Gut microbiota in two recently diverged passerine species: evaluating the effects of species identity, habitat use and geographic distance
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33691625
PubMed Central
PMC7948333
DOI
10.1186/s12862-021-01773-1
PII: 10.1186/s12862-021-01773-1
Knihovny.cz E-zdroje
- Klíčová slova
- Diet, Gut microbiome, Habitat use, Luscinia, Passerines, Reproductive isolation,
- MeSH
- ekosystém MeSH
- RNA ribozomální 16S genetika MeSH
- střevní mikroflóra * MeSH
- sympatrie MeSH
- zpěvní ptáci * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
BACKGROUND: It has been proposed that divergence in the gut microbiota composition between incipient species could contribute to their reproductive isolation. Nevertheless, empirical evidence for the role of gut microbiota in speciation is scarce. Moreover, it is still largely unknown to what extent closely related species in the early stages of speciation differ in their gut microbiota composition, especially in non-mammalian taxa, and which factors drive the divergence. Here we analysed the gut microbiota in two closely related passerine species, the common nightingale (Luscinia megarhynchos) and the thrush nightingale (Luscinia luscinia). The ranges of these two species overlap in a secondary contact zone, where both species occasionally hybridize and where interspecific competition has resulted in habitat use differentiation. RESULTS: We analysed the gut microbiota from the proximal, middle and distal part of the small intestine in both sympatric and allopatric populations of the two nightingale species using sequencing of bacterial 16S rRNA. We found small but significant differences in the microbiota composition among the three gut sections. However, the gut microbiota composition in the two nightingale species did not differ significantly between either sympatric or allopatric populations. Most of the observed variation in the gut microbiota composition was explained by inter-individual differences. CONCLUSIONS: To our knowledge, this is the first attempt to assess the potential role of the gut microbiota in bird speciation. Our results suggest that neither habitat use, nor geographical distance, nor species identity have strong influence on the nightingale gut microbiota composition. This suggests that changes in the gut microbiota composition are unlikely to contribute to reproductive isolation in these passerine birds.
Department of Zoology Faculty of Science Charles University Viničná 7 128 44 Prague Czech Republic
Faculty of Science Institute for Environmental Studies Charles University Prague Czech Republic
Institute of Vertebrate Biology Czech Academy of Sciences Květná 8 Brno 603 65 Czech Republic
Zobrazit více v PubMed
Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, et al. Evolution of mammals and their gut microbes. Science. 2008;320:1647–1651. doi: 10.1126/science.1155725. PubMed DOI PMC
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. doi: 10.1038/nature08821. PubMed DOI PMC
Kohl KD. Diversity and function of the avian gut microbiota. J Comp Physiol B. 2012;182:591–602. doi: 10.1007/s00360-012-0645-z. PubMed DOI
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563. doi: 10.1038/nature12820. PubMed DOI PMC
Poulsen M, Hu H, Li C, Chen Z, Xu L, Otani S, et al. Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proc Natl Acad Sci. 2014;111:14500–14505. doi: 10.1073/pnas.1319718111. PubMed DOI PMC
Shropshire JD, Bordenstein SR. Speciation by symbiosis: the microbiome and behavior. MBio. 2016;7:1–11. doi: 10.1128/mBio.01785-15. PubMed DOI PMC
Davidson GL, Cooke AC, Johnson CN, Quinn JL. The gut microbiome as a driver of individual variation in cognition and functional behaviour. Philos Trans R Soc B Biol Sci. 2018;373:20170286. doi: 10.1098/rstb.2017.0286. PubMed DOI PMC
Suzuki TA, Martins FM, Phifer-Rixey M, Nachman MW. The gut microbiota and Bergmann’s rule in wild house mice. Mol Ecol. 2020;29:2300–2311. doi: 10.1111/mec.15476. PubMed DOI PMC
Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E. Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci. 2010;107:20051–20056. doi: 10.1073/pnas.1009906107. PubMed DOI PMC
Moeller AH, Gomes-Neto JC, Mantz S, Kittana H, Segura Munoz RR, Schmaltz RJ, et al. Experimental evidence for adaptation to species-specific gut microbiota in house mice. mSphere. 2019;4:1–10. doi: 10.1128/mSphere.00387-19. PubMed DOI PMC
Grond K, Sandercock BK, Jumpponen A, Zeglin LH. The avian gut microbiota: community, physiology and function in wild birds. J Avian Biol. 2018;49:e01788. doi: 10.1111/jav.01788. DOI
Wang J, Kalyan S, Steck N, Turner LM, Harr B, Künzel S, et al. Analysis of intestinal microbiota in hybrid house mice reveals evolutionary divergence in a vertebrate hologenome. Nat Commun. 2015;6:6440. doi: 10.1038/ncomms7440. PubMed DOI PMC
Brucker RM, Bordenstein SR. Speciation by symbiosis. Trends Ecol Evol. 2012;27:443–451. doi: 10.1016/j.tree.2012.03.011. PubMed DOI
Brucker RM, Bordenstein SR. The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science. 2013;341:667–669. doi: 10.1126/science.1240659. PubMed DOI
Hicks AL, Lee KJ, Couto-Rodriguez M, Patel J, Sinha R, Guo C, et al. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat Commun. 2018;9:1786. doi: 10.1038/s41467-018-04204-w. PubMed DOI PMC
Keenan SW, Engel AS, Elsey RM. The alligator gut microbiome and implications for archosaur symbioses. Sci Rep. 2013;3:2877. doi: 10.1038/srep02877. PubMed DOI PMC
Lewis WB, Moore FR, Wang S. Changes in gut microbiota of migratory passerines during stopover after crossing an ecological barrier. Auk. 2017;134:137–145. doi: 10.1642/AUK-16-120.1. DOI
Michel AJ, Ward LM, Goffredi SK, Dawson KS, Baldassarre DT, Brenner A, et al. The gut of the finch: uniqueness of the gut microbiome of the Galápagos vampire finch. Microbiome. 2018;6:167. doi: 10.1186/s40168-018-0555-8. PubMed DOI PMC
Loo WT, Dudaniec RY, Kleindorfer S, Cavanaugh CM. An inter-island comparison of Darwin’s finches reveals the impact of habitat, host phylogeny, and island on the gut microbiome. PLoS ONE. 2019;14:e0226432. doi: 10.1371/journal.pone.0226432. PubMed DOI PMC
Teyssier A, Rouffaer LO, Saleh Hudin N, Strubbe D, Matthysen E, Lens L, et al. Inside the guts of the city: Urban-induced alterations of the gut microbiota in a wild passerine. Sci Total Environ. 2018;612:1276–1286. doi: 10.1016/j.scitotenv.2017.09.035. PubMed DOI
Phillips JN, Berlow M, Derryberry EP. The Effects of landscape urbanization on the gut microbiome: an exploration into the gut of urban and rural White-crowned sparrows. Front Ecol Evol. 2018;6:1–10. doi: 10.3389/fevo.2018.00148. DOI
Gaona O, Cerqueda-García D, Moya A, Neri-Barrios X, Falcón LI. Geographical separation and physiology drive differentiation of microbial communities of two discrete populations of the bat Leptonycteris yerbabuenae. Microbiologyopen. 2020;9:1113–1127. doi: 10.1002/mbo3.1022. PubMed DOI PMC
Grond K, Santo Domingo JW, Lanctot RB, Jumpponen A, Bentzen RL, Boldenow ML, et al. Composition and drivers of gut microbial communities in arctic-breeding shorebirds. Front Microbiol. 2019;10:2258. doi: 10.3389/fmicb.2019.02258. PubMed DOI PMC
Gillingham MAF, Béchet A, Cézilly F, Wilhelm K, Rendón-Martos M, Borghesi F, et al. Offspring microbiomes differ across breeding sites in a panmictic species. Front Microbiol. 2019;10:1–16. doi: 10.3389/fmicb.2019.00035. PubMed DOI PMC
Org E, Parks BW, Joo JWJ, Emert B, Schwartzman W, Kang EY, et al. Genetic and environmental control of host-gut microbiota interactions. Genome Res. 2015;25:1558–1569. doi: 10.1101/gr.194118.115. PubMed DOI PMC
Suzuki TA, Phifer-Rixey M, Mack KL, Sheehan MJ, Lin D, Bi K, et al. Host genetic determinants of the gut microbiota of wild mice. Mol Ecol. 2019 doi: 10.1111/mec.15139. PubMed DOI PMC
Kubinak JL, Stephens WZ, Soto R, Petersen C, Chiaro T, Gogokhia L, et al. MHC variation sculpts individualized microbial communities that control susceptibility to enteric infection. Nat Commun. 2015;6:8642. doi: 10.1038/ncomms9642. PubMed DOI PMC
Song SJ, Sanders JG, Delsuc F, Metcalf J, Amato K, Taylor MW, et al. Comparative analyses of vertebrate gut microbiomes reveal convergence between birds and bats. MBio. 2020;11:1–14. doi: 10.1128/mBio.02901-19. PubMed DOI PMC
Storchová R, Reif J, Nachman MW. Female heterogamety and speciation: reduced introgression of the Z chromosome between two species of nightingales. Evolution (N Y) 2010;64:456–471. doi: 10.1111/j.1558-5646.2009.00841.x. PubMed DOI PMC
Sorjonen J. Mixed singing and interspecific territoriality - consequences of secondary contact of two ecologically and morphologically similar nightingale species in europe. Ornis Scand. 1986;17:53. doi: 10.2307/3676753. DOI
Cramp S, Brooks DJ. Handbook of the birds of Europe, the Middle East and North Africa. The birds of the western Palearctic, vol. VI. Warblers. Oxford University. 1992.
Sottas C, Reif J, Kreisinger J, Schmiedová L, Sam K, Osiejuk TS, et al. Tracing the early steps of competition-driven eco-morphological divergence in two sister species of passerines. Evol Ecol. 2020 doi: 10.1007/s10682-020-10050-4. DOI
Reif J, Reifová R, Skoracka A, Kuczyński L. Competition-driven niche segregation on a landscape scale: evidence for escaping from syntopy towards allotopy in two coexisting sibling passerine species. J Anim Ecol. 2018;87:774–786. doi: 10.1111/1365-2656.12808. PubMed DOI
Sottas C, Reif J, Kuczyński L, Reifová R. Interspecific competition promotes habitat and morphological divergence in a secondary contact zone between two hybridizing songbirds. J Evol Biol. 2018;31:914–923. doi: 10.1111/jeb.13275. PubMed DOI
Xue Z, Zhang W, Wang L, Hou R, Zhang M, Fei L, et al. The bamboo-eating giant panda harbors a carnivore-like gut microbiota, with excessive seasonal variations. MBio. 2015;6:1–12. doi: 10.1128/mBio.00022-15. PubMed DOI PMC
Stadie C. Erdsanger I; Nachtigall und Sprosser. Eur Vogelwelt Vogelwelt. 1991;3:130–189.
Reifová R, Kverek P, Reif J. The first record of a female hybrid between the Common Nightingale (Luscinia megarhynchos) and the Thrush Nightingale (Luscinia luscinia) in nature. J Ornithol. 2011;152:1063–1068. doi: 10.1007/s10336-011-0700-7. DOI
Mořkovský L, Janoušek V, Reif J, Rídl J, Pačes J, Choleva L, et al. Genomic islands of differentiation in two songbird species reveal candidate genes for hybrid female sterility. Mol Ecol. 2018;27:949–958. doi: 10.1111/mec.14479. PubMed DOI PMC
Reifová R, Reif J, Antczak M, Nachman MW. Ecological character displacement in the face of gene flow: evidence from two species of nightingales. BMC Evol Biol. 2011;11:138. doi: 10.1186/1471-2148-11-138. PubMed DOI PMC
Janoušek V, Fischerová J, Mořkovský L, Reif J, Antczak M, Albrecht T, et al. Postcopulatory sexual selection reduces Z-linked genetic variation and might contribute to the large Z effect in passerine birds. Heredity. 2019;122:622–635. doi: 10.1038/s41437-018-0161-3. PubMed DOI PMC
Moeller AH, Suzuki TA, Lin D, Lacey EA, Wasser SK, Nachman MW. Dispersal limitation promotes the diversification of the mammalian gut microbiota. Proc Natl Acad Sci. 2017;114:13768–13773. doi: 10.1073/pnas.1700122114. PubMed DOI PMC
Linnenbrink M, Wang J, Hardouin EA, Künzel S, Metzler D, Baines JF. The role of biogeography in shaping diversity of the intestinal microbiota in house mice. Mol Ecol. 2013;22:1904–1916. doi: 10.1111/mec.12206. PubMed DOI
Hird SM. Evolutionary biology needs wild microbiomes. Front Microbiol. 2017;8:1–10. doi: 10.3389/fmicb.2017.00725. PubMed DOI PMC
Lindsey ARI, Rice DW, Bordenstein SR, Brooks AW, Bordenstein SR, Newton ILG. Evolutionary genetics of cytoplasmic incompatibility genes cifA and cifB in prophage WO of Wolbachia. Genome Biol Evol. 2018;10:434–451. doi: 10.1093/gbe/evy012. PubMed DOI PMC
Trevelline BK, Sosa J, Hartup BK, Kohl KD. A bird’s-eye view of phylosymbiosis: weak signatures of phylosymbiosis among all 15 species of cranes. Proc R Soc B Biol Sci. 2020;287:20192988. doi: 10.1098/rspb.2019.2988. PubMed DOI PMC
Youngblut ND, Reischer GH, Walters W, Schuster N, Walzer C, Stalder G, et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat Commun. 2019;10:2200. doi: 10.1038/s41467-019-10191-3. PubMed DOI PMC
Kropáčková L, Těšický M, Albrecht T, Kubovčiak J, Čížková D, Tomášek O, et al. Codiversification of gastrointestinal microbiota and phylogeny in passerines is not explained by ecological divergence. Mol Ecol. 2017;26:5292–5304. doi: 10.1111/mec.14144. PubMed DOI
Suzuki TA, Worobey M. Geographical variation of human gut microbial composition. Biol Lett. 2014;10:20131037. doi: 10.1098/rsbl.2013.1037. PubMed DOI PMC
Hird SM, Carstens BC, Cardiff SW, Dittmann DL, Brumfield RT. Sampling locality is more detectable than taxonomy or ecology in the gut microbiota of the brood-parasitic Brown-headed Cowbird (Molothrus ater) PeerJ. 2014;2:e321. doi: 10.7717/peerj.321. PubMed DOI PMC
Banks JC, Cary SC, Hogg ID. The phylogeography of Adelie penguin faecal flora. Environ Microbiol. 2009;11:577–588. doi: 10.1111/j.1462-2920.2008.01816.x. PubMed DOI
Hird SM, Sánchez C, Carstens BC, Brumfield RT. Comparative gut microbiota of 59 neotropical bird species. Front Microbiol. 2015 doi: 10.3389/fmicb.2015.01403. PubMed DOI PMC
Pigot AL, Tobias JA. Dispersal and the transition to sympatry in vertebrates. Proc R Soc B Biol Sci. 2015;282:20141929. doi: 10.1098/rspb.2014.1929. PubMed DOI PMC
Hahn S, Amrhein V, Zehtindijev P, Liechti F. Strong migratory connectivity and seasonally shifting isotopic niches in geographically separated populations of a long-distance migrating songbird. Oecologia. 2013;173:1217–1225. doi: 10.1007/s00442-013-2726-4. PubMed DOI
Kropáčková L, Pechmanová H, Vinkler M, Svobodová J, Velová H, Těšičký M, et al. Variation between the oral and faecal microbiota in a free-living passerine bird, the great tit (Parus major) PLoS ONE. 2017;12:e0179945. doi: 10.1371/journal.pone.0179945. PubMed DOI PMC
Bodawatta KH, Sam K, Jønsson KA, Poulsen M. Comparative analyses of the digestive tract microbiota of new guinean passerine birds. Front Microbiol. 2018;9:1–13. doi: 10.3389/fmicb.2018.01830. PubMed DOI PMC
Lewis WB, Moore FR, Wang S. Characterization of the gut microbiota of migratory passerines during stopover along the northern coast of the Gulf of Mexico. J Avian Biol. 2016;47:659–668. doi: 10.1111/jav.00954. DOI
García-Amado MA, Shin H, Sanz V, Lentino M, Martínez LM, Contreras M, et al. Comparison of gizzard and intestinal microbiota of wild neotropical birds. PLoS ONE. 2018;13:e0194857. doi: 10.1371/journal.pone.0194857. PubMed DOI PMC
Berlow M, Kohl KD, Derryberry EP. Evaluation of non-lethal gut microbiome sampling methods in a passerine bird. Ibis (Lond 1859). 2020;162:911–923. doi: 10.1111/ibi.12807. DOI
Zhang Y, Simon SE, Johnson JA, Allen MS. Spatial microbial composition along the gastrointestinal tract of captive Attwater’s prairie chicken. Microb Ecol. 2017;73:966–977. doi: 10.1007/s00248-016-0870-1. PubMed DOI
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1–e1. doi: 10.1093/nar/gks808. PubMed DOI PMC
Jiang H, Lei R, Ding S-W, Zhu S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinform. 2014;15:182. doi: 10.1186/1471-2105-15-182. PubMed DOI PMC
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–2200. doi: 10.1093/bioinformatics/btr381. PubMed DOI PMC
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–5267. doi: 10.1128/AEM.00062-07. PubMed DOI PMC
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC
Knight A, Ewen JG, Brekke P, Santure AW. The evolutionary biology, ecology and epidemiology of Coccidia of Passerine birds. Adv Parasitol. 2018;99:35–60. doi: 10.1016/bs.apar.2018.01.001. PubMed DOI
McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217. doi: 10.1371/journal.pone.0061217. PubMed DOI PMC
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015 doi: 10.18637/jss.v067.i01. DOI
Oksanen AJ, Blanchet GF, Friendly M, Kindt R, Legendre P, Mcglinn D, et al. The vegan package. Community Ecol Packag. 2016;10:631–637.
Legendre P, Andersson MJ. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr. 1999;69:1–24. doi: 10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2. DOI
Dray S, Dufour A-B. The ade4 package: implementing the duality diagram for ecologists. J Stat Softw. 2007;22:1–20. doi: 10.18637/jss.v022.i04. DOI
Kindt R, Coe R. Tree diversity analysis: a manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre; 2005.
Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, et al. GlmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017;9:378. doi: 10.32614/RJ-2017-066. DOI
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995;57:289–300.