Reactive oxygen species in photosystem II: relevance for oxidative signaling
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35644020
DOI
10.1007/s11120-022-00922-x
PII: 10.1007/s11120-022-00922-x
Knihovny.cz E-zdroje
- Klíčová slova
- Chloroplast-to-nucleus retrograde signaling, Lipid peroxidation, Protein oxidation, Reactive oxygen species,
- MeSH
- chloroplasty * metabolismus MeSH
- fotosystém II - proteinový komplex * metabolismus MeSH
- lipidy MeSH
- oxidační stres MeSH
- reaktivní formy kyslíku metabolismus MeSH
- signální transdukce fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- fotosystém II - proteinový komplex * MeSH
- lipidy MeSH
- reaktivní formy kyslíku MeSH
Reactive oxygen species (ROS) are formed in photosystem II (PSII) under various types of abiotic and biotic stresses. It is considered that ROS play a role in chloroplast-to-nucleus retrograde signaling, which changes the nuclear gene expression. However, as ROS lifetime and diffusion are restricted due to the high reactivity towards biomolecules (lipids, pigments, and proteins) and the spatial specificity of signal transduction is low, it is not entirely clear how ROS might transduce signal from the chloroplasts to the nucleus. Biomolecule oxidation was formerly connected solely with damage; nevertheless, the evidence appears that oxidatively modified lipids and pigments are be involved in chloroplast-to-nucleus retrograde signaling due to their long diffusion distance. Moreover, oxidatively modified proteins show high spatial specificity; however, their role in signal transduction from chloroplasts to the nucleus has not been proven yet. The review attempts to summarize and evaluate the evidence for the involvement of ROS in oxidative signaling in PSII.
Zobrazit více v PubMed
Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701 PubMed DOI
Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141(2):391–396. https://doi.org/10.1104/pp.106.082040 PubMed DOI PMC
Ayala A, Munoz MF, Arguelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:360438. https://doi.org/10.1155/2014/360438 PubMed DOI PMC
Bachi A, Dalle-Donne I, Scaloni A (2013) Redox proteomics: chemical principles, methodological approaches and biological/biomedical promises. Chem Rev 113(1):596–698. https://doi.org/10.1021/cr300073p PubMed DOI
Bassi R, Dall’Osto L (2021) Dissipation of light energy absorbed in excess: the molecular mechanisms. Ann Rev Plant Biol 72:47–76. https://doi.org/10.1146/annurev-arplant-071720-015522 DOI
Bienert GP, Moller ALB, Kristiansen KA, Schulz A, Moller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282(2):1183–1192. https://doi.org/10.1074/jbc.M603761200 PubMed DOI
Borisova MM, Kozuleva MA, Rudenko NN, Naydov IA, Klenina IB, Ivanov BN (2012) Photosynthetic electron flow to oxygen and diffusion of hydrogen peroxide through the chloroplast envelope via aquaporins. Biochim Biophys Acta-Bioenerg 1817(8):1314–1321. https://doi.org/10.1016/j.bbabio.2012.02.036 DOI
Borisova-Mubarakshina MM, Ivanov BN, Vetoshkina DV, Lubimov VY, Fedorchuk TP, Naydov IA, Kozuleva MA, Rudenko NN, Dall’Osto L, Cazzaniga S, Bassi R (2015) Long-term acclimatory response to excess excitation energy: evidence for a role of hydrogen peroxide in the regulation of photosystem II antenna size. J Exp Bot 66(22):7151–7164. https://doi.org/10.1093/jxb/erv410 PubMed DOI
D’Alessandro S, Havaux M (2019) Sensing beta-carotene oxidation in photosystem II to master plant stress tolerance. New Phytol 223(4):1776–1783. https://doi.org/10.1111/nph.15924 PubMed DOI
D’Alessandro S, Ksas B, Havaux M (2018) Decoding beta-cyclocitral-mediated retrograde signaling reveals the role of a detoxification response in plant tolerance to photooxidative stress. Plant Cell 30(10):2495–2511. https://doi.org/10.1105/tpc.18.00578 PubMed DOI PMC
Davies MJ (2003) Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun 305(3):761–770 DOI
Davies MJ (2016) Protein oxidation and peroxidation. Biochem J 473(7):805–825. https://doi.org/10.1042/BJ20151227 PubMed DOI
DeLano WL (2002) The PyMOL molecular graphics system. Software
Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228. https://doi.org/10.1016/j.envexpbot.2014.06.021 DOI
Di Mascio P, Martinez GR, Miyamoto S, Ronsein GE, Medeiros MHG, Cadet J (2019) Singlet molecular oxygen reactions with nucleic acids, lipids, and proteins. Chem Rev 119(3):2043–2086. https://doi.org/10.1021/acs.chemrev.8600554 PubMed DOI
Dietz KJ, Turkan I, Krieger-Liszkay A (2016) Redox- and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast. Plant Physiol 171(3):1541–1550. https://doi.org/10.1104/pp.16.00375 PubMed DOI PMC
Dogra V, Rochaix JD, Kim C (2018) Singlet oxygen-triggered chloroplast-to-nucleus retrograde signalling pathways: An emerging perspective. Plant Cell Environ 41(8):1727–1738. https://doi.org/10.1111/pce.13332 PubMed DOI
Dogra V, Li MY, Singh S, Li MP, Kim C (2019) Oxidative post-translational modification of EXECUTER1 is required for singlet oxygen sensing in plastids. Nat Commun 10:12. https://doi.org/10.1038/s41467-019-10760-6 DOI
Dreaden TM, Chen J, Rexroth S, Barry BA (2011) N-formylkynurenine as a marker of high light stress in photosynthesis. J Biol Chem 286(25):22632–22641. https://doi.org/10.1074/jbc.M110.212928 PubMed DOI PMC
Exposito-Rodriguez M, Laissue PP, Yvon-Durocher G, Smirnoff N, Mullineaux PM (2017) Photosynthesis-dependent H DOI
Fantuzzi A, Allgower F, Baker H, McGuire G, Teh WK, Gamiz-Hernandez AP, Kaila VRI, Rutherford AW (2022) Bicarbonate-controlled reduction of oxygen by the Q(A) semiquinone in Photosystem II in membranes. Proc Natl Acad Sci USA 119(6):10. https://doi.org/10.1073/pnas.2116063119 DOI
Farmer EE, Mueller MJ (2013) ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol 64:429–450. https://doi.org/10.1146/annurev-arplant-050312-120132 PubMed DOI
Ferretti U, Ciura J, Ksas B, Rac M, Sedlarova M, Kruk J, Havaux M, Pospíšil P (2018) Chemical quenching of singlet oxygen by plastoquinols and their oxidation products in Arabidopsis. Plant J 95(5):848–861. https://doi.org/10.1111/tpj.13993 DOI
Fischer BB, Hideg E, Krieger-Liszkay A (2013) Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Antioxid Redox Signal 18(16):2145–2162. https://doi.org/10.1089/ars.2012.5124 PubMed DOI
Foyer CH (2018) Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ Exp Bot 154:134–142. https://doi.org/10.1016/j.envexpbot.2018.05.003 PubMed DOI PMC
Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17(7):1866–1875. https://doi.org/10.1105/tpc.105.033589 PubMed DOI PMC
Foyer CH, Ruban AV, Noctor G (2017) Viewing oxidative stress through the lens of oxidative signalling rather than damage. Biochem J 474(6):877–883. https://doi.org/10.1042/BCJ20160814 PubMed DOI
Frankel LK, Sallans L, Limbach PA, Bricker TM (2012) Identification of oxidized amino acid residues in the vicinity of the Mn4CaO5 cluster of photosystem II: implications for the identification of oxygen channels within the photosystem. Biochemistry 51(32):6371–6377. https://doi.org/10.1021/bi300650n PubMed DOI
Frankel LK, Sallans L, Limbach PA, Bricker TM (2013) Oxidized amino acid residues in the vicinity of QA and PheoD1 of the photosystem II reaction center: putative generation sites of reducing-side reactive oxygen species. PLoS ONE 8(2):e58042. https://doi.org/10.1371/journal.pone.0058042 PubMed DOI PMC
Girotti AW (1998) Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res 39(8):1529–1542 DOI
Gollan PJ, Tikkanen M, Aro EM (2015) Photosynthetic light reactions: integral to chloroplast retrograde signalling. Curr Opin Plant Biol 27:180–191. https://doi.org/10.1016/j.pbi.2015.07.006 PubMed DOI
Gracanin M, Hawkins CL, Pattison DI, Davies MJ (2009) Singlet-oxygen-mediated amino acid and protein oxidation: formation of tryptophan peroxides and decomposition products. Free Radical Biol Med 47(1):92–102. https://doi.org/10.1016/j.freeradbiomed.2009.04.015 DOI
Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W (2009) Cyanobacterial photosystem II at 2.9-A resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16(3):334–342. https://doi.org/10.1038/nsmb.1559 PubMed DOI
Guskova RA, Ivanov II, Koltover VK, Akhobadze VV, Rubin AB (1984) Permeability of bilayer lipid-membranes for superoxide (O-2(-.) radicals. Biochim Biophys Acta 778(3):579–585. https://doi.org/10.1016/0005-2736(84)90409-7 DOI
Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57(5 Suppl):715S-724S. https://doi.org/10.1093/ajcn/57.5.715S PubMed DOI
Hawkins CL, Davies MJ (2019) Detection, identification, and quantification of oxidative protein modifications. J Biol Chem 294(51):19683–19708. https://doi.org/10.1074/jbc.REV119.006217 PubMed DOI PMC
Jarvi S, Suorsa M (1847) Aro EM (2015) Photosystem II repair in plant chloroplasts–regulation, assisting proteins and shared components with photosystem II biogenesis. Biochim Biophys Acta 9:900–909. https://doi.org/10.1016/j.bbabio.2015.01.006 DOI
Kale R, Hebert AE, Frankel LK, Sallans L, Bricker TM, Pospíšil P (2017) Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem II. Proc Natl Acad Sci U S A 114(11):2988–2993. https://doi.org/10.1073/pnas.1618922114 PubMed DOI PMC
Kasson TMD, Rexroth S, Barry BA (2012) Light-induced oxidative stress, N-formylkynurenine, and oxygenic photosynthesis. PLoS ONE 7(7):11. https://doi.org/10.1371/journal.pone.0042220 DOI
Kato Y, Sakamoto W (2018) FtsH protease in the thylakoid membrane: physiological functions and the regulation of protease activity. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00855 PubMed DOI PMC
Khorobrykh S, Havurinne V, Mattila H, Tyystjarvi E (2020) Oxygen and ROS in photosynthesis. Plants Basel. https://doi.org/10.3390/plants9010091 PubMed DOI PMC
Kim C (2020) ROS-driven oxidative modification: its impact on chloroplasts-nucleus communication. Front Plant Sci 10:6. https://doi.org/10.3389/fpls.2019.01729 DOI
Kim CH, Apel K (2013) Singlet oxygen-mediated signaling in plants: moving from flu to wild type reveals an increasing complexity. Photosynth Res 116(2–3):455–464. https://doi.org/10.1007/s11120-013-9876-4 PubMed DOI
Kim CH, Meskauskiene R, Apel K, Laloi C (2008) No single way to understand singlet oxygen signalling in plants. EMBO Rep 9(5):435–439. https://doi.org/10.1038/embor.2008.57 PubMed DOI PMC
Komenda J, Sobotka R, Nixon PJ (2012) Assembling and maintaining the Photosystem II complex in chloroplasts and cyanobacteria. Curr Opin Plant Biol 15(3):245–251. https://doi.org/10.1016/j.pbi.2012.01.017 PubMed DOI
Krieger-Liszkay A, Fufezan C, Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosynth Res 98(1–3):551–564. https://doi.org/10.1007/s11120-008-9349-3 PubMed DOI
Kumar A, Prasad A, Sedlarova M, Pospíšil P (2018) Data on detection of singlet oxygen, hydroxyl radical and organic radical in Arabidopsis thaliana. Data Brief 21:2246–2252. https://doi.org/10.1016/j.dib.2018.11.033 PubMed DOI PMC
Kumar A, Prasad A, Sedlarova M, Ksas B, Havaux M, Pospíšil P (2020) Interplay between antioxidants in response to photooxidative stress in Arabidopsis. Free Radical Bio Med 160:894–907. https://doi.org/10.1016/j.freeradbiomed.2020.08.027 DOI
Kumar A, Prasad A, Sedlarova M, Kale R, Frankel LK, Sallans L, Bricker TM, Pospíšil P (2021) Tocopherol controls D1 amino acid oxidation by oxygen radicals in Photosystem II. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.2019246118 PubMed DOI PMC
Laloi C, Havaux M (2015) Key players of singlet oxygen-induced cell death in plants. Front Plant Sci 6:39. https://doi.org/10.3389/fpls.2015.00039 PubMed DOI PMC
Lee KP, Kim C, Landgraf F, Apel K (2007) EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc Natl Acad Sci U S A 104(24):10270–10275. https://doi.org/10.1073/pnas.0702061104 PubMed DOI PMC
Liebthal M, Dietz KJ (2017) The fundamental role of reactive oxygen species in plant stress response. Methods Mol Biol 1631:23–39. https://doi.org/10.1007/978-1-4939-7136-7_2 PubMed DOI
Liochev SI, Fridovich I (1994) The role of O-2-center-dot- in the production of HO-center-dot: in-vitro and in-vivo. Free Radical Bio Med 16(1):29–33. https://doi.org/10.1016/0891-5849(94)90239-9 DOI
Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 30 angstrom resolution structure of photosystem II. Nature 438(7070):1040–1044. https://doi.org/10.1038/nature04224 PubMed DOI
Mano J, Biswas MS, Sugimoto K (2019) Reactive carbonyl species: a missing link in ROS signaling. Plants-Basel 8(10):23. https://doi.org/10.3390/plants8100391 DOI
Miyamoto S, Martinez GR, Medeiros MH, Di Mascio P (2014) Singlet molecular oxygen generated by biological hydroperoxides. J Photochem Photobiol, B 139:24–33. https://doi.org/10.1016/j.jphotobiol.2014.03.028 DOI
Moller IM, Sweetlove LJ (2010) ROS signalling–specificity is required. Trends Plant Sci 15(7):370–374. https://doi.org/10.1016/j.tplants.2010.04.008 PubMed DOI
Mubarakshina MM, Ivanov BN, Naydov IA, Hillier W, Badger MR, Krieger-Liszkay A (2010) Production and diffusion of chloroplastic H PubMed DOI
Niki E, Yoshida Y, Saito Y, Noguchi N (2005) Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun 338(1):668–676. https://doi.org/10.1016/j.bbrc.2005.08.072 PubMed DOI
Noctor G, Foyer CH (2016) Intracellular redox compartmentation and ROS-related communication in regulation and signaling. Plant Physiol 171(3):1581–1592. https://doi.org/10.1104/pp.16.00346 PubMed DOI PMC
Pathak V, Prasad A, Pospíšil P (2017) Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II. PLoS ONE 12(7):e0181732. https://doi.org/10.1371/journal.pone.0181732 PubMed DOI PMC
Pospíšil P (2009) Production of reactive oxygen species by photosystem II. Biochim Biophys Acta 1787(10):1151–1160. https://doi.org/10.1016/j.bbabio.2009.05.005 PubMed DOI
Pospíšil P (2012) Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim Biophys Acta 1817(1):218–231. https://doi.org/10.1016/j.bbabio.2011.05.017 PubMed DOI
Pospíšil P (2014) The role of metals in production and scavenging of reactive oxygen species in photosystem II. Plant Cell Physiol 55(7):1224–1232. https://doi.org/10.1093/pcp/pcu053 PubMed DOI
Pospíšil P (2016) Production of reactive oxygen species by photosystem II as a response to light and temperature stress. Front Plant Sci 7(1950):1950. https://doi.org/10.3389/fpls.2016.01950 PubMed DOI PMC
Pospíšil P, Yamamoto Y (2017) Damage to photosystem II by lipid peroxidation products. Biochim Biophys Acta-Gen Subj 1861(2):457–466. https://doi.org/10.1016/j.bbagen.2016.10.005 PubMed DOI
Pospíšil P, Arato A, Krieger-Liszkay A, Rutherford AW (2004) Hydroxyl radical generation by photosystem II. Biochemistry 43(21):6783–6792. https://doi.org/10.1021/bi036219i PubMed DOI
Pospíšil P, Snyrychova I, Naus J (2007) Dark production of reactive oxygen species in photosystem II membrane particles at elevated temperature: EPR spin-trapping study. Biochim Biophys Acta 1767(6):854–859. https://doi.org/10.1016/j.bbabio.2007.02.011 PubMed DOI
Pospíšil P, Prasad A, Rác M (2014) Role of reactive oxygen species in ultra-weak photon emission in biological systems. J Photochem Photobiol B. https://doi.org/10.1016/j.jphotobiol.2014.02.008 PubMed DOI
Pospíšil P, Prasad A, Rac M (2019) Mechanism of the formation of electronically excited species by oxidative metabolic processes: role of reactive oxygen species. Biomolecules. https://doi.org/10.3390/biom9070258 PubMed DOI PMC
Prasad A, Sedlarova M, Pospíšil P (2018) Singlet oxygen imaging using fluorescent probe singlet oxygen sensor green in photosynthetic organisms. Sci Rep 8(1):13685. https://doi.org/10.1038/s41598-018-31638-5 PubMed DOI PMC
Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylides C, Havaux M (2012) Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc Natl Acad Sci U S A 109(14):5535–5540. https://doi.org/10.1073/pnas.1115982109 PubMed DOI PMC
Ramel F, Mialoundama AS, Havaux M (2013) Nonenzymic carotenoid oxidation and photooxidative stress signalling in plants. J Exp Bot 64(3):799–805. https://doi.org/10.1093/jxb/ers223 PubMed DOI
Schmitt FJ, Renger G, Friedrich T, Kreslavski VD, Zharmukhamedov SK, Los DA, Kuznetsov VV, Allakhverdiev SI (2014) Reactive oxygen species: re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms. Biochim Biophys Acta 1837(6):835–848. https://doi.org/10.1016/j.bbabio.2014.02.005 PubMed DOI
Shumbe L, D’Alessandro S, Shao N, Chevalier A, Ksas B, Bock R, Havaux M (2017) Methylene Blue Sensitivity 1 (MBS1) is required for acclimation of Arabidopsis to singlet oxygen and acts downstream of beta-cyclocitral. Plant Cell Environ 40(2):216–226. https://doi.org/10.1111/pce.12856 PubMed DOI
Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25(3–4):207–218. https://doi.org/10.1007/s00726-003-0011-2 PubMed DOI
Stelljes C, Koenig F (2007) Specific binding of D1 protein degradation products to the psbAI promoter in Synechococcus sp strain PCC 7942. J Bacteriol 189(5):1722–1726. https://doi.org/10.1128/jb.01428-06 PubMed DOI
Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35(2):259–270. https://doi.org/10.1111/j.1365-3040.2011.02336.x PubMed DOI
Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203(1):32–43. https://doi.org/10.1111/nph.12797 PubMed DOI
Takamoto K, Chance MR (2006) Radiolytic protein footprinting with mass Spectrometry to probe the structure of macromolecular complexes. Ann Rev Biophys Biomol Struct 35:251–276. https://doi.org/10.1146/annurev.biophys.35.040405.102050 DOI
Telfer A (2005) Too much light? How beta-carotene protects the photosystem II reaction centre. Photochem Photobiol Sci 4(12):950–956. https://doi.org/10.1039/b507888c PubMed DOI
Telfer A (2014) Singlet oxygen production by PSII under light stress: mechanism, detection and the protective role of beta-carotene. Plant Cell Physiol 55(7):1216–1223. https://doi.org/10.1093/pcp/pcu040 PubMed DOI PMC
Triantaphylides C, Havaux M (2009) Singlet oxygen in plants: production, detoxification and signaling. Trends Plant Sci 14(4):219–228. https://doi.org/10.1016/j.tplants.2009.01.008 PubMed DOI
Tyystjarvi E (2013) Photoinhibition of Photosystem II. Int Rev Cell Mol Biol 300:243–303. https://doi.org/10.1016/b978-0-12-405210-9.00007-2 PubMed DOI
Vass I (2012) Molecular mechanisms of photodamage in the Photosystem II complex. Biochim Biophys Acta 1817(1):209–217. https://doi.org/10.1016/j.bbabio.2011.04.014 PubMed DOI
Wang L, Kim C, Xu X, Piskurewicz U, Dogra V, Singh S, Mahler H, Apel K (2016) Singlet oxygen- and EXECUTER1-mediated signaling is initiated in grana margins and depends on the protease FtsH2. Proc Natl Acad Sci USA 113(26):E3792-3800. https://doi.org/10.1073/pnas.1603562113 PubMed DOI PMC
Weber H, Chetelat A, Reymond P, Farmer EE (2004) Selective and powerful stress gene expression in Arabidopsis in response to malondialdehyde. Plant J 37(6):877–888 DOI
Wei X, Su X, Cao P, Liu X, Chang W, Li M, Zhang X, Liu Z (2016) Structure of spinach photosystem II-LHCII supercomplex at 3.2 A resolution. Nature 534(7605):69–74. https://doi.org/10.1038/nature18020 PubMed DOI
Weisz DA, Gross ML, Pakrasi HB (2017) Reactive oxygen species leave a damage trail that reveals water channels in Photosystem II. Sci Adv 3(11):eaao3013. https://doi.org/10.1126/sciadv.aao3013 PubMed DOI PMC
Yamashita A, Nijo N, Pospíšil P, Morita N, Takenaka D, Aminaka R, Yamamoto Y, Yamamoto Y (2008) Quality control of photosystem II: reactive oxygen species are responsible for the damage to photosystem II under moderate heat stress. J Biol Chem 283(42):28380–28391. https://doi.org/10.1074/jbc.M710465200 PubMed DOI PMC
Yin H, Xu L, Porter NA (2011) Free radical lipid peroxidation: mechanisms and analysis. Chem Rev 111(10):5944–5972. https://doi.org/10.1021/cr200084z PubMed DOI
Yoshioka M, Yamamoto Y (2011) Quality control of Photosystem II: where and how does the degradation of the D1 protein by FtsH proteases start under light stress?—Facts and hypotheses. J Photoch Photobio B 104(1–2):229–235. https://doi.org/10.1016/j.jphotobiol.2011.01.016 DOI