Bioactive Compounds and Their Impact on Protein Modification in Human Cells

. 2022 Jul 04 ; 23 (13) : . [epub] 20220704

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35806429

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000827 European Regional Development Fund project "Plants as a tool for sustainable global develop-ment"
IGA_PrF_2022_029 General and molecular biophysics: new trends and research approaches" of Palacký University

Reactive oxygen species (ROS) represent a group of molecules with a signaling role that are involved in regulating human cell proliferation and differentiation. Increased ROS concentrations are often associated with the local nonspecific oxidation of biological macromolecules, especially proteins and lipids. Free radicals, in general, may randomly damage protein molecules through the formation of protein-centered radicals as intermediates that, in turn, decay into several end oxidation products. Malondialdehyde (MDA), a marker of free-radical-mediated lipid oxidation and cell membrane damage, forms adducts with proteins in a nonspecific manner, leading to the loss of their function. In our study, we utilized U-937 cells as a model system to unveil the effect of four selected bioactive compounds (chlorogenic acid, oleuropein, tomatine, and tyrosol) to reduce oxidative stress associated with adduct formation in differentiating cells. The purity of the compounds under study was confirmed by an HPLC analysis. The cellular integrity and changes in the morphology of differentiated U-937 cells were confirmed with confocal microscopy, and no significant toxicity was found in the presence of bioactive compounds. From the Western blot analysis, a reduction in the MDA adduct formation was observed in cells treated with compounds that underlaid the beneficial effects of the compounds tested.

Zobrazit více v PubMed

Gutteridge J.M.C., Halliwell B. Free radicals and antioxidants in the year 2000—A historical look to the future. Ann. N. Y. Acad. Sci. 2000;899:136–147. doi: 10.1111/j.1749-6632.2000.tb06182.x. PubMed DOI

Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 2006;141:312–322. doi: 10.1104/pp.106.077073. PubMed DOI PMC

Halliwell B., Gutteridge J. Free Radicals in Biology and Medicine. 4th ed. Oxford University Press; Oxford, UK: 2007.

Wang X., Quinn P.J. Vitamin E and its function in membranes. Prog. Lipid Res. 1999;38:309–336. doi: 10.1016/S0163-7827(99)00008-9. PubMed DOI

Young A.J., Lowe G.M. Antioxidant and prooxidant properties of carotenoids. Arch. Biochem. Biophys. 2001;385:20–27. doi: 10.1006/abbi.2000.2149. PubMed DOI

Munne-Bosch S., Alegre L. The function of tocopherols and tocotrienols in plants. Crit. Rev. Plant Sci. 2002;21:31–57. doi: 10.1080/0735-260291044179. DOI

Liang N., Kitts D.D. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients. 2016;8:16. doi: 10.3390/nu8010016. PubMed DOI PMC

Nabavi S.F., Tejada S., Setzer W.N., Gortzi O., Sureda A., Braidy N., Daglia M., Manayi A. Chlorogenic acid and mental diseases: From chemistry to medicine. Curr. Neuropharmacol. 2017;15:471–479. doi: 10.2174/1570159X14666160325120625. PubMed DOI PMC

Lu H.J., Tian Z.M., Cui Y.Y., Liu Z.C., Ma X.Y. Chlorogenic acid: A comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions. Compr. Rev. Food Sci. Food Saf. 2020;19:3130–3158. doi: 10.1111/1541-4337.12620. PubMed DOI

Lafay S., Gil-Izquierdo A., Manach C., Morand C., Besson C., Scalbert A. Chlorogenic acid is absorbed in its intact form in the stomach of rats. J. Nutr. 2006;136:1192–1197. doi: 10.1093/jn/136.5.1192. PubMed DOI

Ekbatan S.S., Li X.Q., Ghorbani M., Azadi B., Kubow S. Chlorogenic acid and its microbial metabolites exert anti-proliferative effects, s-phase cell-cycle arrest and apoptosis in human colon cancer caco-2 cells. Int. J. Mol. Sci. 2018;19:723. doi: 10.3390/ijms19030723. PubMed DOI PMC

Silva-Beltrán N.P., Ruiz-Cruz S., Cira-Chávez L.A., Estrada-Alvarado M.I., Ornelas-Paz J.D.J., López-Mata M.A., Del-Toro-Sánchez C.L., Zavala J.F.A., Márquez-Ríos E. Total phenolic, flavonoid, tomatine, and tomatidine contents and antioxidant and antimicrobial activities of extracts of tomato plant. Int. J. Anal. Chem. 2015;2015:284071. doi: 10.1155/2015/284071. PubMed DOI PMC

Marcolongo P., Gamberucci A., Tamasi G., Pardini A., Bonechi C., Rossi C., Giunti R., Barone V., Borghini A., Fiorenzani P., et al. Chemical characterisation and antihypertensive effects of locular gel and serum of Lycopersicum esculentum L. var. “Camone” tomato in spontaneously hypertensive rats. Molecules. 2020;25:3758. doi: 10.3390/molecules25163758. PubMed DOI PMC

Friedman M., Levin C.E., Lee S.-U., Kim H.-J., Lee I.-S., Byun J.-O., Kozukue N. Tomatine-containing green tomato extracts inhibit growth of human breast, colon, liver, and stomach cancer cells. J. Agric. Food Chem. 2009;57:5727–5733. doi: 10.1021/jf900364j. PubMed DOI

Serratì S., Porcelli L., Guida S., Ferretta A., Iacobazzi R.M., Cocco T., Maida I., Tamasi G., Rossi C., Manganelli M., et al. Tomatine displays antitumor potential in in vitro models of metastatic melanoma. Int. J. Mol. Sci. 2020;21:5243. doi: 10.3390/ijms21155243. PubMed DOI PMC

Toor R.K., Savage G.P., Lister C.E. Release of antioxidant components from tomatoes determined by an in vitro digestion method. Int. J. Food Sci. Nutr. 2009;60:119–129. doi: 10.1080/09637480701614121. PubMed DOI

Huang S.-L., He H.-B., Zou K., Bai C.-H., Xue Y.-H., Wang J.-Z., Chen J.-F. Protective effect of tomatine against hydrogen peroxide-induced neurotoxicity in neuroblastoma (SH-SY5Y) cells. J. Pharm. Pharmacol. 2014;66:844–854. doi: 10.1111/jphp.12205. PubMed DOI

Friedman M. Anticarcinogenic, cardioprotective, and other health benefits of tomato compounds lycopene, alpha-tomatine, and tomatidine in pure form and in fresh and processed tomatoes. J. Agric. Food Chem. 2013;61:9534–9550. doi: 10.1021/jf402654e. PubMed DOI

Kúdelová J., Seifrtova M., Suchá L., Tomšík P., Havelek R., Řezáčová M. Alpha-tomatine activates cell cycle checkpoints in the absence of DNA damage in human leukemic MOLT-4 cells. J. Appl. Biomed. 2013;11:93–103. doi: 10.2478/v10136-012-0033-8. DOI

Chandra H.M., Ramalingam S. Antioxidant potentials of skin, pulp, and seed fractions of commercially important tomato cultivars. Food Sci. Biotechnol. 2011;20:15–21. doi: 10.1007/s10068-011-0003-z. DOI

Pardini A., Consumi M., Leone G., Bonechi C., Tamasi G., Sangiorgio P., Verardi A., Rossi C., Magnani A. Effect of different post-harvest storage conditions and heat treatment on tomatine content in commercial varieties of green tomatoes. J. Food Compos. Anal. 2021;96:103735. doi: 10.1016/j.jfca.2020.103735. DOI

Motawea M.H., Ali H.A.E., Elharrif M.G., Desoky A.A.E., Ibrahimi A. Evaluation of anti-inflammatory and antioxidant profile of oleuropein in experimentally induced ulcerative colitis. Int. J. Mol. Cell. Med. 2020;9:224–233. PubMed PMC

Burja B., Kuret T., Janko T., Topalović D., Živković L., Mrak-Poljšak K., Spremo-Potparević B., Žigon P., Distler O., Čučnik S., et al. Olive leaf extract attenuates inflammatory activation and DNA damage in human arterial endothelial cells. Front. Cardiovasc. Med. 2019;6:56. doi: 10.3389/fcvm.2019.00056. PubMed DOI PMC

Castejon M.L., Rosillo M.A., Montoya T., Gonzalez-Benjumea A., Fernandez-Bolanos J.M., Alarcon-de-la-Lastra C. Oleuropein down-regulated IL-1 beta-induced inflammation and oxidative stress in human synovial fibroblast cell line SW982. Food Funct. 2017;8:1890–1898. doi: 10.1039/C7FO00210F. PubMed DOI

Ryu S.-J., Choi H.-S., Yoon K.-Y., Lee O.-H., Kim K.-J., Lee B.-Y. Oleuropein suppresses LPS-induced inflammatory responses in RAW 264.7 cell and zebrafish. J. Agric. Food Chem. 2015;63:2098–2105. doi: 10.1021/jf505894b. PubMed DOI

Ahamad J., Toufeeq I., Khan M.A., Ameen M.S.M., Anwer E.T., Uthirapathy S., Mir S.R., Ahmad J. Oleuropein: A natural antioxidant molecule in the treatment of metabolic syndrome. Phytother. Res. 2019;33:3112–3128. doi: 10.1002/ptr.6511. PubMed DOI

Lucas R., Comelles F., Alcántara D., Maldonado O.S., Curcuroze M., Parra J.L., Morales J.C. Surface-active properties of lipophilic antioxidants tyrosol and hydroxytyrosol fatty acid esters: A potential explanation for the nonlinear hypothesis of the antioxidant activity in oil-in-water emulsions. J. Agric. Food Chem. 2010;58:8021–8026. doi: 10.1021/jf1009928. PubMed DOI

Giovannini C., Straface E., Modesti D., Coni E., Cantafora A., De Vincenzi M., Malorni W., Masella R. Tyrosol, the major olive oil biophenol, protects against oxidized-LDL-induced injury in Caco-2 cells. J. Nutr. 1999;129:1269–1277. doi: 10.1093/jn/129.7.1269. PubMed DOI

Moreno J.J. Effect of olive oil minor components on oxidative stress and arachidonic acid mobilization and metabolism by macrophages RAW 264.7. Free Radic. Biol. Med. 2003;35:1073–1081. doi: 10.1016/S0891-5849(03)00465-9. PubMed DOI

Muriana F.J.G., la Paz S.M.-D., Lucas R., Bermudez B., Jaramillo S., Morales J.C., Abia R., Lopez S. Tyrosol and its metabolites as antioxidative and anti-inflammatory molecules in human endothelial cells. Food Funct. 2017;8:2905–2914. doi: 10.1039/C7FO00641A. PubMed DOI

Sundström C., Nilsson K. Establishment and characterization of a human histiocytic lymphoma cell line (U-937) Int. J. Cancer. 1976;17:565–577. doi: 10.1002/ijc.2910170504. PubMed DOI

Prasad A., Sedlářová M., Balukova A., Rác M., Pospíšil P. Reactive oxygen species as a response to wounding: In vivo imaging in Arabidopsis thaliana. Front. Plant Sci. 2020;10:1660. doi: 10.3389/fpls.2019.01660. PubMed DOI PMC

Golubev A., Khrustalev S., Butov A. An in silico investigation into the causes of telomere length heterogeneity and its implications for the Hayflick limit. J. Theor. Biol. 2003;225:153–170. doi: 10.1016/S0022-5193(03)00229-7. PubMed DOI

Gomez D.E., Armando R.G., Farina H.G., Lorenzano Menna P., Cerrudo C.S., Daniel Ghiringhelli P., Alonso D.F. Telomere structure and telomerase in health and disease (Review) Int. J. Oncol. 2012;41:1561–1569. doi: 10.3892/ijo.2012.1611. PubMed DOI PMC

Chanput W., Mes J.J., Wichers H.J. THP-1 cell line: An in vitro cell model for immune modulation approach. Int. Immunopharmacol. 2014;23:37–45. doi: 10.1016/j.intimp.2014.08.002. PubMed DOI

Droge W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002;82:47–95. doi: 10.1152/physrev.00018.2001. PubMed DOI

Zorov D.B., Juhaszova M., Sollott S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014;94:909–950. doi: 10.1152/physrev.00026.2013. PubMed DOI PMC

Prasad A., Manoharan R.R., Sedlářová M., Pospíšil P. Free radical-mediated protein radical formation in differentiating monocytes. Int. J. Mol. Sci. 2021;22:9963. doi: 10.3390/ijms22189963. PubMed DOI PMC

Maeß M.B., Wittig B., Cignarella A., Lorkowski S. Reduced PMA enhances the responsiveness of transfected THP-1 macrophages to polarizing stimuli. J. Immunol. Methods. 2014;402:76–81. doi: 10.1016/j.jim.2013.11.006. PubMed DOI

Lund M.E., To J., O’Brien B.A., Donnelly S. The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus. J. Immunol. Methods. 2016;430:64–70. doi: 10.1016/j.jim.2016.01.012. PubMed DOI

STedesco S., De Majo F., Kim J., Trenti A., Trevisi L., Fadini G.P., Bolego C., Zandstra P.W., Cignarella A., Vitiello L. Convenience versus biological significance: Are PMA-differentiated THP-1 cells a reliable substitute for blood-derived macrophages when studying in vitro polarization? Front. Pharmacol. 2018;9:71. doi: 10.3389/fphar.2018.00071. PubMed DOI PMC

Chen J., Giridhary K.V., Zhang L., Xu S., Wang Q.J. A protein kinase C/protein kinase D pathway protects LNCaP prostate cancer cells from phorbol ester-induced apoptosis by promoting ERK1/2 and NF-kappa B activities. Carcinogenesis. 2011;32:1198–1206. doi: 10.1093/carcin/bgr113. PubMed DOI PMC

Garg R., Caino M.C., Kazanietz M.G. Regulation of transcriptional networks by PKC isozymes: Identification of c-rel as a key transcription factor for PKC-regulated genes. PLoS ONE. 2013;8:e67319. doi: 10.1371/journal.pone.0067319. PubMed DOI PMC

Prasad A., Kumar A., Suzuki M., Kikuchi H., Sugai T., Kobayashi M., Pospíšil P., Tada M., Kasai S. Detection of hydrogen peroxide in Photosystem II (PSII) using catalytic amperometric biosensor. Front. Plant Sci. 2015;6:862. doi: 10.3389/fpls.2015.00862. PubMed DOI PMC

Kikuchi H., Prasad A., Matsuoka R., Aoyagi S., Matsue T., Kasai S. Scanning electrochemical microscopy imaging during respiratory burst in human cell. Front. Physiol. 2016;7:25. doi: 10.3389/fphys.2016.00025. PubMed DOI PMC

Pospíšil P., Prasad A., Rác M. Mechanism of the formation of electronically excited species by oxidative metabolic processes: Role of reactive oxygen species. Biomolecules. 2019;9:258. doi: 10.3390/biom9070258. PubMed DOI PMC

Ayala A., Muñoz M.F., Argüelles S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med. Cell. Longev. 2014;2014:360438. doi: 10.1155/2014/360438. PubMed DOI PMC

Hauck A.K., Bernlohr D.A. Oxidative stress and lipotoxicity. J. Lipid Res. 2016;57:1976–1986. doi: 10.1194/jlr.R066597. PubMed DOI PMC

McDonagh B. Detection of ROS induced proteomic signatures by mass spectrometry. Front. Physiol. 2017;8:470. doi: 10.3389/fphys.2017.00470. PubMed DOI PMC

Grimsrud P.A., Xie H., Griffin T.J., Bernlohr D.A. oxidative stress and covalent modification of protein with bioactive aldehydes. J. Biol. Chem. 2008;283:21837–21841. doi: 10.1074/jbc.R700019200. PubMed DOI PMC

Tamasi G., Pardini A., Bonechi C., Donati A., Pessina F., Marcolongo P., Gamberucci A., Leone G., Consumi M., Magnani A., et al. Characterization of nutraceutical components in tomato pulp, skin and locular gel. Eur. Food Res. Technol. 2019;245:907–918. doi: 10.1007/s00217-019-03235-x. DOI

Tamasi G., Baratto M.C., Bonechi C., Byelyakova A., Pardini A., Donati A., Leone G., Consumi M., Lamponi S., Magnani A., et al. Chemical characterization and antioxidant properties of products and by-products from Olea europaea L. Food Sci. Nutr. 2019;7:2907–2920. doi: 10.1002/fsn3.1142. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

NADPH oxidase-dependent free radical generation and protein adduct formation in neutrophils

. 2024 Aug 05 ; 14 (34) : 24765-24780. [epub] 20240807

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace