Re-Evaluation of Imaging Methods of Reactive Oxygen and Nitrogen Species in Plants and Fungi: Influence of Cell Wall Composition
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
29114232
PubMed Central
PMC5660854
DOI
10.3389/fphys.2017.00826
Knihovny.cz E-zdroje
- Klíčová slova
- cell wall, confocal microscopy, fluorescent probes, reactive nitrogen species, reactive oxygen species,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Developmental transitions and stress reactions in both eukaryotes and prokaryotes are tightly linked with fast and localized modifications in concentrations of reactive oxygen and nitrogen species (ROS and RNS). Fluorescent microscopic analyses are widely applied to detect localized production of ROS and RNS in vivo. In this mini-review we discuss the biological characteristics of studied material (cell wall, extracellular matrix, and tissue complexity) and its handling (concentration of probes, effect of pressure, and higher temperature) which influence results of histochemical staining with "classical" fluorochromes. Future perspectives of ROS and RNS imaging with newly designed probes are briefly outlined.
Department of Biochemistry Faculty of Science Palacký University Olomouc Olomouc Czechia
Department of Botany Faculty of Science Palacký University Olomouc Olomouc Czechia
Zobrazit více v PubMed
Arasimowicz-Jelonek M., Floryszak-Wieczorek J., Izbianska K., Gzyl J., Jelonek T. (2016). Implication of peroxynitrite in defence responses of potato to Phytophthora infestans. Plant Pathol. 65, 754–766. 10.1111/ppa.12471 DOI
Asada K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141, 391–396. 10.1104/pp.106.082040 PubMed DOI PMC
Beltrán A., Isabel Burguete M., Abanades D. R., Perez-Sala D., Luis S. V., Galindo F. (2014). Turn-on fluorescent probes for nitric oxide sensing based on the ortho-hydroxyamino structure showing no interference with dehydroascorbic acid. Chem. Commun. 50, 3579–3581. 10.1039/c3cc49555h PubMed DOI
Blokhina O., Fagerstedt K. V. (2010). Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems. Physiol. Plant. 138, 447–462. 10.1111/j.1399-3054.2009.01340.x PubMed DOI
Chen Y., Shi X., Lu Z., Wang X., Wang Z. (2017). Fluorescent probe for hydrogen peroxide in vivo based on the modulation of intramolecular charge transfer. Anal. Chem. 89, 5278–5284. 10.1021/acs.analchem.6b04810 PubMed DOI
Considine M. J., Diaz-Vivancos P., Kerchev P., Signorelli S., Agudelo-Romero P., Gibbs D. J., et al. . (2017). Learning to breathe: developmental phase transitions in oxygen status. Trends Plant Sci. 22, 140–153. 10.1016/j.tplants.2016.11.013 PubMed DOI
Corpas F. J., Barroso J. B., Palma J. M., Rodriguez-Ruiza M. (2017). Peroxisomes: a nitro-oxidative cocktail. Redox Biol. 11, 535–542. 10.1016/j.redox.2016.12.033 PubMed DOI PMC
Del Río L. A. (2015). ROS and RNS in plant physiology: an overview. J. Exp. Bot. 66, 2827–2837. 10.1093/jxb/erv099 PubMed DOI
Dietz K.-J., Mittler R., Noctor G. (2016). Recent progress in understanding the role of reactive oxygen species in plant cell signaling. Plant Physiol. 171, 1535–1539. 10.1104/pp.16.00938 PubMed DOI PMC
Erwig L. P., Gow N. A. (2016). Interactions of fungal pathogens with phagocytes. Nat. Rev. Microbiol. 14, 163–176. 10.1038/nrmicro.2015.21 PubMed DOI
Flors C., Fryer M. J., Waring J., Reeder B., Bechtold U., Mullineaux P. M., et al. . (2006). Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, Singlet oxygen sensor green. J. Exp. Bot. 57, 1725–1734. 10.1093/jxb/erj181 PubMed DOI
Gill S. S., Tuteja N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930. 10.1016/j.plaphy.2010.08.016 PubMed DOI
Grenville-Briggs L. J., Horner N. R., Phillips A. J., Beakes G. W., van West P. (2013). A family of small tyrosine rich proteins is essential for oogonial and oospore cell wall development of the mycoparasitic oomycete. Fungal Biol. 117, 163–172. 10.1016/j.funbio.2013.01.001 PubMed DOI
Guo H., Aleyasin H., Dickinson B. C., Haskew-Layton R. E., Ratan R. R. (2014). Recent advances in hydrogen peroxide imaging for biological applications. Cell Biosci. 4:64. 10.1186/2045-3701-4-64 PubMed DOI PMC
Gupta K. J., Igamberdiev A. U. (2013). Recommendations of using at least two different methods for measuring NO. Front. Plant Sci. 4:58. 10.3389/fpls.2013.00058 PubMed DOI PMC
Hempel S. L., Buettner G. R., O'Malley Y. Q., Wessels D. A., Flaherty D. M. (1999). Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′,7′-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic. Biol. Med. 27, 146–159. 10.1016/S0891-5849(99)00061-1 PubMed DOI
Hoiczyk E., Hansel A. (2000). Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J. Bacteriol. 182, 1191–1199. 10.1128/JB.182.5.1191-1199.2000 PubMed DOI PMC
Jabs T., Dietrich R. A., Dangl J. L. (1996). Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273, 1853–1856. 10.1126/science.273.5283.1853 PubMed DOI
Kehrer J. P., Paraidathathu T. (1992). The use of fluorescent probes to assess oxidative processes in isolated-perfused rat heart tissue. Free Radic. Res. Commun. 16, 217–225. 10.3109/10715769209049175 PubMed DOI
Kim S., Fujitsuka M., Majima T. (2013). Photochemistry of singlet oxygen sensor green. J. Phys. Chem. B 117, 13985–13992. 10.1021/jp406638g PubMed DOI
Kojima H., Urano Y., Kikuchi K., Higuchi T., Hirata Y., Nagano T. (1999). Fluorescent indicators for imaging nitric oxide production. Angew. Chem. Int. Ed. Engl. 38, 3209–3212. 10.1002/(SICI)1521-3773(19991102)38:21<3209::AID-ANIE3209>3.0.CO;2-6 PubMed DOI
Latgé J. P. (2007). The cell wall: a carbohydrate armour for the fungal cell. Mol. Microbiol. 66, 279–290. 10.1111/j.1365-2958.2007.05872.x PubMed DOI
Ledoux Q., Veys P., Van Cutsem P., Mauro S., Lucaccioni F., Marko I. E. (2013). Validation of the boronate sensor ContPY1 as a specific probe for fluorescent detection of hydrogen peroxide in plants. Plant Signal. Behav. 8:e26827. 10.4161/psb.26827 PubMed DOI PMC
Lee D., Khaja S., Velasquez-Castano J. C., Dasari M., Sun C., Petros J., et al. . (2007). In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nat. Mater. 6, 765–769. 10.1038/nmat1983 PubMed DOI
León J., Castillo M. C., Coego A., Lozano-Juste J., Mir R. (2014). Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress. J. Exp. Bot. 65, 907–921. 10.1093/jxb/ert454 PubMed DOI
Lesage G., Bussey H. (2006). Cell wall assembly in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70, 317–343. 10.1128/MMBR.00038-05 PubMed DOI PMC
Lombardo M. C., Graziano M., Polacco J. C., Lamattina L. (2006). Nitric oxide functions as a positive regulator of root hair development. Plant Signal. Behav. 1, 28–33. 10.4161/psb.1.1.2398 PubMed DOI PMC
Mason R. P. (2016). Imaging free radicals in organelles, cells, tissue, and in vivo with immuno-spin trapping. Redox Biol. 8, 422–429. 10.1016/j.redox.2016.04.003 PubMed DOI PMC
Mélida H., Sandoval-Sierra J. V., Diéguez-Uribeondo J., Bulone V. (2013). Analyses of extracellular carbohydrates in oomycetes unveil the existence of three different cell wall types. Eukaryot. Cell 12, 194–203. 10.1128/EC.00288-12 PubMed DOI PMC
Miedes E., Vanholme R., Boerjan W., Molina A. (2014). The role of the secondary cell wall in plant resistance to pathogens. Front. Plant Sci. 5:358. 10.3389/fpls.2014.00358 PubMed DOI PMC
Mine I., Yamasaki T., Sekida S., Okuda K. (2016). Measurement of cell wall thickness in the giant-celled xanthophycean alga Vaucheria frigida. Cytologia 81, 225–230. 10.1508/cytologia.81.225 DOI
Nie S., Yue H., Zhou J., Xing D. (2015). Mitochondrial-derived reactive oxygen species play a vital role in the salicylic acid signaling pathway in Arabidopsis thaliana. PLoS ONE 10:e0119853. 10.1371/journal.pone.0119853 PubMed DOI PMC
Ochoa-Villarreal M., Aispuro-Hernández E., Vargas-Arispuro I., Martínez-Téllez M. Á. (2012). Plant cell wall polymers: function, structure and biological activity of their derivatives, in Polymerization, ed Gomes A. D. S. (Rijeka: InTech; ), 63–86.
Pedersen S. K., Holmehave J., Blaikie F. H., Gollmer A., Breitenbach T., Jensen H. H., et al. . (2014). Aarhus sensor green: a fluorescent probe for singlet oxygen. J. Org. Chem. 79, 3079–3087. 10.1021/jo500219y PubMed DOI
Peteu S. F., Boukherroub R., Szunerits S. (2014). Nitro-oxidative species biosensing: challenges and advances with focus on peroxynitrite quantification. Biosens. Bioelectron. 58, 359–373. 10.1016/j.bios.2014.02.025 PubMed DOI
Petřivalský M., Vaníčková P., Ryzí M., Navrátilová B., Piterková J., Sedlářová M., et al. (2012). The effects of reactive nitrogen and oxygen species on regeneration and growth of cucumber cells from isolated protoplasts. Plant Cell Tissue Organ Cult. 108, 237–249. 10.1007/s11240-011-0035-3 DOI
Popper Z. A., Michel G., Hervé C., Domozych D. S., Willats W. G., Tuohy M. G., et al. . (2011). Evolution and diversity of plant cell walls: from algae to flowering plants. Annu. Rev. Plant Biol. 62, 567–590. 10.1146/annurev-arplant-042110-103809 PubMed DOI
Popper Z. A., Ralet M. C., Domozych D. S. (2014). Plant and algal cell walls: diversity and functionality. Ann. Bot. 114, 1043–1048. 10.1093/aob/mcu214 PubMed DOI PMC
Prasad A., Sedlářová M., Kale R., Pospíšil P. (2017). Lipoxygenase in singlet oxygen generation as a response to wounding: in vivo imaging in Arabidopsis thaliana. Sci. Rep. 7:9831. 10.1038/s41598-017-09758-1 PubMed DOI PMC
Prats E., Carver T. L., Mur L. A. (2008). Pathogen-derived nitric oxide influences formation of the appressorium infection structure in the phytopathogenic fungus Blumeria graminis. Res. Microbiol. 159, 476–480. 10.1016/j.resmic.2008.04.001 PubMed DOI
Qiao W., Li C., Fan L.-M. (2014). Cross-talk between nitric oxide and hydrogen peroxide in plant responses to abiotic stresses. Environ. Exp. Bot. 100, 84–93. 10.1016/j.envexpbot.2013.12.014 DOI
Raja V., Majeed U., Kang H., Andrabi K. I., John R. (2017). Abiotic stress: interplay between ROS, hormones and MAPKs. Environ. Exp. Bot. 137, 142–157. 10.1016/j.envexpbot.2017.02.010 DOI
Ruiz-Herrera J. (1992). Fungal Cell Wall: Structure, Synthesis and Assembly. Boca Raton, FL: CRC Press.
Saxena I., Srikanth S., Chen Z. (2016). Cross talk between H2O2 and interacting signal molecules under plant stress response. Front. Plant Sci. 7:570. 10.3389/fpls.2016.00570 PubMed DOI PMC
Schmitt F.-J., Renger G., Friedrich T., Kreslavski V. D., Zharmukhamedov S. K., Los D. A., et al. . (2014). Reactive oxygen species: re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms. Biochim. Biophys. Acta 1837, 835–848. 10.1016/j.bbabio.2014.02.005 PubMed DOI
Sedlářová M., Kubienová L., Drábková Trojanová Z., Luhová L., Lebeda A., Petřivalský M. (2016). The role of nitric oxide in development and pathogenesis of biotrophic phytopathogens – downy and powdery mildews. Adv. Bot. Res. 77, 263–283. 10.1016/bs.abr.2015.10.002 DOI
Sedlářová M., Petřivalský M., Piterková J., Luhová L., Kočírová J., Lebeda A. (2011). Influence of nitric oxide and reactive oxygen species on development of lettuce downy mildew in Lactuca spp. Eur. J. Plant Pathol. 129, 267–280. 10.1007/s10658-010-9626-9 DOI
Sinha R. K., Komenda J., Knoppová J., Sedlářová M., Pospíšil P. (2012). Small CAB-like proteins prevent formation of singlet oxygen in the damaged Photosystem II complex of the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Environ. 35, 806–818. 10.1111/j.1365-3040.2011.02454.x PubMed DOI
Thordal-Christensen H., Zhang Z., Wei Y., Collinge D. B. (1997). Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J. 11, 1187–1194. 10.1046/j.1365-313X.1997.11061187.x DOI
Tian J., Chen H., Zhuo L., Xie Y., Li N., Tang B. (2011). A highly selective, cell-permeable fluorescent nanoprobe for ratiometric detection and imaging of peroxynitrite in living cells. Chem. Eur. J. 17, 6626–6634. 10.1002/chem.201100148 PubMed DOI
Vandelle E., Delledonne M. (2011). Peroxynitrite formation and function in plants. Plant Sci. 181, 534–539. 10.1016/j.plantsci.2011.05.002 PubMed DOI
Wanders R. J., Waterham H. R., Ferdinandusse S. (2016). Metabolic interplay between peroxisomes and other subcellular organelles including mitochondria and the endoplasmic reticulum. Front. Cell Dev. Biol. 3:83. 10.3389/fcell.2015.00083 PubMed DOI PMC
Wojtaszek P. (1997). Oxidative burst: an early plant response to pathogen infection. Biochem. J. 322(Pt 3), 681–692. 10.1042/bj3220681 PubMed DOI PMC
Yuan L., Lin W., Xie Y., Chen B., Zhu S. (2012). Single fluorescent probe responds to H2O2, NO, and H2O2/NO with three different sets of fluorescence signals. J. Am. Chem. Soc. 134, 1305–1315. 10.1021/ja2100577 PubMed DOI