Comparison of Antibacterial Mode of Action of Silver Ions and Silver Nanoformulations With Different Physico-Chemical Properties: Experimental and Computational Studies
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
34276595
PubMed Central
PMC8281304
DOI
10.3389/fmicb.2021.659614
Knihovny.cz E-resources
- Keywords
- Escherichia coli, computational method, gram-negative bacteria, mode of action, nanoformulations, silver,
- Publication type
- Journal Article MeSH
The aim of this study was to compare the antibacterial mode of action of silver ions (Ag+) and selected silver nanoformulations against E. coli strains (E. coli J53, Escherichia coli BW25113 and its derivatives: Δ ompA, Δ ompC, Δ ompF, Δ ompR, ompRG596AcusSG1130A, cusSG1130A). In this research we used various experimental methods and techniques such as determination of the minimal inhibitory concentration, flow cytometry, scanning electron microscopy, circular dichroism as well as computational methods of theoretical chemistry. Thanks to the processing of bacteria and silver samples (ions and nanoformulations), we were able to determine the bacterial sensitivity to silver samples, detect reactive oxygen species (ROS) in the bacterial cells, visualize the interaction of silver samples with the bacterial cells, and identify their interactions with proteins. Differences between the mode of action of silver ions and nanoformulations and the action of nanoformulations themselves were revealed. Based on the results of computational methods, we proposed an explanation of the differences in silver-outer protein interaction between silver ions and metallic silver; in general, the Ag0 complexes exhibit weaker interaction than Ag+ ones. Moreover, we identified two gutter-like areas of the inner layer of the ion channel: one more effective, with oxygen-rich side chains; and another one less effective, with nitrogen-rich side chains.
Department of Microbiology Faculty of Biological Sciences University of Wrocław Wrocław Poland
See more in PubMed
Anuj S. A., Gajera H. P., Hirpara D. G., Golakiya B. A., et al. (2019). Bacterial membrane destabilization with cationic particles of nano-silver to combat efflux-mediated antibiotic resistance in Gram-negative bacteria. Life Sci. 230 178–187. 10.1016/j.lfs.2019.05.072 PubMed DOI
Banerjee M., Mallick S., Paul A., Chattopadhyay A., Ghosh S. S. (2010). Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan-silver nanoparticle composite. Langmuir 26 5901–5908. 10.1021/la9038528 PubMed DOI
Bonilla-Gameros L., Chevallier P., Sarkissian A., Mantovani D. (2020). Silver-based antibacterial strategies for healthcare-associated infections: processes, challenges, and regulations. an integrated review. Nanomedicine 24 102–142. PubMed
Borkowski A., Cłapa T., Szala M., Ga̧siński A., Selwet M. (2016). Synthesis ofSiC/Ag/cellulose nanocomposite and its antibacterial activity by reactive oxygen species generation. Nanomaterials 6:171. 10.3390/nano6090171 PubMed DOI PMC
Cammi R. (2013). The Complexes With Ag in Molecular Response Functions for the Polarizable Continuum Model: Physical Basis and Quantum Mechanical Formalism, 1st Edn. Berlin: Springer.
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R. (2009). Gaussian 09, Revision A.02. Wallingford CT: Gaussian, Inc.
Galazzi R. M., Lopes Júnior C. A., de Lima T. B., Gozzo F. C., Arruda M. A. Z. (2019). Evaluation of some effects on plant metabolism through proteins and enzymes in ransgenic and non-transgenic soybeans after cultivation with silver nanoparticles. J. Proteomics 191 88–106. 10.1016/j.jprot.2018.03.024 PubMed DOI
Kar S., Bagchi B., Kundu B., Bhandary S., Basu R., Nandy P., et al. (2014). Synthesis and characterization of Cu/Ag nanoparticle loaded mullite nanocomposite system: a potential candidate for antimicrobial and therapeutic applications. Biochim. Biophys. Acta Gen. Subj. 1840 3264–3276. 10.1016/j.bbagen.2014.05.012 PubMed DOI
Kędziora A., Speruda M., Krzyżewska E., Rybka J., Łukowiak A., Bugla-Płoskońska G., et al. (2018). Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int. J. Mol. Sci. 19:444. 10.3390/ijms19020444 PubMed DOI PMC
Kędziora A., Wernecki M., Korzekwa K., Speruda M., Gerasymchuk Y., Łukowiak A., et al. (2020). Consequences of long-term bacteria’s exposure to silver nanoformulations with different physicochemical properties. Int. J. Nanomed. 15 199–213. 10.2147/ijn.s208838 PubMed DOI PMC
Laera S., Ceccone G., Rossi F., Gilliland D., Hussain R., Siligardi G., et al. (2011). Measuring protein structure and stability of protein_nanoparticle systems with synchrotron radiation circular dichroism. Nano Lett. 11 4480–4484. 10.1021/nl202909s PubMed DOI
Li X. Z., Nikaido H., Williams K. E. (1997). Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J. Bacteriol. 179 6127-6132. PubMed PMC
Liu Y. F., Yan J. J., Lei H. Y., Teng C. H., Wang M. C., Tseng C. C. (2012). Loss of outer membrane protein C in Escherichia coli contributes to both antibiotic resistance and escaping antibody-dependent bactericidal activity. Infect. Immun. 80 1815–1822. 10.1128/iai.06395-11 PubMed DOI PMC
Mielke Z., Latajka Z., Olbert-Majkut A., Wieczorek R. (2000). Matrix infrared spectra and ab initio calculations of the nitrous acid complexes with nitrogen monoxide. J. Phys. Chem. A 104 3764–3769. 10.1021/jp993889i DOI
Olszewski T. K. (2015). α-Hydroxyphosphonic acid derivatives of 2-azanorbornane: synthesis. DFT calculations, and crystal structure analysis. Tetrahedron Asymmetry 26 601–607. 10.1016/j.tetasy.2015.04.012 DOI
Pareek V., Gupta R., Panwar J. (2018). Do physico-chemical properties of silver nanoparticles decide their interaction with biological media and bactericidal action? a review mater. Sci. Eng. C Mater. Biol. Appl. 90 739–749. 10.1016/j.msec.2018.04.093 PubMed DOI
Radzig M. A., Nadtochenko V. A., Koksharova O. A., Kiwi J., Lipasova V. A., Khmel I. A. (2013). Antibacterial effects of silver nanoparticles on gram-negative bacteria: influence on the growth and biofilms formation, mechanisms of action. Colloids Surf. B Biointerfaces 102 300-306. PubMed
Randall C. P., Gupta A., Jackson N., Busse D., O’Neill A. J. (2015). Silver resistance in Gram-negative bacteria: a dissection of endogenous and exogenous mechanisms. J. Antimicrob. Chemother. 70 1037–1046. PubMed PMC
Reymond-Laruinaz S., Saviot L., Potin V., Marco, de Lucas M. D. C. (2016). Protein–nanoparticle interaction in bioconjugated silver nanoparticles: a transmission electron microscopy and surface enhanced raman spectroscopy study. Appl. Surf. Sci. 389 17–24. 10.1016/j.apsusc.2016.07.082 DOI
Rudowska M., Wieczorek R., Kluczyk A., Stefanowicz P., Szewczuk Z. (2013). Gas-phase fragmenta argtion of oligoproline peptide ions lacking easily mobilizable protons. J. Am. Soc. Mass Spectr. 24 846–856. 10.1007/s13361-013-0585-1 PubMed DOI PMC
Salvador P., Wieczorek R., Dannenberg J. J. (2007). Direct calculation of transhydrogen-bond 13C-15N 3-bond J-couplings in entire polyalanine α-helices. a density functional theory study. J. Phys. Chem. B 111 2398–2403. 10.1021/jp064706c PubMed DOI
Siddiq A. M., Murugan D., Srivastava R., Alam S. (2019). Influence of pH on interaction of silver nanoparticles - protein: analyses by spectroscopic and thermodynamic ideology. Colloids Surf. B Biointerfaces 184:110524. 10.1016/j.colsurfb.2019.110524 PubMed DOI
Weinstein M. P. (2006). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically Approved Standard, 7th Edn M7-A5. USA: CLSI.
Wieczorek R., Latajka Z., Lundell J. (1999). Quantum chemical study of the bimolecular complex of HONO. J. Phys. Chem. A 103 6234–6239. 10.1021/jp990610p DOI
Wu L., Zhu G., Zhang X., Si Y. (2019). Silver nanoparticles inhibit denitrification by altering the viability and metabolic activity of Pseudomonas stutzeri. Sci. Total Environ. 706:135711. 10.1016/j.scitotenv.2019.135711 PubMed DOI
Zhang L., Wu L., Si Y., Shu K. (2018). Size-dependent cytotoxicity of silver nanoparticles to Azotobacter vinelandii: growth inhibition, cell injury, oxidative stress and internalization. PLoS One 13:e0209020. 10.1371/journal.pone.0209020 PubMed DOI PMC
Zheng K., Setyawati M. I., Leong D. T., Xie J. (2018). Antimicrobial silver nanomaterials. Coord. Chem. Rev. 357 1–17. 10.1016/j.ccr.2017.11.019 DOI