Real-time imaging of photosynthetic oxygen evolution from spinach using LSI-based biosensor
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem
PubMed
31439857
PubMed Central
PMC6706413
DOI
10.1038/s41598-019-48561-y
PII: 10.1038/s41598-019-48561-y
Knihovny.cz E-zdroje
- MeSH
- biosenzitivní techniky přístrojové vybavení metody MeSH
- elektrochemické techniky přístrojové vybavení metody MeSH
- fotosyntéza * MeSH
- kyslík metabolismus MeSH
- Spinacia oleracea chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyslík MeSH
The light-driven splitting of water to oxygen (O2) is catalyzed by a protein-bound tetra-manganese penta-oxygen calcium (Mn4O5Ca) cluster in Photosystem II. In the current study, we used a large-scale integration (LSI)-based amperometric sensor array system, designated Bio-LSI, to perform two-dimensional imaging of light-induced O2 evolution from spinach leaves. The employed Bio-LSI chip consists of 400 sensor electrodes with a pitch of 250 μm for fast electrochemical imaging. Spinach leaves were illuminated to varying intensities of white light (400-700 nm) which induced oxygen evolution and subsequent electrochemical images were collected using the Bio-LSI chip. Bio-LSI images clearly showed the dose-dependent effects of the light-induced oxygen release from spinach leaves which was then significantly suppressed in the presence of urea-type herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Our results clearly suggest that light-induced oxygen evolution can be monitored using the chip and suggesting that the Bio-LSI is a promising tool for real-time imaging. To the best of our knowledge, this report is the first to describe electrochemical imaging of light-induced O2 evolution using LSI-based amperometric sensors in plants.
Biomedical Engineering Research Center Tohoku Institute of Technology Sendai Japan
Graduate School of Engineering Tohoku University Aoba ku Sendai Japan
Graduate School of Environmental Studies Tohoku University Sendai Japan
Zobrazit více v PubMed
Crowe SA, et al. Atmospheric oxygenation three billion years ago. Nature. 2013;501:535-+. doi: 10.1038/nature12426. PubMed DOI
Ligeza A, Tikhonov AN, Subczynski WK. In situ measurements of oxygen production and consumption using paramagnetic fusinite particles injected into a bean leaf. Biochimica Et Biophysica Acta-Bioenergetics. 1997;1319:133–137. doi: 10.1016/s0005-2728(96)00122-3. DOI
Dau H, Zaharieva I, Haumann M. Recent developments in research on water oxidation by photosystem II. Current Opinion in Chemical Biology. 2012;16:3–10. doi: 10.1016/j.cbpa.2012.02.011. PubMed DOI
Yano J, Yachandra V. Mn4Ca Cluster in Photosynthesis: Where and How Water is Oxidized to Dioxygen. Chemical Reviews. 2014;114:4175–4205. doi: 10.1021/cr4004874. PubMed DOI PMC
Perez-Navarro M, Neese F, Lubitz W, Pantazis DA, Cox N. Recent developments in biological water oxidation. Current Opinion in Chemical Biology. 2016;31:113–119. doi: 10.1016/j.cbpa.2016.02.007. PubMed DOI
Vinyard, D. J. & Brudvig, G. W. In Annual Review of Physical Chemistry, Vol. 68 Annual Review of Physical Chemistry (eds Johnson, M. A. & Martinez, T. J.) 101–116 (Annual Reviews, 2017). PubMed
Clark, L. C. Monitor and Control of Blood and Tissue Oxygen Tensions. Transactions American Society for Artificial Internal Organs2, 41-& (1956).
Delieu T, Walker DA. Polarographic Measurement of Photosynthetic Oxygen Evolution By Leaf-Disks. New Phytologist. 1981;89:165–178. doi: 10.1111/j.1469-8137.1981.tb07480.x. DOI
Tyystjarvi E, Karunen J, Lemmetyinen H. Measurement of photosynthetic oxygen evolution with a new type of oxygen sensor. Photosynthesis Research. 1998;56:223–227. doi: 10.1023/a:1005994311121. DOI
Kendall DN. Berlman,Ib - Handbook of Fluorescence Spectra of Aromatic Molecules. Applied Spectroscopy. 1967;21:203-&. doi: 10.1366/000370267774385407. DOI
Wolfbeis OS. Fiber-optic chemical sensors and biosensors. Anal Chem. 2004;76:3269–3283. doi: 10.1021/ac040049d. PubMed DOI
Joliot, P. Oxygen evolution in algae illuminated with modulated light. In: Olson, J.M., Hind, G., Siegelman, H.W. (eds) Energy conversion by the photosynthetic apparatus. Upton, New York, 418–433 (1967).
Joliot, P. & Joliot, A. A polarographic method for detection of oxygen production and reduction of Hill reagent by isolated chloroplasts. Biochimica et Biophysica Acta (BBA)-Bioenergetics153(3), 625–634 (1968). PubMed
Clark, L.C. J.R., Wolf, R., Granger, D. & Taylor, Z. Continuous recording of blood oxygen tensions by polarography. Journal of Applied Physiology6, 189–193 (1953). PubMed
Demas JN, DeGraff BA. Applications of luminescent transition metal complexes to sensor technology and molecular probes. Journal of Chemical Education. 1997;74:690–695. doi: 10.1021/ed074p690. DOI
Demas JN, DeGraff BA, Coleman PB. Oxygen sensors based on luminescence quenching. Analytical Chemistry. 1999;71:793A–800A. doi: 10.1021/ac9908546. PubMed DOI
Kneas KA, Xu WY, Demas JN, DeGraff BA. Oxygen sensors based on luminescence quenching: Interactions of tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) chloride and pyrene with polymer supports. Applied Spectroscopy. 1997;51:1346–1351. doi: 10.1366/0003702971942024. DOI
Gouterman M. Oxygen quenching of luminescence of pressure sensitive paint for wind tunnel research. Journal of Chemical Education. 1997;74:697–702. doi: 10.1021/ed074p697. DOI
Matsue T, Koike S, Abe T, Itabashi T, Uchida I. An Ultramicroelectrode For Determination of Intracellular Oxygen - Light-Irradiation-Induced Change in Oxygen Concentration in an Algal Protoplast. Biochimica Et Biophysica Acta. 1992;1101:69–72. doi: 10.1016/0167-4838(92)90468-s. DOI
Matsue T, Koike S, Uchida I. Microamperometric Estimation of Photosynthesis Inhibition In A Single Algal Protoplast. Biochemical and Biophysical Research Communications. 1993;197:1283–1287. doi: 10.1006/bbrc.1993.2616. PubMed DOI
Yasukawa T, Kaya T, Matsue T. Dual imaging of topography and photosynthetic activity of a single protoplast by scanning electrochemical microscopy. Analytical Chemistry. 1999;71:4637–4641. doi: 10.1021/ac9903104. DOI
Lee CM, Kwak JY, Bard AJ. Application of Scanning Electrochemical Microscopy To Biological Samples. Proceedings of the National Academy of Sciences of the United States of America. 1990;87:1740–1743. doi: 10.1073/pnas.87.5.1740. PubMed DOI PMC
Tsionsky M, Cardon ZG, Bard AJ, Jackson RB. Photosynthetic electron transport in single guard cells as measured by scanning electrochemical microscopy. Plant Physiology. 1997;113:895–901. doi: 10.1104/pp.113.3.895. PubMed DOI PMC
Yasukawa, T., Kaya, T. & Matsue, T. Characterization and imaging of single cells with scanning electrochemical microscopy. Electroanalysis12, 653–659, 10.1002/1521-4109(200005)12:9<653::aid-elan653>3.0.co;2-s (2000).
Inoue KY, et al. LSI-based amperometric sensor for bio-imaging and multi-point biosensing. Lab on a Chip. 2012;12:3481–3490. doi: 10.1039/c2lc40323d. PubMed DOI
Inoue KY, et al. Advanced LSI-based amperometric sensor array with light-shielding structure for effective removal of photocurrent and mode selectable function for individual operation of 400 electrodes. Lab on a Chip. 2015;15:848–856. doi: 10.1039/c4lc01099j. PubMed DOI
Kanno Y, et al. Electrochemicolor Imaging Using an LSI-Based Device for Multiplexed Cell Assays. Analytical Chemistry. 2017;89:12778–12786. doi: 10.1021/acs.analchem.7b03042. PubMed DOI
Tschiersch H, Liebsch G, Borisjuk L, Stangelmayer A, Rolletschek H. An imaging method for oxygen distribution, respiration and photosynthesis at a microscopic level of resolution. New Phytol. 2012;196:926–936. doi: 10.1111/j.1469-8137.2012.04295.x. PubMed DOI
KASAI Nahoko, SHIMADA Akiyoshi, TOBIAS Nyberg, TORIMITSU Keiichi. Fabrication of an Electrochemical Sensor Array for 2D H2O2 Imaging. Electrochemistry. 2006;74(8):628–631. doi: 10.5796/electrochemistry.74.628. DOI
Reactive Oxygen Species as a Response to Wounding: In Vivo Imaging in Arabidopsis thaliana