Nuclear localization of ISWI ATPase Smarca5 (Snf2h) in mouse
Jazyk angličtina Země Singapur Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 HL078381
NHLBI NIH HHS - United States
R15 NR009021
NINR NIH HHS - United States
HL 78381
NHLBI NIH HHS - United States
PubMed
19482671
PubMed Central
PMC3556728
DOI
10.2741/e53
PII: 53
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfatasy genetika metabolismus MeSH
- blastocysta metabolismus MeSH
- buněčné jadérko metabolismus MeSH
- chromozomální proteiny, nehistonové genetika metabolismus MeSH
- euchromatin metabolismus MeSH
- heterochromatin metabolismus MeSH
- konfokální mikroskopie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- umlčování genů MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- adenosintrifosfatasy MeSH
- chromozomální proteiny, nehistonové MeSH
- euchromatin MeSH
- heterochromatin MeSH
- Smarca5 protein, mouse MeSH Prohlížeč
Nucleosome movement is, at least in part, facilitated by ISWI ATPase Smarca5 (Snf2h). Smarca5 gene inactivation in mouse demonstrated its requirement at blastocyst stage; however its role at later stages is not completely understood. We herein determined nuclear distribution of Smarca5 and histone marks associated with actively transcribed and repressed chromatin structure in embryonic and adult murine tissues and in tumor cells. Confocal microscopy images demonstrate that Smarca5 is localized mainly in euchromatin and to lesser extent also in heterochromatin and nucleoli. Smarca5 heterozygous mice for a null allele display decreased levels of histone H3 modifications and defects in heterochromatin foci supporting role of Smarca5 as a key regulator of global chromatin structure.
Zobrazit více v PubMed
Cairns BR. Chromatin remodeling: insights and intrigue from single-molecule studies. Nat Struct Mol Biol. 2007;14:989–96. PubMed PMC
Stopka T, Skoultchi AI. The ISWI ATPase Snf2h is required for early mouse development. Proc Natl Acad Sci U S A. 2003;100:14097–102. PubMed PMC
Bultman ST, Gebuhr D, Yee C, La Mantia J, Nicholson A, Gilliam F, Randazzo D, Metzger P, Chambon G, Crabtree, Magnuson T. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell. 2000;6:1287–95. PubMed
Gebuhr TC, Kovalev GI, Bultman S, Godfrey V, Su L, Magnuson T. The role of Brg1, a catalytic subunit of mammalian chromatin-remodeling complexes, in T cell development. Journal of Experimental Medicine. 2003;198:1937–49. PubMed PMC
Bultman SJ, Gebuhr TC, Magnuson T. A Brg1 mutation that uncouples ATPase activity from chromatin remodeling reveals an essential role for SWI/SNF-related complexes in beta-globin expression and erythroid development. Genes & Development. 2005;19:2849–61. PubMed PMC
Kokavec J, Podskocova J, Zavadil J, Stopka T. Chromatin remodeling and SWI/SNF2 factors in human disease. Front Biosci. 2008;13:6126–34. PubMed
Stopka T, Zakova D, Fuchs O, Kubrova O, Blafkova J, Jelinek J, Necas E, Zivny J. Chromatin remodeling gene SMARCA5 is dysregulated in primitive hematopoietic cells of acute leukemia. Leukemia. 2000;14:1247–52. PubMed
Whitehouse I, Rando OJ, Delrow J, Tsukiyama T. Chromatin remodelling at promoters suppresses antisense transcription. Nature. 2007;450:1031–5. PubMed
Fyodorov DV, Blower MD, Karpen GH, Kadonaga JT. Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. Genes Dev. 2004;18:170–83. PubMed PMC
Corona DF, Siriaco G, Armstrong JA, Snarskaya N, McClymont SA, Scott MP, Tamkun JW. ISWI regulates higher-order chromatin structure and histone H1 assembly in vivo. PLoS Biol. 2007;5:e232. PubMed PMC
Sarmento OF, Digilio LC, Wang Y, Perlin J, Herr JC, Allis CD, Coonrod SA. Dynamic alterations of specific histone modifications during early murine development. J Cell Sci. 2004;117:4449–59. PubMed
Chong S, Vickaryous N, Ashe A, Zamudio N, Youngson N, Hemley S, Stopka T, Skoultchi A, Matthews J, Scott HS, de Kretser D, O’Bryan M, Blewitt M, Whitelaw E. Modifiers of epigenetic reprogramming show paternal effects in the mouse. Nature Genetics. 2007;39:614–622. PubMed PMC
Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705. PubMed
Kouskouti A, Talianidis I. Histone modifications defining active genes persist after transcriptional and mitotic inactivation. Embo J. 2005;24:347–57. PubMed PMC
Stopka T, Amanatullah DF, Papetti M, Skoultchi AI. PU.1 inhibits the erythroid program by binding to GATA-1 on DNA and creating a repressive chromatin structure. Embo J. 2005;24:3712–23. PubMed PMC
Peters AH, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell. 2001;107:323–37. PubMed
Sawado T, Halow J, Im H, Ragoczy T, Bresnick EH, Bender MA, Groudine M. H3 K79 dimethylation marks developmental activation of the beta-globin gene but is reduced upon LCR-mediated high-level transcription. Blood. 2008;112:406–14. PubMed PMC
McStay B, Grummt I. The epigenetics of rRNA genes: from molecular to chromosome biology. Annu Rev Cell Dev Biol. 2008;24:131–57. PubMed
Percipalle P, Farrants AK. Chromatin remodelling and transcription: be-WICHed by nuclear myosin 1. Current Opinion in Cell Biology. 2006;18:267–74. PubMed
Aalfs JD, Narlikar GJ, Kingston RE. Functional differences between the human ATP-dependent nucleosome remodeling proteins BRG1 and SNF2H. J Biol Chem. 2001;276:34270–8. PubMed
Narlikar GJ, Fan HY, Kingston RE. Cooperation between complexes that regulate chromatin structure and transcription. Cell. 2002;108:475–87. PubMed