Silver Nanoparticles and Its Mechanistic Insight for Chronic Wound Healing: Review on Recent Progress
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36080353
PubMed Central
PMC9457915
DOI
10.3390/molecules27175587
PII: molecules27175587
Knihovny.cz E-zdroje
- Klíčová slova
- dermatology, inflammatory response, silver nanoparticles, wound, wound healing,
- MeSH
- antibakteriální látky terapeutické užití MeSH
- hojení ran MeSH
- kovové nanočástice * chemie terapeutické užití MeSH
- obvazy MeSH
- stříbro * chemie terapeutické užití MeSH
- zlato chemie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antibakteriální látky MeSH
- stříbro * MeSH
- zlato MeSH
Wounds are structural and functional disruptions of skin that occur because of trauma, surgery, acute illness, or chronic disease conditions. Chronic wounds are caused by a breakdown in the finely coordinated cascade of events that occurs during healing. Wound healing is a long process that split into at least three continuous and overlapping processes: an inflammatory response, a proliferative phase, and finally the tissue remodeling. Therefore, these processes are extensively studied to develop novel therapeutics in order to achieve maximum recovery with minimum scarring. Several growth hormones and cytokines secreted at the site of lesions tightly regulates the healing processes. The traditional approach for wound management has been represented by topical treatments. Metal nanoparticles (e.g., silver, gold and zinc) are increasingly being employed in dermatology due to their favorable effects on healing, as well as in treating and preventing secondary bacterial infections. In the current review, a brief introduction on traditional would healing approach is provided, followed by focus on the potential of wound dressing therapeutic techniques functionalized with Ag-NPs.
Zobrazit více v PubMed
Lazarus G.S., Cooper D.M., Knighton D.R., Percoraro R.E., Rodeheaver G., Robson M.C. Definitions and guidelines for assessment of wounds and evaluation of healing. Wound Repair Regen. 1994;2:165–170. doi: 10.1046/j.1524-475X.1994.20305.x. PubMed DOI
Robson M.C., Steed D.L., Franz M.G. Wound healing: Biologic features and approaches to maximize healing trajectories. Curr. Probl. Surg. 2001;38:72–140. doi: 10.1067/msg.2001.111167. PubMed DOI
Ward J., Holden J., Grob M., Soldin M. Management of wounds in the community: Five principles. Br. J. Community Nurs. 2019;24:S20–S23. doi: 10.12968/bjcn.2019.24.Sup6.S20. PubMed DOI
Nussbaum S.R., Carter M.J., Fife C.E., DaVanzo J., Haught R., Nusgart M., Cartwright D. An Economic Evaluation of the Impact, Cost, and Medicare Policy Implications of Chronic Nonhealing Wounds. Value Health J. Int. Soc. Pharm. Outcomes Res. 2018;21:27–32. doi: 10.1016/j.jval.2017.07.007. PubMed DOI
AWCS Wound Care Research and the Imperative for Funding. [(accessed on 15 March 2022)]. Available online: https://www.woundcarestakeholders.org/value-of-wound-care/research/wound-care-research-the-imperative-for-funding2021.
Jakucs C. Wound Healing Research: The Need for Grants Is Widespread. [(accessed on 5 March 2022)]. Available online: https://blog.wcei.net/2020/10/wound-healing-research-the-need-for-grantsis-widespread.
Armstrong D.G., Swerdlow M.A., Armstrong A.A., Conte M.S., Padula W.V., Bus S.A. Five year mortality and direct costs of care for people with diabetic foot complications are comparable to cancer. J. Foot Ankle Res. 2020;13:16. doi: 10.1186/s13047-020-00383-2. PubMed DOI PMC
Wound Source—Venous Leg Ulcer Chronicity and Recurrence: Breaking the Cycle. [(accessed on 8 March 2022)]. Available online: https://www.woundsource.com/blog/venous-leg-ulcer-chroniccity-and-recurrence-breaking-cycle.
Venous Leg Ulcer (VLU) Treatment Market. [(accessed on 25 February 2022)]. Available online: https://www.fortunebusinessinsights.com/venous-leg-ulcervlu-treatment-market.
Attinger C.E., Janis J.E., Steinberg J., Schwartz J., Al-Attar A., Couch K. Clinical approach to wounds: Debridement and wound bed preparation including the use of dressings and wound-healing adjuvants. Plast. Reconstr. Surg. 2006;117:72S–109S. doi: 10.1097/01.prs.0000225470.42514.8f. PubMed DOI
Degreef H.J. How to heal a wound fast. Dermatol. Clin. 1998;16:365–375. doi: 10.1016/S0733-8635(05)70019-X. PubMed DOI
MacNeil S. Progress and opportunities for tissue-engineered skin. Nature. 2007;445:874–880. doi: 10.1038/nature05664. PubMed DOI
Bhardwaj N., Chouhan D., Mandal B.B. Tissue Engineered Skin and Wound Healing: Current Strategies and Future Directions. Curr. Pharm. Des. 2017;23:3455–3482. doi: 10.2174/1381612823666170526094606. PubMed DOI
Cañedo-Dorantes L., Cañedo-Ayala M. Skin Acute Wound Healing: A Comprehensive Review. Int. J. Inflam. 2019;2019:3706315. doi: 10.1155/2019/3706315. PubMed DOI PMC
Kapoor M., Appleton I. Wound healing: Abnormalities and future therapeutic targets. Curr. Anaesth. Crit. Care. 2005;16:88–93. doi: 10.1016/j.cacc.2005.03.005. DOI
Moura L.I., Dias A.M., Carvalho E., de Sousa H.C. Recent advances on the development of wound dressings for diabetic foot ulcer treatment—A review. Acta Biomater. 2013;9:7093–7114. doi: 10.1016/j.actbio.2013.03.033. PubMed DOI
Han G., Ceilley R. Chronic Wound Healing: A Review of Current Management and Treatments. Adv. Ther. 2017;34:599–610. doi: 10.1007/s12325-017-0478-y. PubMed DOI PMC
Morton L.M., Phillips T.J. Wound healing and treating wounds: Differential diagnosis and evaluation of chronic wounds. J. Am. Acad. Dermatol. 2016;74:589–605; quiz 605–586. doi: 10.1016/j.jaad.2015.08.068. PubMed DOI
Negut I., Grumezescu V., Grumezescu A.M. Treatment Strategies for Infected Wounds. Molecules. 2018;23:2392. doi: 10.3390/molecules23092392. PubMed DOI PMC
Lin Y.H., Hsu W.S., Chung W.Y., Ko T.H., Lin J.H. Silver-based wound dressings reduce bacterial burden and promote wound healing. Int Wound J. 2016;13:505–511. doi: 10.1111/iwj.12467. PubMed DOI PMC
Leaper D., Assadian O., Edmiston C.E. Approach to chronic wound infections. Br. J. Dermatol. 2015;173:351–358. doi: 10.1111/bjd.13677. PubMed DOI
Bessa L.J., Fazii P., Di Giulio M., Cellini L. Bacterial isolates from infected wounds and their antibiotic susceptibility pattern: Some remarks about wound infection. Int Wound J. 2015;12:47–52. doi: 10.1111/iwj.12049. PubMed DOI PMC
Bassetti M., Vena A., Croxatto A., Righi E., Guery B. How to manage Pseudomonas aeruginosa infections. Drugs Context. 2018;7:212527. doi: 10.7573/dic.212527. PubMed DOI PMC
Khan H.A., Ahmad A., Mehboob R. Nosocomial infections and their control strategies. Asian Pac. J. Trop. Biomed. 2015;5:509–514. doi: 10.1016/j.apjtb.2015.05.001. DOI
Tong S.Y., Davis J.S., Eichenberger E., Holland T.L., Fowler V.G., Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015;28:603–661. doi: 10.1128/CMR.00134-14. PubMed DOI PMC
Werth B.J., Sakoulas G., Rose W.E., Pogliano J., Tewhey R., Rybak M.J. Ceftaroline increases membrane binding and enhances the activity of daptomycin against daptomycin-nonsusceptible vancomycin-intermediate Staphylococcus aureus in a pharmacokinetic/pharmacodynamic model. Antimicrob. Agents Chemother. 2013;57:66–73. doi: 10.1128/AAC.01586-12. PubMed DOI PMC
Steed M.E., Vidaillac C., Rybak M.J. Novel daptomycin combinations against daptomycin-nonsusceptible methicillin-resistant Staphylococcus aureus in an in vitro model of simulated endocardial vegetations. Antimicrob. Agents Chemother. 2010;54:5187–5192. doi: 10.1128/AAC.00536-10. PubMed DOI PMC
Rose W.E., Berti A.D., Hatch J.B., Maki D.G. Relationship of in vitro synergy and treatment outcome with daptomycin plus rifampin in patients with invasive methicillin-resistant Staphylococcus aureus infections. Antimicrob. Agents Chemother. 2013;57:3450–3452. doi: 10.1128/AAC.00325-12. PubMed DOI PMC
Miro J.M., Entenza J.M., Del Rio A., Velasco M., Castaneda X., Garcia de la Maria C., Giddey M., Armero Y., Pericas J.M., Cervera C., et al. High-dose daptomycin plus fosfomycin is safe and effective in treating methicillin-susceptible and methicillin-resistant Staphylococcus aureus endocarditis. Antimicrob. Agents Chemother. 2012;56:4511–4515. doi: 10.1128/AAC.06449-11. PubMed DOI PMC
Boucher H.W., Wilcox M., Talbot G.H., Puttagunta S., Das A.F., Dunne M.W. Once-weekly dalbavancin versus daily conventional therapy for skin infection. N. Engl. J. Med. 2014;370:2169–2179. doi: 10.1056/NEJMoa1310480. PubMed DOI
Moran G.J., Fang E., Corey G.R., Das A.F., De Anda C., Prokocimer P. Tedizolid for 6 days versus linezolid for 10 days for acute bacterial skin and skin-structure infections (ESTABLISH-2): A randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2014;14:696–705. doi: 10.1016/S1473-3099(14)70737-6. PubMed DOI
Corey G.R., Kabler H., Mehra P., Gupta S., Overcash J.S., Porwal A., Giordano P., Lucasti C., Perez A., Good S., et al. Single-dose oritavancin in the treatment of acute bacterial skin infections. N. Engl. J. Med. 2014;370:2180–2190. doi: 10.1056/NEJMoa1310422. PubMed DOI
Stevens D.L., Bisno A.L., Chambers H.F., Dellinger E.P., Goldstein E.J., Gorbach S.L., Hirschmann J.V., Kaplan S.L., Montoya J.G., Wade J.C., et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2014;59:e10–e52. doi: 10.1093/cid/ciu296. PubMed DOI
Petkovsek Z., Elersic K., Gubina M., Zgur-Bertok D., Starcic Erjavec M. Virulence potential of Escherichia coli isolates from skin and soft tissue infections. J. Clin. Microbiol. 2009;47:1811–1817. PubMed PMC
Zhou Y.F., Liu P., Zhang C.J., Liao X.P., Sun J., Liu Y.H. Colistin Combined with Tigecycline: A Promising Alternative Strategy to Combat Escherichia coli Harboring bla NDM- 5 and mcr-1. Front. Microbiol. 2019;10:2957. doi: 10.3389/fmicb.2019.02957. PubMed DOI PMC
Anjum S., Arora A., Alam M.S., Gupta B. Development of antimicrobial and scar preventive chitosan hydrogel wound dressings. Int. J. Pharm. 2016;508:92–101. doi: 10.1016/j.ijpharm.2016.05.013. PubMed DOI
Michalska-Sionkowska M., Kaczmarek B., Walczak M., Sionkowska A. Antimicrobial activity of new materials based on the blends of collagen/chitosan/hyaluronic acid with gentamicin sulfate addition. Mater. Sci. Eng. C Mater. Biol. Appl. 2018;86:103–108. doi: 10.1016/j.msec.2018.01.005. PubMed DOI
Radulescu M., Holban A.M., Mogoanta L., Balseanu T.A., Mogosanu G.D., Savu D., Popescu R.C., Fufa O., Grumezescu A.M., Bezirtzoglou E., et al. Fabrication, Characterization, and Evaluation of Bionanocomposites Based on Natural Polymers and Antibiotics for Wound Healing Applications. Molecules. 2016;21:761. doi: 10.3390/molecules21060761. PubMed DOI PMC
Ahmadi M., Adibhesami M. The Effect of Silver Nanoparticles on Wounds Contaminated with Pseudomonas aeruginosa in Mice: An Experimental Study. Iran. J. Pharm. Res. 2017;16:661–669. PubMed PMC
Anjum A., Sim C.H., Ng S.F. Hydrogels Containing Antibiofilm and Antimicrobial Agents Beneficial for Biofilm-Associated Wound Infection: Formulation Characterizations and In vitro Study. AAPS PharmSciTech. 2018;19:1219–1230. doi: 10.1208/s12249-017-0937-4. PubMed DOI
Ahire J.J., Robertson D.D., van Reenen A.J., Dicks L.M. Polyethylene oxide (PEO)-hyaluronic acid (HA) nanofibers with kanamycin inhibits the growth of Listeria monocytogenes. Biomed. Pharm. 2017;86:143–148. doi: 10.1016/j.biopha.2016.12.006. PubMed DOI
Chapelle C., Gaborit B., Dumont R., Dinh A., Vallee M. Treatment of UTIs Due to Klebsiella pneumoniae Carbapenemase-Producers: How to Use New Antibiotic Drugs? A Narrative Review. Antibiotics. 2021;10:1332. doi: 10.3390/antibiotics10111332. PubMed DOI PMC
Webber B.J., Kieffer J.W., White B.K., Hawksworth A.W., Graf P.C.F., Yun H.C. Chemoprophylaxis against group A Streptococcus during military training. Prev. Med. 2019;118:142–149. doi: 10.1016/j.ypmed.2018.10.023. PubMed DOI
Wasfi R., Hamed S.M., Amer M.A., Fahmy L.I. Proteus mirabilis Biofilm: Development and Therapeutic Strategies. Front. Cell Infect. Microbiol. 2020;10:414. doi: 10.3389/fcimb.2020.00414. PubMed DOI PMC
Beganovic M., Luther M.K., Rice L.B., Arias C.A., Rybak M.J., LaPlante K.L. A Review of Combination Antimicrobial Therapy for Enterococcus faecalis Bloodstream Infections and Infective Endocarditis. Clin. Infect. Dis. 2018;67:303–309. doi: 10.1093/cid/ciy064. PubMed DOI PMC
Lakticova V., Hutton-Thomas R., Meyer M., Gurkan E., Rice L.B. Antibiotic-induced enterococcal expansion in the mouse intestine occurs throughout the small bowel and correlates poorly with suppression of competing flora. Antimicrob. Agents Chemother. 2006;50:3117–3123. doi: 10.1128/AAC.00125-06. PubMed DOI PMC
Panagiotidis G., Backstrom T., Asker-Hagelberg C., Jandourek A., Weintraub A., Nord C.E. Effect of ceftaroline on normal human intestinal microflora. Antimicrob. Agents Chemother. 2010;54:1811–1814. doi: 10.1128/AAC.01716-09. PubMed DOI PMC
Smith J.R., Barber K.E., Raut A., Aboutaleb M., Sakoulas G., Rybak M.J. beta-Lactam combinations with daptomycin provide synergy against vancomycin-resistant Enterococcus faecalis and Enterococcus faecium. J. Antimicrob. Chemother. 2015;70:1738–1743. doi: 10.1093/jac/dkv007. PubMed DOI PMC
Chard R. Wound classifications. AORN J. 2008;88:108.
Bielefeld K.A., Amini-Nik S., Alman B.A. Cutaneous wound healing: Recruiting developmental pathways for regeneration. Cell. Mol. Life Sci. 2013;70:2059–2081. doi: 10.1007/s00018-012-1152-9. PubMed DOI PMC
Simpson D.M., Ross R. The neutrophilic leukocyte in wound repair a study with antineutrophil serum. J. Clin. Invest. 1972;51:2009–2023. doi: 10.1172/JCI107007. PubMed DOI PMC
Albelda S.M., Buck C.A. Integrins and other cell adhesion molecules. FASEB J. 1990;4:2868–2880. doi: 10.1096/fasebj.4.11.2199285. PubMed DOI
Velnar T., Bailey T., Smrkolj V. The wound healing process: An overview of the cellular and molecular mechanisms. J. Int. Med. Res. 2009;37:1528–1542. doi: 10.1177/147323000903700531. PubMed DOI
Schaffer M., Barbul A. Lymphocyte function in wound healing and following injury. Br. J. Surg. 1998;85:444–460. doi: 10.1046/j.1365-2168.1998.00734.x. PubMed DOI
Braund R., Hook S., Medlicott N.J. The role of topical growth factors in chronic wounds. Curr. Drug Deliv. 2007;4:195–204. doi: 10.2174/156720107781023857. PubMed DOI
Gainza G., Villullas S., Pedraz J.L., Hernandez R.M., Igartua M. Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine. 2015;11:1551–1573. doi: 10.1016/j.nano.2015.03.002. PubMed DOI
Kiwanuka E., Junker J., Eriksson E. Harnessing growth factors to influence wound healing. Clin. Plast. Surg. 2012;39:239–248. doi: 10.1016/j.cps.2012.04.003. PubMed DOI
Singer A.J., Clark R.A. Cutaneous wound healing. N. Engl. J. Med. 1999;341:738–746. doi: 10.1056/NEJM199909023411006. PubMed DOI
Hunt T.K., Hopf H., Hussain Z. Physiology of wound healing. Adv. Ski. Wound Care. 2000;13:6–11. doi: 10.1016/S0196-0644(88)80351-2. PubMed DOI
Martins V.L., Caley M., O’Toole E.A. Matrix metalloproteinases and epidermal wound repair. Cell Tissue Res. 2013;351:255–268. doi: 10.1007/s00441-012-1410-z. PubMed DOI
Mihai M.M., Holban A.M., Giurcaneanu C., Popa L.G., Buzea M., Filipov M., Lazar V., Chifiriuc M.C., Popa M.I. Identification and phenotypic characterization of the most frequent bacterial etiologies in chronic skin ulcers. Rom. J. Morphol. Embryol. 2014;55:1401–1408. PubMed
Saurav K., Bar-Shalom R., Haber M., Burgsdorf I., Oliviero G., Costantino V., Morgenstern D., Steindler L. In Search of Alternative Antibiotic Drugs: Quorum-Quenching Activity in Sponges and their Bacterial Isolates. Front. Microbiol. 2016;7:416. doi: 10.3389/fmicb.2016.00416. PubMed DOI PMC
Sakarikou C., Kostoglou D., Simões M., Giaouris E. Exploitation of plant extracts and phytochemicals against resistant Salmonella spp. in biofilms. Food Res. Int. 2020;128:108806. doi: 10.1016/j.foodres.2019.108806. PubMed DOI
Haroun M.F., Al-Kayali R.S. Synergistic effect of Thymbra spicata L. extracts with antibiotics against multidrug- resistant Staphylococcus aureus and Klebsiella pneumoniae strains. Iran. J. Basic Med. Sci. 2016;19:1193–1200. PubMed PMC
Revathy T., Saranya R., Jayasri M.A., Saurav K., Suthindhiran K. Morphological alterations in erythrocytes treated with silver nanoparticles biomineralized by marine sediment-derived Bacillus sp. VITSSN01. Ann. Microbiol. 2014;64:1291–1299. doi: 10.1007/s13213-013-0773-z. DOI
Lansdown A.B. Physiological and toxicological changes in the skin resulting from the action and interaction of metal ions. Crit. Rev. Toxicol. 1995;25:397–462. doi: 10.3109/10408449509049339. PubMed DOI
Lansdown A.B. A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Adv. Pharmacol. Sci. 2010;2010:910686. doi: 10.1155/2010/910686. PubMed DOI PMC
Yuan Y., Zhu H., Wang X., Cui D., Gao Z., Su D., Zhao J., Chen O. Cu-Catalyzed Synthesis of CdZnSe-CdZnS Alloy Quantum Dots with Highly Tunable Emission. Chem. Mater. 2019;31:2635–2643. doi: 10.1021/acs.chemmater.9b00557. DOI
Khorrami S., Zarrabi A., Khaleghi M., Danaei M., Mozafari M.R. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int. J. Nanomed. 2018;13:8013–8024. doi: 10.2147/IJN.S189295. PubMed DOI PMC
Ramkumar V.S., Pugazhendhi A., Gopalakrishnan K., Sivagurunathan P., Saratale G.D., Dung T.N.B., Kannapiran E. Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnol. Rep. 2017;14:1–7. doi: 10.1016/j.btre.2017.02.001. PubMed DOI PMC
Durán N., Nakazato G., Seabra A.B. Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: An overview and comments. Appl. Microbiol. Biotechnol. 2016;100:6555–6570. doi: 10.1007/s00253-016-7657-7. PubMed DOI
Shankar P.D., Shobana S., Karuppusamy I., Pugazhendhi A., Ramkumar V.S., Arvindnarayan S., Kumar G. A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: Formation mechanism and applications. Enzym. Microb Technol. 2016;95:28–44. doi: 10.1016/j.enzmictec.2016.10.015. PubMed DOI
Rozhin A., Batasheva S., Kruychkova M., Cherednichenko Y., Rozhina E., Fakhrullin R. Biogenic Silver Nanoparticles: Synthesis and Application as Antibacterial and Antifungal Agents. Micromachines. 2021;12:1480. doi: 10.3390/mi12121480. PubMed DOI PMC
Naskar A., Kim K.S. Recent Advances in Nanomaterial-Based Wound-Healing Therapeutics. Pharmaceutics. 2020;12:499. doi: 10.3390/pharmaceutics12060499. PubMed DOI PMC
Khan I., Saeed K., Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019;12:908–931. doi: 10.1016/j.arabjc.2017.05.011. DOI
Nikolova M.P., Chavali M.S. Metal Oxide Nanoparticles as Biomedical Materials. Biomimetics. 2020;5:27. doi: 10.3390/biomimetics5020027. PubMed DOI PMC
Ferro C., Florindo H.F., Santos H.A. Selenium Nanoparticles for Biomedical Applications: From Development and Characterization to Therapeutics. Adv. Healthc. Mater. 2021;10:2100598. doi: 10.1002/adhm.202100598. PubMed DOI
Baig N., Kammakakam I., Falath W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021;2:1821–1871. doi: 10.1039/D0MA00807A. DOI
Sim S., Wong N.K. Nanotechnology and its use in imaging and drug delivery (Review) Biomed. Rep. 2021;14:42. doi: 10.3892/br.2021.1418. PubMed DOI PMC
Harish V., Tewari D., Gaur M., Yadav A.B., Swaroop S., Bechelany M., Barhoum A. Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications. Nanomaterials. 2022;12:457. doi: 10.3390/nano12030457. PubMed DOI PMC
Gaillet S., Rouanet J.M. Silver nanoparticles: Their potential toxic effects after oral exposure and underlying mechanisms—A review. Food Chem. Toxicol. 2015;77:58–63. doi: 10.1016/j.fct.2014.12.019. PubMed DOI
Patra J.K., Das G., Fraceto L.F., Campos E.V.R., Rodriguez-Torres M.D.P., Acosta-Torres L.S., Diaz-Torres L.A., Grillo R., Swamy M.K., Sharma S., et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018;16:71. PubMed PMC
Yin I.X., Zhang J., Zhao I.S., Mei M.L., Li Q., Chu C.H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int J. Nanomed. 2020;15:2555–2562. doi: 10.2147/IJN.S246764. PubMed DOI PMC
Kędziora A., Wieczorek R., Speruda M., Matolínová I., Goszczyński T.M., Litwin I., Matolín V., Bugla-Płoskońska G. Comparison of Antibacterial Mode of Action of Silver Ions and Silver Nanoformulations with Different Physico-Chemical Properties: Experimental and Computational Studies. Front. Microbiol. 2021;12:659614. doi: 10.3389/fmicb.2021.659614. PubMed DOI PMC
Raczkowska J., Stetsyshyn Y., Awsiuk K., Brzychczy-Włoch M., Gosiewski T., Jany B., Lishchynskyi O., Shymborska Y., Nastyshyn S., Bernasik A., et al. “Command” surfaces with thermo-switchable antibacterial activity. Mater. Sci. Eng. C. 2019;103:109806. doi: 10.1016/j.msec.2019.109806. PubMed DOI
Hemeg H.A. Nanomaterials for alternative antibacterial therapy. Int. J. Nanomed. 2017;12:8211–8225. doi: 10.2147/IJN.S132163. PubMed DOI PMC
Dakal T.C., Kumar A., Majumdar R.S., Yadav V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front. Microbiol. 2016;7:1831. doi: 10.3389/fmicb.2016.01831. PubMed DOI PMC
Konnova S.A., Danilushkina A.A., Fakhrullina G.I., Akhatova F.S., Badrutdinov A.R., Fakhrullin R.F. Silver nanoparticle-coated “cyborg” microorganisms: Rapid assembly of polymer-stabilised nanoparticles on microbial cells. RSC Adv. 2015;5:13530–13537. doi: 10.1039/C4RA15857A. DOI
Tarhan T., Şen Ö., Ciofani M.E., Yılmaz D., Çulha M. Synthesis and characterization of silver nanoparticles decorated polydopamine coated hexagonal boron nitride and its effect on wound healing. J. Trace Elem. Med. Biol. 2021;67:126774. doi: 10.1016/j.jtemb.2021.126774. PubMed DOI
Liu X., Lee P.Y., Ho C.M., Lui V.C., Chen Y., Che C.M., Tam P.K., Wong K.K. Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. ChemMedChem. 2010;5:468–475. doi: 10.1002/cmdc.200900502. PubMed DOI
Shevtsova T., Cavallaro G., Lazzara G., Milioto S., Donchak V., Harhay K., Korolko S., Budkowski A., Stetsyshyn Y. Temperature-responsive hybrid nanomaterials based on modified halloysite nanotubes uploaded with silver nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2022;641:128525. doi: 10.1016/j.colsurfa.2022.128525. DOI
Thanh N.T., Hieu M.H., Phuong N.T.M., Thuan T.D.B., Thu H.N.T., Thai V.-P., Minh T.D., Dai H.N., Vo V.T., Thi H.N. Optimization and characterization of electrospun polycaprolactone coated with gelatin-silver nanoparticles for wound healing application. Mater. Sci. Eng. C Mater. Biol. Appl. 2018;91:318–329. doi: 10.1016/j.msec.2018.05.039. PubMed DOI
Fong J., Wood F. Nanocrystalline silver dressings in wound management: A review. Int J. Nanomed. 2006;1:441–449. doi: 10.2147/nano.2006.1.4.441. PubMed DOI PMC
Hamdan S., Pastar I., Drakulich S., Dikici E., Tomic-Canic M., Deo S., Daunert S. Nanotechnology-Driven Therapeutic Interventions in Wound Healing: Potential Uses and Applications. ACS Cent. Sci. 2017;3:163–175. doi: 10.1021/acscentsci.6b00371. PubMed DOI PMC
Vijayakumar V., Samal S.K., Mohanty S., Nayak S.K. Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound healing management. Int. J. Biol. Macromol. 2019;122:137–148. doi: 10.1016/j.ijbiomac.2018.10.120. PubMed DOI
Szmyd R., Goralczyk A.G., Skalniak L., Cierniak A., Lipert B., Filon F.L., Crosera M., Borowczyk J., Laczna E., Drukala J., et al. Effect of silver nanoparticles on human primary keratinocytes. Biol. Chem. 2013;394:113–123. doi: 10.1515/hsz-2012-0202. PubMed DOI
Pal S., Nisi R., Stoppa M., Licciulli A. Silver-Functionalized Bacterial Cellulose as Antibacterial Membrane for Wound-Healing Applications. ACS Omega. 2017;2:3632–3639. doi: 10.1021/acsomega.7b00442. PubMed DOI PMC
Hanif Z., Khan Z.A., Siddiqui M.F., Tariq M.Z., Park S., Park S.J. Tannic acid-mediated rapid layer-by-layer deposited non-leaching silver nanoparticles hybridized cellulose membranes for point-of-use water disinfection. Carbohydr. Polym. 2020;231:115746. doi: 10.1016/j.carbpol.2019.115746. PubMed DOI
Dong X., Shannon H.D., Amirsoleimani A., Brion G.M., Escobar I.C. Thiol-Affinity Immobilization of Casein-Coated Silver Nanoparticles on Polymeric Membranes for Biofouling Control. Polymers. 2019;11:2057. doi: 10.3390/polym11122057. PubMed DOI PMC
Levi-Polyachenko N., Jacob R., Day C., Kuthirummal N. Chitosan wound dressing with hexagonal silver nanoparticles for hyperthermia and enhanced delivery of small molecules. Colloids Surf. B Biointerfaces. 2016;142:315–324. doi: 10.1016/j.colsurfb.2016.02.038. PubMed DOI
Singh R., Singh D. Chitin membranes containing silver nanoparticles for wound dressing application. Int. Wound J. 2014;11:264–268. doi: 10.1111/j.1742-481X.2012.01084.x. PubMed DOI PMC
Chen X., Lin H., Xu T., Lai K., Han X., Lin M. Cellulose nanofibers coated with silver nanoparticles as a flexible nanocomposite for measurement of flusilazole residues in Oolong tea by surface-enhanced Raman spectroscopy. Food Chem. 2020;315:126276. doi: 10.1016/j.foodchem.2020.126276. PubMed DOI
Yun B.J., Koh W.-G. Highly-sensitive SERS-based immunoassay platform prepared on silver nanoparticle-decorated electrospun polymeric fibers. J. Ind. Eng. Chem. 2020;82:341–348. doi: 10.1016/j.jiec.2019.10.032. DOI
Shen B., Zhang D., Wei Y., Zhao Z., Ma X., Zhao X., Wang S., Yang W. Preparation of Ag Doped Keratin/PA6 Nanofiber Membrane with Enhanced Air Filtration and Antimicrobial Properties. Polymers. 2019;11:1511. doi: 10.3390/polym11091511. PubMed DOI PMC
Dou J., Zhu G., Hu B., Yang J., Ge Y., Li X., Liu J. Wall thickness-tunable AgNPs-NCNTs for hydrogen peroxide sensing and oxygen reduction reaction. Electrochim. Acta. 2019;306:466–476.
Liu J., Sonshine D.A., Shervani S., Hurt R.H. Controlled release of biologically active silver from nanosilver surfaces. ACS Nano. 2010;4:6903–6913. PubMed PMC
Tian J., Wong K.K., Ho C.M., Lok C.N., Yu W.Y., Che C.M., Chiu J.F., Tam P.K. Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem. 2007;2:129–136. PubMed
Yeh Y.C., Creran B., Rotello V.M. Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale. 2012;4:1871–1880. PubMed PMC
Lu M.M., Bai J., Shao D., Qiu J., Li M., Zheng X., Xiao Y., Wang Z., Chang Z.M., Chen L., et al. Antibacterial and biodegradable tissue nano-adhesives for rapid wound closure. Int. J. Nanomed. 2018;13:5849–5863. PubMed PMC
El-Aassar M.R., Ibrahim O.M., Fouda M.M.G., El-Beheri N.G., Agwa M.M. Wound healing of nanofiber comprising Polygalacturonic/Hyaluronic acid embedded silver nanoparticles: In-vitro and in-vivo studies. Carbohydr. Polym. 2020;238:116175. PubMed
Warren D.S., Sutherland S.P.H., Kao J.Y., Weal G.R., Mackay S.M. The Preparation and Simple Analysis of a Clay Nanoparticle Composite Hydrogel. J. Chem. Educ. 2017;94:1772–1779.
Haleem A., Chen J., Guo X.-X., Wang J.-Y., Li H.-J., Li P.-Y., Chen S.-Q., He W.-D. Hybrid cryogels composed of P(NIPAM-co-AMPS) and metal nanoparticles for rapid reduction of p-nitrophenol. Polymer. 2020;193:122352.
Atefeh S. Design of AgNPs -Base Starch/PEG-Poly (Acrylic Acid) Hydrogel for Removal of Mercury (II) J. Polym. Environ. 2020;28:906–917.
Dil N.N., Sadeghi M. Free radical synthesis of nanosilver/gelatin-poly (acrylic acid) nanocomposite hydrogels employed for antibacterial activity and removal of Cu(II) metal ions. J. Hazard. Mater. 2018;351:38–53. PubMed
Masood N., Ahmed R., Tariq M., Ahmed Z., Masoud M.S., Ali I., Asghar R., Andleeb A., Hasan A. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int. J. Pharm. 2019;559:23–36. PubMed
Rahmani S., Mooney D. Tissue-Engineered Wound Dressings for Diabetic Foot Ulcers: Medical and Surgical Management. In: Veves A., Giurini J., Guzman R., editors. The Diabetic Foot. Contemporary Diabetes. Volume 15. Humana; Cham, Switzerland: 2018. pp. 247–256.
Tate S., Price A., Harding K. Dressings for venous leg ulcers. BMJ. 2018;361:k1604. PubMed
Weller C. 4—Interactive dressings and their role in moist wound management. In: Rajendran S., editor. Advanced Textiles for Wound Care. Woodhead Publishing; Sawston, UK: 2009. pp. 97–113.
Weller C.D., Team V., Sussman G. First-Line Interactive Wound Dressing Update: A Comprehensive Review of the Evidence. Front. Pharm. 2020;11:155. PubMed PMC
Hubner P., Donati N., Quines L.K.d.M., Tessaro I.C., Marcilio N.R. Gelatin-based films containing clinoptilolite-Ag for application as wound dressing. Mater. Sci. Eng. C. 2020;107:110215. PubMed
Ambrogi V., Pietrella D., Donnadio A., Latterini L., Di Michele A., Luffarelli I., Ricci M. Biocompatible alginate silica supported silver nanoparticles composite films for wound dressing with antibiofilm activity. Mater. Sci. Eng. C. 2020;112:110863. PubMed
An J., Zhang H., Zhang J., Zhao Y., Yuan X. Preparation and antibacterial activity of electrospun chitosan/poly(ethylene oxide) membranes containing silver nanoparticles. Colloid Polym. Sci. 2009;287:1425–1434.
Archana D., Singh B.K., Dutta J., Dutta P.K. Chitosan-PVP-nano silver oxide wound dressing: In vitro and in vivo evaluation. Int. J. Biol. Macromol. 2015;73:49–57. PubMed
Montaser A.S., Abdel-Mohsen A.M., Ramadan M.A., Sleem A.A., Sahffie N.M., Jancar J., Hebeish A. Preparation and characterization of alginate/silver/nicotinamide nanocomposites for treating diabetic wounds. Int. J. Biol. Macromol. 2016;92:739–747. PubMed
Lu B., Lu F., Zou Y., Liu J., Rong B., Li Z., Dai F., Wu D., Lan G. In situ reduction of silver nanoparticles by chitosan-l-glutamic acid/hyaluronic acid: Enhancing antimicrobial and wound-healing activity. Carbohydr. Polym. 2017;173:556–565. PubMed
Ye D., Zhong Z., Xu H., Chang C., Yang Z., Wang Y., Ye Q., Zhang L. Construction of cellulose/nanosilver sponge materials and their antibacterial activities for infected wounds healing. Cellulose. 2016;23:749–763.
Shao J., Wang B., Li J., Jansen J.A., Walboomers X.F., Yang F. Antibacterial effect and wound healing ability of silver nanoparticles incorporation into chitosan-based nanofibrous membranes. Mater. Sci. Eng. C Mater. Biol. Appl. 2019;98:1053–1063. doi: 10.1016/j.msec.2019.01.073. PubMed DOI
Wu J., Zheng Y., Wen X., Lin Q., Chen X., Wu Z. Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: Investigation in vitro and in vivo. Biomed. Mater. 2014;9:035005. doi: 10.1088/1748-6041/9/3/035005. PubMed DOI
Verma J., Kanoujia J., Parashar P., Tripathi C.B., Saraf S.A. Wound healing applications of sericin/chitosan-capped silver nanoparticles incorporated hydrogel. Drug Deliv. Transl. Res. 2017;7:77–88. doi: 10.1007/s13346-016-0322-y. PubMed DOI
Ding L., Shan X., Zhao X., Zha H., Chen X., Wang J., Cai C., Wang X., Li G., Hao J., et al. Spongy bilayer dressing composed of chitosan-Ag nanoparticles and chitosan-Bletilla striata polysaccharide for wound healing applications. Carbohydr. Polym. 2017;157:1538–1547. doi: 10.1016/j.carbpol.2016.11.040. PubMed DOI
Liang D., Lu Z., Yang H., Gao J., Chen R. Novel Asymmetric Wettable AgNPs/Chitosan Wound Dressing: In Vitro and In Vivo Evaluation. ACS Appl. Mater. Interfaces. 2016;8:3958–3968. doi: 10.1021/acsami.5b11160. PubMed DOI
Khampieng T., Brikshavana P., Supaphol P. Silver nanoparticle-embedded poly(vinyl pyrrolidone) hydrogel dressing: Gamma-ray synthesis and biological evaluation. J. Biomater. Sci. Polym. Ed. 2014;25:826–842. doi: 10.1080/09205063.2014.910154. PubMed DOI
Perez-Diaz M., Alvarado-Gomez E., Magana-Aquino M., Sanchez-Sanchez R., Velasquillo C., Gonzalez C., Ganem-Rondero A., Martinez-Castanon G., Zavala-Alonso N., Martinez-Gutierrez F. Anti-biofilm activity of chitosan gels formulated with silver nanoparticles and their cytotoxic effect on human fibroblasts. Mater. Sci. Eng. C Mater. Biol. Appl. 2016;60:317–323. PubMed
Kumar P.T.S., Abhilash S., Manzoor K., Nair S.V., Tamura H., Jayakumar R. Preparation and characterization of novel β-chitin/nanosilver composite scaffolds for wound dressing applications. Carbohydr. Polym. 2010;80:761–767. doi: 10.1016/j.carbpol.2009.12.024. PubMed DOI
Abdel-Mohsen A.M., Hrdina R., Burgert L., Abdel-Rahman R.M., Hasova M., Smejkalova D., Kolar M., Pekar M., Aly A.S. Antibacterial activity and cell viability of hyaluronan fiber with silver nanoparticles. Carbohydr. Polym. 2013;92:1177–1187. doi: 10.1016/j.carbpol.2012.08.098. PubMed DOI
Kim M.H., Cho D., Kwon O.H., Park W.H. Thermal fabrication and characterization of Ag nanoparticle-activated carbon composites for functional wound-dressing additives. J. Alloys Compd. 2018;735:2670–2674. doi: 10.1016/j.jallcom.2017.11.347. DOI
Namviriyachote N., Lipipun V., Akkhawattanangkul Y., Charoonrut P., Ritthidej G.C. Development of polyurethane foam dressing containing silver and asiaticoside for healing of dermal wound. Asian J. Pharm. Sci. 2019;14:63–77. doi: 10.1016/j.ajps.2018.09.001. PubMed DOI PMC