Discovery of a potent and selective human AC2 inhibitor based on 7-deazapurine analogues of adefovir
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 NS119917
NINDS NIH HHS - United States
R33 NS111070
NINDS NIH HHS - United States
R61 NS111070
NINDS NIH HHS - United States
PubMed
37931521
PubMed Central
PMC10842932
DOI
10.1016/j.bmc.2023.117508
PII: S0968-0896(23)00356-5
Knihovny.cz E-zdroje
- Klíčová slova
- 7-Deazapurine, Acyclic nucleoside phosphonates, Adefovir, Adenylate cyclase, Prodrugs,
- MeSH
- adenylátcyklasový toxin MeSH
- adenylátcyklasy * MeSH
- HEK293 buňky MeSH
- lidé MeSH
- nukleosidy chemie MeSH
- organofosfonáty * farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- 7-deazapurine MeSH Prohlížeč
- adefovir MeSH Prohlížeč
- adenylátcyklasový toxin MeSH
- adenylátcyklasy * MeSH
- nukleosidy MeSH
- organofosfonáty * MeSH
Adefovir based acyclic nucleoside phosphonates were previously shown to modulate bacterial and, to a certain extent, human adenylate cyclases (mACs). In this work, a series of 24 novel 7-substituted 7-deazaadefovir analogues were synthesized in the form of prodrugs. Twelve analogues were single-digit micromolar inhibitors of Bordetella pertussis adenylate cyclase toxin with no cytotoxicity to J774A.1 macrophages. In HEK293 cell-based assays, compound 14 was identified as a potent (IC50 = 4.45 μM), non-toxic, and selective mAC2 inhibitor (vs. mAC1 and mAC5). Such a compound represents a valuable addition to a limited number of small-molecule probes to study the biological functions of individual endogenous mAC isoforms.
Zobrazit více v PubMed
Zhang G, Liu Y, Ruoho AE, Hurley JH. Structure of the adenylyl cyclase catalytic core. Nature. 1997;386(6622):247–253. doi:10.1038/386247a0 PubMed DOI
Lennarz WJ, Lane MD. Encyclopedia of Biological Chemistry: Second Edition. 2nd ed. Academic Press; 2013.
Båhzu O, Danchin A. Adenylyl Cyclases: A Heterogeneous Class of ATP-Utilizing Enzymes. In: ; 1994:241–283. doi:10.1016/S0079-6603(08)60052-5 PubMed DOI
Linder JU. Structure–function relationships in Escherichia coli adenylate cyclase. Biochem J. 2008;415(3):449–454. doi:10.1042/BJ20080350 PubMed DOI
Linder JU, Schultz JE. The class III adenylyl cyclases: Multi-purpose signalling modules. Cell Signal. 2003;15(12):1081–1089. doi:10.1016/S0898-6568(03)00130-X PubMed DOI
Sadana R, Dessauer CW. Physiological Roles for G Protein-Regulated Adenylyl Cyclase Isoforms: Insights from Knockout and Overexpression Studies. Neurosignals. 2009;17(1):5–22. doi:10.1159/000166277 PubMed DOI PMC
Arehart CH, David MZ, Dukic V. Tracking U.S. Pertussis Incidence: Correlation of Public Health Surveillance and Google Search Data Varies by State. Sci Rep. 2019;9(1):19801. doi:10.1038/s41598-019-56385-z PubMed DOI PMC
Carbonetti NH. Pertussis toxin and adenylate cyclase toxin: key virulence factors of Bordetella pertussis and cell biology tools. Future Microbiol. 2010;5(3):455–469. doi:10.2217/fmb.09.133 PubMed DOI PMC
Paddock CD, Sanden GN, Cherry JD, et al. Pathology and Pathogenesis of Fatal Bordetella pertussis Infection in Infants. Clin Infect Dis. 2008;47(3):328–338. doi:10.1086/589753 PubMed DOI
Wood N, McIntyre P. Pertussis: review of epidemiology, diagnosis, management and prevention. Paediatr Respir Rev. 2008;9(3):201–212. doi:10.1016/j.prrv.2008.05.010 PubMed DOI
Ahuja N, Kumar P, Bhatnagar R. The adenylate cyclase toxins. Crit Rev Microbiol. 2004;30(3):187–196. doi:10.1080/10408410490468795 PubMed DOI
Vojtova J, Kamanova J, Sebo P. Bordetella adenylate cyclase toxin: a swift saboteur of host defense. Curr Opin Microbiol. 2006;9(1):69–75. doi:10.1016/j.mib.2005.12.011 PubMed DOI
Fedele G, Bianco M, Ausiello CM. The Virulence Factors of Bordetella pertussis: Talented Modulators of Host Immune Response. Arch Immunol Ther Exp (Warsz). 2013;61(6):445–457. doi:10.1007/s00005-013-0242-1 PubMed DOI
Shrivastava R, Miller JF. Virulence factor secretion and translocation by Bordetella species. Curr Opin Microbiol. 2009;12(1):88–93. doi:10.1016/j.mib.2009.01.001 PubMed DOI PMC
Confer DL, Eaton JW. Phagocyte Impotence Caused by an Invasive Bacterial Adenylate Cyclase. Science (80- ). 1982;217(4563):948–950. doi:10.1126/science.6287574 PubMed DOI
De Clercq E. Potential of acyclic nucleoside phosphonates in the treatment of DNA virus and retrovirus infections. Expert Rev Anti Infect Ther. 2003;1(1):21–43. doi:10.1586/14787210.1.1.21 PubMed DOI
De Clercq E. Highlights in Antiviral Drug Research: Antivirals at the Horizon. Med Res Rev. 2013;33(6):1215–1248. doi:10.1002/med.21256 PubMed DOI PMC
De Clercq E, Holý A. Acyclic nucleoside phosphonates: a key class of antiviral drugs. Nat Rev Drug Discov. 2005;4(11):928–940. doi:10.1038/nrd1877 PubMed DOI
Marcellin P, Chang TT, Lim SGL, et al. Long-term efficacy and safety of adefovir dipivoxil for the treatment of hepatitis B e antigen-positive chronic hepatitis B. Hepatology. 2008;48(3):750–758. doi:10.1002/hep.22414 PubMed DOI
Guo Q, Shen Y, Lee YS, Gibbs CS, Mrksich M, Tang WJ. Structural basis for the interaction of Bordetella pertussis adenylyl cyclase toxin with calmodulin. EMBO J. 2005;24(18):3190–3201. doi:10.1038/sj.emboj.7600800 PubMed DOI PMC
Šmídková M, Dvořáková A, Tloušt’ová E, Česnek M, Janeba Z, Mertlíková-Kaiserová H. Amidate Prodrugs of 9-[2-(Phosphonomethoxy)Ethyl]Adenine as Inhibitors of Adenylate Cyclase Toxin from Bordetella pertussis. Antimicrob Agents Chemother. 2014;58(2):664–671. doi:10.1128/AAC.01685-13 PubMed DOI PMC
Česnek M, Skácel J, Jansa P, et al. Nucleobase Modified Adefovir (PMEA) Analogues as Potent and Selective Inhibitors of Adenylate Cyclases from Bordetella pertussis and Bacillus anthracis. ChemMedChem. 2018;13(17):1779–1796. doi:10.1002/cmdc.201800332 PubMed DOI PMC
GOLDSTEIN, Michael David; BRAMELD KA. WO2012158764 (A1) - TYROSINE KINASE INHIBITORS. 2012;(12).
Gao J, Zhang Z, Zhang B, et al. Novel 3-[4-alkoxy-3-(1H-tetrazol-1-yl) phenyl]-1,2,4-oxadiazol-5(4H)-ones as promising xanthine oxidase inhibitors: Design, synthesis and biological evaluation. Bioorg Chem. 2020;95(December 2019):103564. doi:10.1016/j.bioorg.2019.103564 PubMed DOI
Nauš P, Perlíková P, Bourderioux A, et al. Sugar-modified derivatives of cytostatic 7-(het)aryl-7-deazaadenosines: 2′-C-methylribonucleosides, 2′-deoxy-2′-fluoroarabinonucleosides, arabinonucleosides and 2′-deoxyribonucleosides. Bioorg Med Chem. 2012;20(17):5202–5214. doi:10.1016/j.bmc.2012.07.003 PubMed DOI
Savitha B, Reddy EK, Parthasarathi D, et al. A highly efficient precatalytic system (XPhos-PdG2) for the Suzuki–Miyaura cross-coupling of 7-chloro-1H-pyrrolo[2,3-c]pyridine employing low catalyst loading. Mol Divers. 2019;23(3):697–707. doi:10.1007/s11030-018-9904-6 PubMed DOI
Iijima Toru; Takahashi Yoichi; Hirai Miki; Sugama Hiroshi; Togashi Yuko; Shen Jingkang; Xia Guangxin; Wan H. WO2009/115572 A2 - NOVEL RENIN INHIBITOR. 2009;(12).
Short; Kevin Michael Kita; David Ben Estiarte-Martinez; Maria de los Angeles PSM. Pyrazolyl-substituted pyridone compounds as serine protease inhibitors. Published online 2017.
Sabat N, Smoleń S, Nauš P, et al. Synthesis of 2,6-Substituted 7-(Het)aryl-7-deazapurine Nucleobases (2,4-Disubstituted 5-(Het)aryl-pyrrolo[2,3-d]pyrimidines). Synthesis (Stuttg). 2017;49(20):4623–4650. doi:10.1055/s-0036-1588443 DOI
Bourderioux A, Nauš P, Perlíková P, et al. Synthesis and Significant Cytostatic Activity of 7-Hetaryl-7-deazaadenosines. J Med Chem. 2011;54(15):5498–5507. doi:10.1021/jm2005173 PubMed DOI
Heidel KM, Dowd CS. Phosphonate prodrugs: an overview and recent advances. Future Med Chem. 2019;11(13):1625–1643. doi:10.4155/fmc-2018-0591 PubMed DOI PMC
Skácel Jan. Design and Synthesis of Novel Compounds as Inhibitors of Purine Metabolism Enzymes. Published online 2019.
Boyer SH, Jiang H, Jacintho JD, et al. Synthesis and biological evaluation of a series of liver-selective phosphonic acid thyroid hormone receptor agonists and their prodrugs. J Med Chem. 2008;51(22):7075–7093. doi:10.1021/jm800824d PubMed DOI
Holý A, Rosenberg I. Synthesis of 9-(2-phosphonylmethoxyethyl)adenine and related compounds. Collect Czechoslov Chem Commun. 1987;52(11):2801–2809. doi:10.1135/cccc19872801 DOI
Soto-Velasquez M, Hayes MP, Alpsoy A, Dykhuizen EC, Watts VJ. A Novel CRISPR/Cas9-Based Cellular Model to Explore Adenylyl Cyclase and cAMP Signaling. Mol Pharmacol. 2018;94(3):963–972. doi:10.1124/mol.118.111849 PubMed DOI PMC
Conley JM, Brand CS, Bogard AS, et al. Development of a High-Throughput Screening Paradigm for the Discovery of Small-Molecule Modulators of Adenylyl Cyclase: Identification of an Adenylyl Cyclase 2 Inhibitor. J Pharmacol Exp Ther. 2013;347(2):276–287. doi:10.1124/jpet.113.207449 PubMed DOI PMC
Chemical Computing Group ULC. Molecular Operating Environment (MOE). Published online 2023.
Pierre S, Eschenhagen T, Geisslinger G, Scholich K. Capturing adenylyl cyclases as potential drug targets. Nat Rev Drug Discov. 2009;8(4):321–335. doi:10.1038/nrd2827 PubMed DOI
Ostrom KF, LaVigne JE, Brust TF, et al. Physiological roles of mammalian transmembrane adenylyl cyclase isoforms. Physiol Rev. 2022;102(2):815–857. doi:10.1152/physrev.00013.2021 PubMed DOI PMC
Bogard AS, Xu C, Ostrom RS. Human Bronchial Smooth Muscle Cells Express Adenylyl Cyclase Isoforms 2, 4, and 6 in Distinct Membrane Microdomains. J Pharmacol Exp Ther. 2011;337(1):209–217. doi:10.1124/jpet.110.177923 PubMed DOI PMC
Cattani-Cavalieri I, Li Y, Margolis J, Bogard A, Roosan MR, Ostrom RS. Quantitative phosphoproteomic analysis reveals unique cAMP signaling pools emanating from AC2 and AC6 in human airway smooth muscle cells. Front Physiol. 2023;14. https://www.frontiersin.org/articles/10.3389/fphys.2023.1149063/full PubMed DOI PMC
Bogard AS, Adris P, Ostrom RS. Adenylyl Cyclase 2 Selectively Couples to E Prostanoid Type 2 Receptors, Whereas Adenylyl Cyclase 3 Is Not Receptor-Regulated in Airway Smooth Muscle. J Pharmacol Exp Ther. 2012;342(2):586–595. doi:10.1124/jpet.112.193425 PubMed DOI PMC