• This record comes from PubMed

Analysis of the bacterial community from high alkaline (pH > 13) drainage water at a brown mud disposal site near Žiar nad Hronom (Banská Bystrica region, Slovakia) using 454 pyrosequencing

. 2019 Jan ; 64 (1) : 83-90. [epub] 20180806

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
no. 26220120001 Research & Development Operational Programme funded by the European Regional Development Fund
VEGA 1/0229/17 Ministry of Education, Science, Research and Sport of Slovak Republic
VVGS-2016-275 Pavol Jozef Safarik University in Kosice, Slovakia

Links

PubMed 30084086
DOI 10.1007/s12223-018-0634-z
PII: 10.1007/s12223-018-0634-z
Knihovny.cz E-resources

Brown mud, as a waste product of the industrial process of aluminum production, represents a great environmental burden due to its toxicity to living organisms. However, some microorganisms are able to survive in this habitat, and they can be used in bioremediation processes. Traditional cultivation methods have a limited capacity to characterize bacterial composition in environmental samples. Recently, next-generation sequencing methods have provided new perspectives on microbial community studies. The aim of this study was to analyze the bacterial community in the drainage water of brown mud disposal site near Žiar nad Hronom (Banská Bystrica region, Slovakia) using 454 pyrosequencing. We obtained 9964 sequences assigned to 163 operational taxonomic units belonging to 10 bacterial phyla. The phylum Proteobacteria showed the highest abundance (80.39%) within the bacterial community, followed by Firmicutes (13.05%) and Bacteroidetes (5.64%). Other bacterial phyla showed an abundance lower than 1%. The classification yielded 85 genera. Sulfurospirillum spp. (45.19%) dominated the bacterial population, followed by Pseudomonas spp. (13.76%) and Exiguobacterium spp. (13.02%). These results indicate that high heavy metals content, high pH, and lack of essential nutrients are the drivers of a dramatic reduction of diversity in the bacterial population in this environment.

See more in PubMed

Appl Microbiol Biotechnol. 2002 Jun;59(1):15-32 PubMed

Environ Technol. 2002 Jul;23(7):731-45 PubMed

Int J Syst Evol Microbiol. 2003 May;53(Pt 3):787-93 PubMed

Appl Environ Microbiol. 2004 Jan;70(1):202-13 PubMed

Curr Microbiol. 2004 May;48(5):341-7 PubMed

FEMS Microbiol Lett. 2007 Feb;267(1):64-71 PubMed

Appl Environ Microbiol. 2007 Aug;73(16):5261-7 PubMed

Appl Environ Microbiol. 2008 Apr;74(8):2461-70 PubMed

J Ind Microbiol Biotechnol. 2008 Dec;35(12):1571-9 PubMed

FEMS Microbiol Ecol. 2004 Jul 1;49(1):145-50 PubMed

Appl Environ Microbiol. 2009 Dec;75(23):7537-41 PubMed

J Basic Microbiol. 2010 Apr;50(2):150-9 PubMed

FEMS Microbiol Lett. 2010 Aug 1;309(1):1-7 PubMed

Ecotoxicol Environ Saf. 2010 Nov;73(8):1998-2003 PubMed

J Ind Microbiol Biotechnol. 2011 Jul;38(7):769-90 PubMed

Antonie Van Leeuwenhoek. 2011 Aug;100(2):245-57 PubMed

Bioinformatics. 2011 Aug 15;27(16):2194-200 PubMed

Environ Sci Pollut Res Int. 2012 Jan;19(1):161-8 PubMed

Sci Total Environ. 2012 May 15;425:262-70 PubMed

Environ Microbiol. 2012 Sep;14(9):2247-52 PubMed

Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 PubMed

Braz J Microbiol. 2012 Oct;43(4):1620-31 PubMed

Proc Natl Acad Sci U S A. 1985 Oct;82(20):6955-9 PubMed

Microb Ecol. 2014 Apr;67(3):635-47 PubMed

Extremophiles. 2014 Jul;18(4):665-76 PubMed

Microb Ecol. 2015 Feb;69(2):293-306 PubMed

Appl Environ Microbiol. 2015 Aug;81(15):5026-36 PubMed

PLoS One. 2015 Jun 08;10(6):e0128272 PubMed

Environ Sci Pollut Res Int. 2016 Mar;23(5):4199-206 PubMed

PLoS One. 2015 Sep 11;10(9):e0137401 PubMed

Ecotoxicol Environ Saf. 2017 Oct;144:300-306 PubMed

Environ Pollut. 2017 Dec;231(Pt 1):908-917 PubMed

Toxicol Rep. 2015 Oct 22;2:1367-1375 PubMed

Extremophiles. 1997 May;1(2):61-6 PubMed

Extremophiles. 1998 Aug;2(3):185-90 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...