callahan BJ, Holmes SP, Wells RS, et al. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nat Commun. 2016;7: 10516 doi: 10.1038/ncomms10516 PubMed DOI PMC
Scupham AJ, Patton TG, Bent E, Bayles DO. Comparison of the cecal microbiota of domestic and wild turkeys. Microb Ecol. 2008;56: 322–331. doi: 10.1007/s00248-007-9349-4 PubMed DOI
Xenoulis PG, Gray PL, Brightsmith D, Palculict B, Hoppes S, Steiner JM, et al. Molecular characterization of the cloacal microbiota of wild and captive parrots. Vet Microbiol. 2010;146: 320–325. doi: 10.1016/j.vetmic.2010.05.024 PubMed DOI
Wienemann T, Schmitt-Wagner D, Meuser K, Segelbacher G, Schink B, Brune A, et al. The bacterial microbiota in the ceca of Capercaillie (Tetrao urogallus) differs between wild and captive birds. Syst Appl Microbiol. 2011;34: 542–551. doi: 10.1016/j.syapm.2011.06.003 PubMed DOI
Kreisinger J, Čížková D, Vohánka J, Piálek J. Gastrointestinal microbiota of wild and inbred individuals of two house mouse subspecies assessed using high-throughput parallel pyrosequencing. Mol Ecol. 2014;23: 5048–5060. doi: 10.1111/mec.12909 PubMed DOI
Li J, Ni J, Li J, Wang C, Li X, Wu S, et al. Comparative study on gastrointestinal microbiota of eight fish species with different feeding habits. J Appl Microbiol. 2014;117: 1750–1760. doi: 10.1111/jam.12663 PubMed DOI
Kohl KD, Cary TL, Karasov WH, Dearing MD. Restructuring of the amphibian gut microbiota through metamorphosis. Environ Microbiol Rep. 2013;5: 899–903. doi: 10.1111/1758-2229.12092 PubMed DOI
Li H, Li T, Yao M, Li J, Zhang S, Wirth S, et al. Pika gut may select for rare but diverse environmental bacteria. Front Microbiol. 2016;7 doi: 10.3389/fmicb.2016.01269 PubMed DOI PMC
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505: 559–563. doi: 10.1038/nature12820 PubMed DOI PMC
Kreisinger J, Bastien G, Hauffe HC, Marchesi J, Perkins SE. Interactions between multiple helminths and the gut microbiota in wild rodents. Phil Trans R Soc B. 2015;370: 20140295 doi: 10.1098/rstb.2014.0295 PubMed DOI PMC
Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci. 2010;107: 18933–18938. doi: 10.1073/pnas.1007028107 PubMed DOI PMC
Marsh PD, Martin MV, Lewis MAO, Williams D. Oral Microbiology 5st ed. Elsevier Health Sciences; 2009.
Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332: 970–974. doi: 10.1126/science.1198719 PubMed DOI PMC
Voegeli B, Saladin V, Wegmann M, Richner H. Parasites as mediators of heterozygosity-fitness correlations in the Great Tit (Parus major). J Evol Biol. 2012;25: 584–590. doi: 10.1111/j.1420-9101.2011.02445.x PubMed DOI
Ouyang JQ, Sharp P, Quetting M, Hau M. Endocrine phenotype, reproductive success and survival in the great tit, Parus major. J Evol Biol. 2013;26: 1988–1998. doi: 10.1111/jeb.12202 PubMed DOI
González-Braojos S, Vela AI, Ruiz-de-Castañeda R, Briones V, Moreno J. Age-related changes in abundance of enterococci and Enterobacteriaceae in Pied Flycatcher (Ficedula hypoleuca) nestlings and their association with growth. J Ornithol. 2012;153: 181–188. doi: 10.1007/s10336-011-0725-y DOI
Benskin CMH, Rhodes G, Pickup RW, Mainwaring MC, Wilson K, Hartley IR. Life history correlates of fecal bacterial species richness in a wild population of the blue tit Cyanistes caeruleus. Ecol Evol. 2015;5: 821–835. doi: 10.1002/ece3.1384 PubMed DOI PMC
Kreisinger J, Čížková D, Kropáčková L, Albrecht T. Cloacal microbiome structure in a long-distance migratory bird assessed using deep 16sRNA pyrosequencing. PLoS ONE. 2015;10: e0137401 doi: 10.1371/journal.pone.0137401 PubMed DOI PMC
Escallón C, Becker MH, Walker JB, Jensen RV, Cormier G, Belden LK, et al. Testosterone levels are positively correlated with cloacal bacterial diversity and the relative abundance of Chlamydiae in breeding male rufous-collared sparrows. Funct Ecol. 2017;31: 192–203.
Lucas FS, Heeb P. Environmental factors shape cloacal bacterial assemblages in great tit Parus major and blue tit P. caeruleus nestlings. J Avian Biol. 2005;36: 510–516. doi: 10.1111/j.0908-8857.2005.03479.x DOI
Cramp S, Perrins CM, editors. The Birds of the Western Palearctic Volume VII Oxford; New York: Oxford University Press; 1993.
Peig J, Green AJ. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos. 2009;118: 1883–1891. doi: 10.1111/j.1600-0706.2009.17643.x DOI
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41: e1 doi: 10.1093/nar/gks808 PubMed DOI PMC
Costea PI, Lundeberg J, Akan P. TagGD: fast and accurate software for DNA Tag generation and demultiplexing. PLoS ONE. 2013;8: e57521 doi: 10.1371/journal.pone.0057521 PubMed DOI PMC
Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30: 614–620. doi: 10.1093/bioinformatics/btt593 PubMed DOI PMC
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75: 7537–7541. doi: 10.1128/AEM.01541-09 PubMed DOI PMC
Hildebrand F, Tadeo R, Voigt AY, Bork P, Raes J. LotuS: an efficient and user-friendly OTU processing pipeline. Microbiome. 2014;2: 30 doi: 10.1186/2049-2618-2-30 PubMed DOI PMC
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27: 2194–2200. doi: 10.1093/bioinformatics/btr381 PubMed DOI PMC
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10: 996–998. doi: 10.1038/nmeth.2604 PubMed DOI
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73: 5261–5267. doi: 10.1128/AEM.00062-07 PubMed DOI PMC
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72: 5069–5072. doi: 10.1128/AEM.03006-05 PubMed DOI PMC
Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics. 2010;26: 266–267. doi: 10.1093/bioinformatics/btp636 PubMed DOI PMC
Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26: 1641–1650. doi: 10.1093/molbev/msp077 PubMed DOI PMC
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8: e61217 doi: 10.1371/journal.pone.0061217 PubMed DOI PMC
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria URL https://www.R-project.org/. [Internet]. 2016. Available: https://www.R-project.org/
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67: 1–48. doi: 10.18637/jss.v067.i01 DOI
Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71: 8228–8235. doi: 10.1128/AEM.71.12.8228-8235.2005 PubMed DOI PMC
Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci. 2003;100: 9440–9445. doi: 10.1073/pnas.1530509100 PubMed DOI PMC
Ritchie LE, Steiner JM, Suchodolski JS. Assessment of microbial diversity along the feline intestinal tract using 16S rRNA gene analysis. FEMS Microbiol Ecol. 2008;66: 590–598. doi: 10.1111/j.1574-6941.2008.00609.x PubMed DOI
Alfano N, Courtiol A, Vielgrader H, Timms P, Roca AL, Greenwood AD. Variation in koala microbiomes within and between individuals: effect of body region and captivity status. Sci Rep. 2015;5: 10189 doi: 10.1038/srep10189 PubMed DOI PMC
Hird SM, Carstens BC, Cardiff SW, Dittmann DL, Brumfield RT. Sampling locality is more detectable than taxonomy or ecology in the gut microbiota of the brood-parasitic Brown-headed Cowbird (Molothrus ater). PeerJ. 2014;2: e321 doi: 10.7717/peerj.321 PubMed DOI PMC
Mirón L, Mira A, Rocha-Ramírez V, Belda-Ferre P, Cabrera-Rubio R, Folch-Mallol J, et al. Gut bacterial diversity of the house sparrow (Passer domesticus) inferred by 16S rRNA sequence analysis. Metagenomics. 2014;3: 1–11. doi: 10.4303/mg/235853 DOI
Kreisinger J, Kropáčková L, Petrželková A, Adámková M, Tomášek O, Martin J-F, et al. Temporal stability and the effect of transgenerational transfer on fecal microbiota structure in a long distance migratory bird. Front Microbiol. 2017;8: 50 doi: 10.3389/fmicb.2017.00050 PubMed DOI PMC
Lewis WB, Moore FR, Wang S. Changes in gut microbiota of migratory passerines during stopover after crossing an ecological barrier. The Auk. 2016;134: 137–145. doi: 10.1642/AUK-16-120.1 DOI
Wilkinson N, Hughes RJ, Aspden WJ, Chapman J, Moore RJ, Stanley D. The gastrointestinal tract microbiota of the Japanese quail, Coturnix japonica. Appl Microbiol Biotechnol. 2016;100: 4201–4209. doi: 10.1007/s00253-015-7280-z PubMed DOI
Waite DW, Deines P, Taylor MW. Gut Microbiome of the Critically Endangered New Zealand Parrot, the Kakapo (Strigops habroptilus). PLoS ONE. 2012;7: e35803 doi: 10.1371/journal.pone.0035803 PubMed DOI PMC
Sturgeon A, Stull JW, Costa MC, Weese JS. Metagenomic analysis of the canine oral cavity as revealed by high-throughput pyrosequencing of the 16S rRNA gene. Vet Microbiol. 2013;162: 891–898. doi: 10.1016/j.vetmic.2012.11.018 PubMed DOI
Segata N, Haake SK, Mannon P, Lemon KP, Waldron L, Gevers D, et al. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol. 2012;13: R42 doi: 10.1186/gb-2012-13-6-r42 PubMed DOI PMC
Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Bäckhed HK, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150: 470–480. doi: 10.1016/j.cell.2012.07.008 PubMed DOI PMC
Sumithra TG, Chaturvedi VK, Susan C, Siju SJ, Rai AK, Harish C, et al. Mycoplasmosis in wildlife: a review. Eur J Wildl Res. 2013;59: 769–781. doi: 10.1007/s10344-013-0769-9 DOI
Nelson KE. An update on the status of current research on the mammalian microbiome. ILAR J. 2015;56: 163–168. doi: 10.1093/ilar/ilv033 PubMed DOI
Robertson PAW, O’Dowd C, Burrells C, Williams P, Austin B. Use of Carnobacterium sp. as a probiotic for Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss, Walbaum). Aquaculture. 2000;185: 235–243. doi: 10.1016/S0044-8486(99)00349-X DOI
Nazef L, Belguesmia Y, Tani A, Prévost H, Drider D. Identification of lactic acid bacteria from poultry feces: evidence on anti-campylobacter and anti-listeria activities. Poult Sci. 2008;87: 329–334. doi: 10.3382/ps.2007-00282 PubMed DOI
Jean SS, Lee WS, Chen FL, Ou TY, Hsueh PR. Elizabethkingia meningoseptica: an important emerging pathogen causing healthcare-associated infections. J Hosp Infect. 2014;86: 244–249. doi: 10.1016/j.jhin.2014.01.009 PubMed DOI
Loch TP, Faisal M. Emerging flavobacterial infections in fish: A review. J Adv Res. 2015;6: 283–300. doi: 10.1016/j.jare.2014.10.009 PubMed DOI PMC
Pereira GH, Garcia D de O, Abboud CS, Barbosa VL de B, da Silva PSL. Nosocomial infections caused by Elizabethkingia meningoseptica: an emergent pathogen. Braz J Infect Dis. 2013;17: 606–609. doi: 10.1016/j.bjid.2013.02.011 PubMed DOI PMC
Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol. 2012;8: e1002606 doi: 10.1371/journal.pcbi.1002606 PubMed DOI PMC
Boutin S, Sauvage C, Bernatchez L, Audet C, Derome N. Inter individual variations of the fish skin microbiota: host genetics basis of mutualism? PLoS ONE. 2014;9: e102649 doi: 10.1371/journal.pone.0102649 PubMed DOI PMC
Seccareccia I, Kost C, Nett M. Quantitative analysis of Lysobacter predation. Appl Environ Microbiol. 2015;81: 7098–7105. doi: 10.1128/AEM.01781-15 PubMed DOI PMC
Meyer J-M, Geoffroy VA, Baida N, Gardan L, Izard D, Lemanceau P, et al. Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Appl Environ Microbiol. 2002;68: 2745–2753. doi: 10.1128/AEM.68.6.2745-2753.2002 PubMed DOI PMC
Leid JG, Willson CJ, Shirtliff ME, Hassett DJ, Parsek MR, Jeffers AK. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol. 2005;175: 7512–7518. PubMed
Jackson MK, Phillips SN. Necrotizing hepatitis in pet birds associated with Pseudomonas fluorescens. Avian Dis. 1996;40: 473–476. doi: 10.2307/1592248 PubMed DOI
Walker SE, Sander JE, Cline JL, Helton JS. Characterization of Pseudomonas aeruginosa isolates associated with mortality in broiler chicks. Avian Dis. 2002;46: 1045–1050. doi: 10.1637/0005-2086(2002)046[1045:COPAIA]2.0.CO;2 PubMed DOI
Benskin CMH, Wilson K, Jones K, Hartley IR. Bacterial pathogens in wild birds: a review of the frequency and effects of infection. Biol Rev Camb Philos Soc. 2009;84: 349–373. doi: 10.1111/j.1469-185X.2008.00076.x PubMed DOI
Luerce TD, Gomes-Santos AC, Rocha CS, Moreira TG, Cruz DN, Lemos L, et al. Anti-inflammatory effects of Lactococcus lactis NCDO 2118 during the remission period of chemically induced colitis. Gut Pathog. 2014;6: 33 doi: 10.1186/1757-4749-6-33 PubMed DOI PMC
Lee N-K, Han KJ, Son S-H, Eom SJ, Lee S-K, Paik H-D. Multifunctional effect of probiotic Lactococcus lactis KC24 isolated from kimchi. LWT—Food Sci Technol. 2015;64: 1036–1041. doi: 10.1016/j.lwt.2015.07.019 DOI
Lear G, Anderson MJ, Smith JP, Boxen K, Lewis GD. Spatial and temporal heterogeneity of the bacterial communities in stream epilithic biofilms. FEMS Microbiol Ecol. 2008;65: 463–473. doi: 10.1111/j.1574-6941.2008.00548.x PubMed DOI
Carson JK, Campbell L, Rooney D, Clipson N, Gleeson DB. Minerals in soil select distinct bacterial communities in their microhabitats. FEMS Microbiol Ecol. 2009;67: 381–388. doi: 10.1111/j.1574-6941.2008.00645.x PubMed DOI
Gonzalez A, King A, Robeson MS, Song S, Shade A, Metcalf JL, et al. Characterizing microbial communities through space and time. Curr Opin Biotechnol. 2012;23: 431–436. doi: 10.1016/j.copbio.2011.11.017 PubMed DOI PMC
Caviedes-Vidal E, McWhorter TJ, Lavin SR, Chediack JG, Tracy CR, Karasov WH. The digestive adaptation of flying vertebrates: high intestinal paracellular absorption compensates for smaller guts. Proc Natl Acad Sci. 2007;104: 19132–19137. doi: 10.1073/pnas.0703159104 PubMed DOI PMC
McWhorter TJ, Caviedes-Vidal E, Karasov WH. The integration of digestion and osmoregulation in the avian gut. Biol Rev Camb Philos Soc. 2009;84: 533–565. doi: 10.1111/j.1469-185X.2009.00086.x PubMed DOI
Nearly (?) sterile avian egg in a passerine bird
Flexibility and resilience of great tit (Parus major) gut microbiomes to changing diets