Maternal Plasma Metabolomic Profiles in Spontaneous Preterm Birth: Preliminary Results
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29670470
PubMed Central
PMC5833472
DOI
10.1155/2018/9362820
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- gestační stáří MeSH
- lidé MeSH
- mladý dospělý MeSH
- multivariační analýza MeSH
- předčasná porodní činnost krev MeSH
- předčasný porod krev MeSH
- retrospektivní studie MeSH
- studie případů a kontrol MeSH
- těhotenství MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: To profile maternal plasma metabolome in spontaneous preterm birth. METHOD: In this retrospective case-control study, we have examined plasma of patient with preterm birth (between 22 and 36 weeks of pregnancy (n = 57)), with threatened preterm labor (between 23 and 36 weeks of pregnancy (n = 49)), and with term delivery (n = 25). Plasma samples were analysed using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) in positive and negative polarity modes. RESULTS: We found 168 differentially expressed metabolites that were significantly distinct between study groups. We determined 51 metabolites using publicly available databases that could be subdivided into one of the five groups: amino acids, fatty acids, lipids, hormones, and bile acids. PLS-DA models, verified by SVM classification accuracy, differentiated preterm birth and term delivery groups. CONCLUSIONS: Maternal plasma metabolites are different between term and preterm parturitions. Part of them may be related with preterm labor, while others may be affected by gestational age or the beginning of labor. Metabolite profile can classify preterm or term delivery groups raising the potential of metabolome as a biomarker to identify high-risk pregnancies. Metabolomic studies are also a tool to detect individual compounds that may be further tested in targeted researches.
Biomedical Research Center University Hospital Hradec Kralove Hradec Kralove Czech Republic
Department of Perinatology Medical University of Bialystok Bialystok Poland
Department of Pharmaceutical Analysis Medical University of Bialystok Bialystok Poland
Faculty of Computer Science Bialystok University of Technology Bialystok Poland
Zobrazit více v PubMed
Goldenberg R. L., Culhane J. F., Iams J. D., Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84. doi: 10.1016/S0140-6736(08)60074-4. PubMed DOI PMC
Markham K. B., Klebanoff M. Prevention of preterm birth in modern obstetrics. Clinics in Perinatology. 2014;41(4):773–785. doi: 10.1016/j.clp.2014.08.003. PubMed DOI
Kuć P., Laudański P., Pierzyński P., Laudański T. The effect of combined tocolysis on in vitro uterine contractility in preterm labour. Advances in Medical Sciences. 2011;56(1):88–94. doi: 10.2478/v10039-011-0019-x. PubMed DOI
Saigal S., Stoskopf B., Boyle M., et al. Comparison of current health, functional limitations, and health care use of young adults who were born with extremely low birth weight and normal birth weight. Pediatrics. 2007;119(3):e562–e573. doi: 10.1542/peds.2006-2328. PubMed DOI
Petrou S., Eddama O., Mangham L. A structured review of the recent literature on the economic consequences of preterm birth. Archives of Disease in Childhood - Fetal and Neonatal Edition. 2011;96(3):F225–F232. doi: 10.1136/adc.2009.161117. PubMed DOI
Georgiou H. M., Di Quinzio M. K., Permezel M., Brennecke S. P. Predicting preterm labour: current status and future prospects. Disease Markers. 2015;2015:9. doi: 10.1155/2015/435014.435014 PubMed DOI PMC
Conde-Agudelo A., Papageorghiou A. T., Kennedy S. H., Villar J. Novel biomarkers for the prediction of the spontaneous preterm birth phenotype: a systematic review and meta-analysis. BJOG: An International Journal of Obsterics and Gynaecology. 2011;118(9):1042–1054. doi: 10.1111/j.1471-0528.2011.02923.x. PubMed DOI
Sabour S. Prediction of spontaneous preterm delivery in women with threatened preterm labour: a prospective cohort study of multiple proteins in maternal serum. BJOG: An International Journal of Obsterics and Gynaecology. 2012;119(12):p. 1544. doi: 10.1111/j.1471-0528.2012.03487.x. PubMed DOI
Laudanski P., Lemancewicz A., Kuc P., et al. Chemokines profiling of patients with preterm birth. Mediators of Inflammation. 2014;2014:7. doi: 10.1155/2014/185758.185758 PubMed DOI PMC
Kuć P., Laudański P., Kowalczuk O., Chyczewski L., Laudański T. Expression of selected genes in preterm premature rupture of fetal membranes. Acta Obstetricia et Gynecologica Scandinavica. 2012;91(8):936–943. doi: 10.1111/j.1600-0412.2012.01445.x. PubMed DOI
Kmiecik G., Niklińska W., Kuć P., et al. Fetal membranes as a source of stem cells. Advances in Medical Sciences. 2013;58(2):185–195. doi: 10.2478/ams-2013-0007. PubMed DOI
Chan R. L. Biochemical markers of spontaneous preterm birth in asymptomatic women. BioMed Research International. 2014;2014:8. doi: 10.1155/2014/164081.164081 PubMed DOI PMC
Laudanski P., Raba G., Kuc P., Lemancewicz A., Kisielewski R., Laudanski T. Assessment of the selected biochemical markers in predicting preterm labour. The Journal of Maternal-Fetal & Neonatal Medicine. 2012;25(12):2696–2699. doi: 10.3109/14767058.2012.699116. PubMed DOI
Nicholson J. K., Lindon J. C. Systems biology: metabonomics. Nature. 2008;455(7216):1054–1056. doi: 10.1038/4551054a. PubMed DOI
Fanos V., Atzori L., Makarenko K., Melis G. B., Ferrazzi E. Metabolomics application in maternal-fetal medicine. BioMed Research International. 2013;2013:9. doi: 10.1155/2013/720514.720514 PubMed DOI PMC
Graça G., Goodfellow B. J., Barros A. S., et al. UPLC-MS metabolic profiling of second trimester amniotic fluid and maternal urine and comparison with NMR spectral profiling for the identification of pregnancy disorder biomarkers. Molecular BioSystems. 2012;8(4):1243–1254. doi: 10.1039/c2mb05424h. PubMed DOI
Menon R., Jones J., Gunst P. R., et al. Amniotic fluid metabolomic analysis in spontaneous preterm birth. Reproductive Sciences. 2014;21(6):791–803. doi: 10.1177/1933719113518987. PubMed DOI PMC
Heazell A. E., Bernatavicius G., Warrander L., Brown M. C., Dunn W. B. A metabolomic approach identifies differences in maternal serum in third trimester pregnancies that end in poor perinatal outcome. Reproductive Sciences. 2012;19(8):863–875. doi: 10.1177/1933719112438446. PubMed DOI
Ciborowski M., Teul J., Martin-Ventura J. L., Egido J., Barbas C. Metabolomics with LC-QTOF-MS permits the prediction of disease stage in aortic abdominal aneurysm based on plasma metabolic fingerprint. PLoS One. 2012;7(2, article e31982) doi: 10.1371/journal.pone.0031982. PubMed DOI PMC
Dunn W. B., Broadhurst D., Begley P., et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols. 2011;6(7):1060–1083. doi: 10.1038/nprot.2011.335. PubMed DOI
Bujak R., García-Álvarez A., Rupérez F. J., et al. Metabolomics reveals metabolite changes in acute pulmonary embolism. Journal of Proteome Research. 2014;13(2):805–816. doi: 10.1021/pr400872j. PubMed DOI
Chambers J., Hastie T., Pregibon D. Statistical Models in S. In: Momirović K., Mildner V., editors. Compstat: Proceedings in Computational Statistics, 9th Symposium Held at Dubrovnik, Yugoslavia. Heidelberg: Physica-Verlag HD; 1990. DOI
Wilcoxon F. Individual comparisons by ranking methods. Biometrics Bulletin. 1945;1(6):80–83. doi: 10.2307/3001968. DOI
Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B Methodological. 1995;57(1):289–300.
Shapiro S. S., Wilk M. B. An analysis of variance test for normality (complete samples) Biometrika. 1965;52(3-4):591–611. doi: 10.1093/biomet/52.3-4.591. DOI
Brown M. B., Forsythe A. B. Robust tests for the equality of variances. Journal of the American Statistical Association. 1974;69(346):364–367. doi: 10.1080/01621459.1974.10482955. DOI
Youden W. J. Index for rating diagnostic tests. Cancer. 1950;3(1):32–35. doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3. PubMed DOI
DeLong E. R., DeLong D. M., Clarke-Pearson D. L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–845. doi: 10.2307/2531595. PubMed DOI
Robin X., Turck N., Hainard A., et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12(1):p. 77. doi: 10.1186/1471-2105-12-77. PubMed DOI PMC
Cortes C., Vapnik V. Support-vector networks. Machine Learning. 1995;20(3):273–297. doi: 10.1007/bf00994018. DOI
Serhan C. N., Clish C. B., Brannon J., Colgan S. P., Chiang N., Gronert K. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. The Journal of Experimental Medicine. 2000;192(8):1197–1204. doi: 10.1084/jem.192.8.1197. PubMed DOI PMC
Simopoulos A. P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine & Pharmacotherapy. 2002;56(8):365–379. doi: 10.1016/S0753-3322(02)00253-6. PubMed DOI
Pietrantoni E., Del Chierico F., Rigon G., et al. Docosahexaenoic acid supplementation during pregnancy: a potential tool to prevent membrane rupture and preterm labor. International Journal of Molecular Sciences. 2014;15(5):8024–8036. doi: 10.3390/ijms15058024. PubMed DOI PMC
Ogburn P. L., Johnson S. B., Williams P. P., Holman R. T. Levels of free fatty acids and arachidonic acid in pregnancy and labor. The Journal of Laboratory and Clinical Medicine. 1980;95(6):943–949. PubMed
Lindsay K. L., Hellmuth C., Uhl O., et al. Longitudinal metabolomic profiling of amino acids and lipids across healthy pregnancy. PLoS One. 2015;10(12, article e0145794) doi: 10.1371/journal.pone.0145794. PubMed DOI PMC
Romero R., Mazaki-Tovi S., Vaisbuch E., et al. Metabolomics in premature labor: a novel approach to identify patients at risk for preterm delivery. The Journal of Maternal-Fetal & Neonatal Medicine. 2010;23(12):1344–1359. doi: 10.3109/14767058.2010.482618. PubMed DOI PMC
Menon R. Oxidative stress damage as a detrimental factor in preterm birth pathology. Frontiers in Immunology. 2014;5:p. 567. doi: 10.3389/fimmu.2014.00567. PubMed DOI PMC
Niu Y. C., Feng R. N., Hou Y., et al. Histidine and arginine are associated with inflammation and oxidative stress in obese women. The British Journal of Nutrition. 2012;108(01):57–61. doi: 10.1017/S0007114511005289. PubMed DOI
Elisia I., Tsopmo A., Friel J. K., Diehl-Jones W., Kitts D. D. Tryptophan from human milk induces oxidative stress and upregulates the Nrf-2-mediated stress response in human intestinal cell lines. The Journal of Nutrition. 2011;141(8):1417–1423. doi: 10.3945/jn.111.139451. PubMed DOI
Byrns M. C. Regulation of progesterone signaling during pregnancy: implications for the use of progestins for the prevention of preterm birth. The Journal of Steroid Biochemistry and Molecular Biology. 2014;139:173–181. doi: 10.1016/j.jsbmb.2013.01.015. PubMed DOI
Stamatelou F., Deligeoroglou E., Farmakides G., Creatsas G. Abnormal progesterone and corticotropin releasing hormone levels are associated with preterm labour. Annals of the Academy of Medicine, Singapore. 2009;38(11):1011–1016. PubMed
López Bernal A., Hansell D. J., Alexander S., Turnbull A. C. Steroid conversion and prostaglandin production by chorionic and decidual cells in relation to term and preterm labour. British Journal of Obstetrics and Gynaecology. 1987;94(11):1052–1058. doi: 10.1111/j.1471-0528.1987.tb02289.x. PubMed DOI
Williamson C., Geenes V. Intrahepatic cholestasis of pregnancy. Obstetrics and Gynecology. 2014;124(1):120–133. doi: 10.1097/AOG.0000000000000346. PubMed DOI
Mitchell M. D., Sato T. A., Wang A., Keelan J. A., Ponnampalam A. P., Glass M. Cannabinoids stimulate prostaglandin production by human gestational tissues through a tissue- and CB1-receptor-specific mechanism. American Journal of Physiology-Endocrinology and Metabolism. 2008;294(2):E352–E356. doi: 10.1152/ajpendo.00495.2007. PubMed DOI
Diaz S. O., Barros A. S., Goodfellow B. J., et al. Second trimester maternal urine for the diagnosis of trisomy 21 and prediction of poor pregnancy outcomes. Journal of Proteome Research. 2013;12(6):2946–2957. doi: 10.1021/pr4002355. PubMed DOI
Graca G., Duarte I. F., Barros A. S., et al. Impact of prenatal disorders on the metabolic profile of second trimester amniotic fluid: a nuclear magnetic resonance metabonomic study. Journal of Proteome Research. 2010;9(11):6016–6024. doi: 10.1021/pr100815q. PubMed DOI
Diaz S. O., Pinto J., Graça G., et al. Metabolic biomarkers of prenatal disorders: an exploratory NMR metabonomics study of second trimester maternal urine and blood plasma. Journal of Proteome Research. 2011;10(8):3732–3742. doi: 10.1021/pr200352m. PubMed DOI
Thomas M. M., Sulek K., EJ M. K., et al. Metabolite profile of cervicovaginal fluids from early pregnancy is not predictive of spontaneous preterm birth. International Journal of Molecular Sciences. 2015;16(12):27741–27748. doi: 10.3390/ijms161126052. PubMed DOI PMC