Dual role of pectin methyl esterase activity in the regulation of plant cell wall biophysical properties

. 2025 ; 16 () : 1612366. [epub] 20250704

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40688689

INTRODUCTION: Acid-growth theory has been postulated in the 70s to explain the rapid elongation of plant cells in response to the hormone auxin. More recently, it has been demonstrated that activation of the proton ATPs pump (H+-ATPs) promoting acidification of the apoplast is the principal mechanism by which auxin and other hormones such as brassinosteroids (BR) induce cell elongation. Despite these advances, the impact of this acidification on the mechanical properties of the cell wall remained largely unexplored. METHODS: Here, we use elongation assays of Arabidopsis thaliana hypocotyls and Atomic Force Microscopy (AFM) to correlate hormone-induced tissue elongation and local changes in cell wall mechanical properties. Furthermore, employing transgenic lines over-expressing Pectin Methyl Esterase (PME), along with calcium chelators, we investigate the effect of pectin modification in hormone-driven cell elongation. RESULTS: We demonstrate that acidification of apoplast is necessary and sufficient to induce cell elongation through promoting cell wall softening. Moreover, we show that enhanced PME activity can induce both cell wall softening or stiffening in extracellular calcium dependent-manner and that tight control of PME activity is required for proper hypocotyl elongation. DISCUSSION: Our results confirm a dual role of PME in plant cell elongation. However, further investigation is needed to assess the status of pectin following short- or long-term PME treatments in order to determine if pectin methyl-esterification might promote its degradation as well as the role of PME inhibitors upon PME induction.

Zobrazit více v PubMed

Abas L., Luschnig C.. Maximum yields of microsomal-type membranes from small amounts of plant material without requiring ultracentrifugation. Anal Biochem. (2010) 401(2), 217–27. doi:  10.1016/j.ab.2010.02.030 PubMed DOI PMC

Andrej H., Candela C., Nicola C., Krisztina Ö., Jerome D., Ladislav D. (2020). SYNERGISTIC ON AUXIN AND CYTOKININ 1 positively regulates growth and attenuates soil pathogen resistance. Nat. Commun. 11. doi:  10.1038/s41467-020-15895-5 PubMed DOI PMC

Arsuffi G., Braybrook S. A. (2018). Acid growth: an ongoing trip. J. Exp. Bot. 69, 137–146. doi:  10.1093/jxb/erx390 PubMed DOI

Ballio A., EB C., P D. L., BF E., M M., A. T. (1964). Fusicoccin: a New Wilting Toxin produced by Fusicoccum amygdali Del. Nat. 223 397, 4942. doi:  10.1038/203297a0 DOI

Bates G. W., Cleland R. E. (1979). Protein synthesis and auxin-induced growth: Inhibitor studies. Planta 145, 437–442. doi:  10.1007/BF00380097 PubMed DOI

Baunsgaard L., Fuglsang A. T., Jahn T., Korthout H. A. A. J., De Boer A. H., Palmgren M. G. (1998). The 14-3–3 proteins associate with the plant plasma membrane H+-atpase to generate a fusicoccin binding complex and a fusicoccin responsive system. Plant J. 13, 661–671. doi:  10.1046/j.1365-313X.1998.00083.x PubMed DOI

Bou Daher F., Chen Y., Bozorg B., Clough J., Jönsson H., Braybrook S. A. (2018). Anisotropic growth is achieved through the additive mechanical effect of material anisotropy and elastic asymmetry. Elife 7, e38161. doi:  10.7554/eLife.38161 PubMed DOI PMC

Braidwood L., Breuer C., Sugimoto K. (2014). My body is a cage: Mechanisms and modulation of plant cell growth. New Phytol. 201, 388–402. doi:  10.1111/nph.2013.201.issue-2 PubMed DOI

Caesar K., Elgass K., Chen Z., Huppenberger P., Witthöft J., Schleifenbaum F., et al. (2011). A fast brassinolide-regulated response pathway in the plasma membrane of Arabidopsis thaliana. Plant J. 66, 528–540. doi:  10.1111/j.1365-313X.2011.04510.x PubMed DOI

Cho D., Villiers F., Kroniewicz L., Lee S., Seo Y. J., Hirschi K. D., et al. (2012). Vacuolar CAX1 and CAX3 influence auxin transport in guard cells via regulation of apoplastic pH. Plant Physiol. 160, 1293–1302. doi:  10.1104/pp.112.201442 PubMed DOI PMC

Cleland R. E., Buckley G., Nowbar S., Lew N. M., Stinemetz C., Evans M. L., et al. (1991). The pH profile for acid-induced elongation of coleoptile and epicotyl sections is consistent with the acid-growth theory. Planta 186, 70–74. doi:  10.1007/BF00201499 PubMed DOI

Cosgrove D. J. (1993). Wall extensibility: its nature, measurement and relationship to plant cell growth. New Phytol. 124, 1–23. doi:  10.1111/j.1469-8137.1993.tb03795.x PubMed DOI

Cosgrove D. J. (2018). Nanoscale structure, mechanics and growth of epidermal cell walls. Curr. Opin. Plant Biol. 46, 77–86. doi:  10.1016/j.pbi.2018.07.016 PubMed DOI

Cosgrove D. J. (2022). Building an extensible cell wall. Plant Physiol. 189, 1246–1277. doi:  10.1093/plphys/kiac184 PubMed DOI PMC

Elsayad K., Werner S., Gallemí M., Kong J., Guajardo E. R. S., Zhang L., et al. (2016). Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission – Brillouin imaging. Sci. Signal. 9, 1–13. doi:  10.1126/scisignal.aaf6326 PubMed DOI

Fendrych M., Leung J., Friml J. (2016). TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. Elife 10, 53–59. doi:  10.7554/eLife.19048.019 PubMed DOI PMC

Feng W., Kita D., Peaucelle A., Wu H. (2018). The FERONIA Receptor Kinase Maintains Cell-Wall Integrity during Salt Stress through Ca 2 + Signaling Article The FERONIA Receptor Kinase Maintains Cell-Wall Integrity during Salt Stress through Ca 2 + Signaling. Curr Biol. 28, 666–675. doi:  10.1016/j.cub.2018.01.023 PubMed DOI PMC

Gjetting S. K., Ytting C. K., Schulz A., Fuglsang A. T. (2012). Live imaging of intra- and extracellular pH in plants using pHusion , a novel genetically encoded biosensor. J Exp Bot. 63(8), 3207–18. doi:  10.1093/jxb/ers040 PubMed DOI PMC

Haas K. T., Wightman R., Meyerowitz E. M., Peaucelle A. (2020). Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells. Sci. (80-.) 367, 1003–1007. doi:  10.1126/science.aaz5103 PubMed DOI PMC

Haas K. T., Wightman R., Peaucelle A., Herman H. (2021). The role of pectin phase separation in plant cell wall assembly and growth. Cell Surf 7, 2468–2330. doi:  10.1016/j.tcsw.2021.100054 PubMed DOI PMC

Hocq L., Pelloux J., Lefebvre V. (2017). Connecting homogalacturonan-type pectin remodeling to acid growth. Trends Plant Sci. 22, 20–29. doi:  10.1016/j.tplants.2016.10.009 PubMed DOI

Irabonosi O., Iain J. P., Peter L.J., Fabienne B., Nathan R., Chieko K.I. (2025). Understanding pectin cross-linking in plant cell walls. Commun. Biol. 8, 72. doi:  10.1038/s42003-025-07495-0 PubMed DOI PMC

Jonsson K., Hamant O., Bhalerao R. P. (2022). Plant cell walls as mechanical signaling hubs for morphogenesis. Curr. Biol. 32, R334–R340. doi:  10.1016/j.cub.2022.02.036 PubMed DOI

Jonsson K., Lathe R. S., Kierzkowski D., Routier-Kierzkowska A. L., Hamant O., Bhalerao R. P. (2021). Mechanochemical feedback mediates tissue bending required for seedling emergence. Curr. Biol. 31, 1154–1164.e3. doi:  10.1016/j.cub.2020.12.016 PubMed DOI

Knox K., Grierson C. S., Leyser O. (2003). AXR3 and SHY2 interact to regulate root hair development. Development 130, 5769–5777. doi:  10.1242/dev.00659 PubMed DOI

Kutschera U., Schopfer P. (1985). Evidence for the acid-growth theory of fusicoccin action. Planta 163, 494–499. doi:  10.1007/BF00392706 PubMed DOI

Liao C. Y., Smet W., Brunoud G., Yoshida S., Vernoux T., Weijers D. (2015). Reporters for sensitive and quantitative measurement of auxin response. Nat. Methods 12, 207–210. doi:  10.1038/nmeth.3279 PubMed DOI PMC

Lin W., Zhou X., Tang W., Takahashi K., Pan X., Dai J., et al. (2021). TMK-based cell-surface auxin signalling activates cell-wall acidification. Nature. 599(7884), 278–282. doi:  10.1038/s41586-021-03976-4 PubMed DOI PMC

Lionetti V., Francocci F., Ferrari S., Volpi C., Bellincampi D., Galletti R., et al. (2010). Engineering the cell wall by reducing de-methyl-esterified homogalacturonan improves saccharification of plant tissues for bioconversion. Proc. Natl. Acad. Sci. U. S. A. 107, 616–621. doi:  10.1073/pnas.0907549107 PubMed DOI PMC

Lionetti V., Raiola A., Camardella L., Giovane A., Obel N., Pauly M., et al. (2007). Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea. Plant Physiol. 143, 1871–1880. doi:  10.1104/pp.106.090803 PubMed DOI PMC

Liu N., Sun Y., Pei Y., Zhang X., Wang P., Li X., et al. (2018). A pectin methylesterase inhibitor enhances resistance to verticillium wilt. Plant Physiol. 176, 2202–2220. doi:  10.1104/pp.17.01399 PubMed DOI PMC

Ludivine H., Fabien S., Valérie L., Arnaud L., Jean-Marc D., Jean-Claude M. (2017). Combined experimental and computational approaches reveal distinct pH dependence of pectin Methylesterase Inhibitors. Plant Physiol. 173, 1075–1093. doi:  10.1104/pp.16.01790 PubMed DOI PMC

Majda M., Robert S. (2018). The role of auxin in cell wall expansion. Int. J. Mol. Sci. 19:951. doi:  10.3390/ijms19040951 PubMed DOI PMC

Minami A., Takahashi K., Inoue S., Tada Y., Kinoshita T. (2019). Brassinosteroid Induces Phosphorylation of the Plasma Membrane H+-ATPase during Hypocotyl Elongation in Arabidopsis thaliana. Plant Cell Physiol. 60, 935–944. doi:  10.1093/pcp/pcz005 PubMed DOI

Mockaitis K., Estelle M. (2008). Auxin receptors and plant development: A new signaling paradigm. Annu Rev Cell Dev Biol. 24, 55–80. doi:  10.1146/annurev.cellbio.23.090506.123214 PubMed DOI

Nemhauser J. L., Hong F., Chory J. (2006). Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126, 467–475. doi:  10.1016/j.cell.2006.05.050 PubMed DOI

Oh E., Zhu J. Y., Bai M. Y., Arenhart R. A., Sun Y., Wang Z. Y. (2014). Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. Elife 2014, 1–19. doi:  10.7554/eLife.03031.025 PubMed DOI PMC

Olivier A., Ibrahim C., Benoit L., Yuchen L. (2022). Revisiting the relationship between turgor pressure and plant cell growth. New Phytol. 238, 62–69. doi:  10.1111/nph.v238.1 PubMed DOI

Peaucelle A., Braybrook S. A., Le Guillou L., Bron E., Kuhlemeier C., Höfte H. (2011). Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr. Biol. 21, 1720–1726. doi:  10.1016/j.cub.2011.08.057 PubMed DOI

Peaucelle A., Louvet R., Johansen J. N., Höfte H., Laufs P., Pelloux J., et al. (2008). Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins. Curr. Biol. 18, 1943–1948. doi:  10.1016/j.cub.2008.10.065 PubMed DOI

Peaucelle A., Wightman R., Höfte H. (2015). The control of growth symmetry breaking in the arabidopsis hypocotyl. Curr. Biol. 25(13), 1746–1752. doi:  10.1016/j.cub.2015.05.022 PubMed DOI

Perrot-rechenmann C. (2010). Cellular responses to auxin: division versus expansion. Cold Spring Harb Perspect Biol. 2 (5), a001446. doi:  10.1101/cshperspect.a001446 PubMed DOI PMC

Rayle D. L., Cleland R. E. (1980). Evidence that auxin-induced growth of soybean hypocotyls involves proton excretion. Plant Physiol. 66, 433–437. doi:  10.1104/pp.66.3.433 PubMed DOI PMC

Rayle D. L., Cleland R. E. (1992). The Acid Growth Theory of auxin-induced cell elongation is alive and well. Plant Physiol. 99, 1271–1274. doi:  10.1104/pp.99.4.1271 PubMed DOI PMC

Röckel N., Wolf S., Kost B., Rausch T., Greiner S. (2008). Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins. Plant J. 53, 133–143. doi:  10.1111/j.1365-313X.2007.03325 PubMed DOI

Rose R. J. (1974). Differntial effect of cycloheximide on the short term gibberellin and auxin growth kinetics of gamma-coleoptiles. Plant Sci. Lett. 2, 233–237. doi:  10.1016/0304-4211(74)90121-7 DOI

Saffer A. M. (2018). Expanding roles for pectins in plant development. J. Integr. Plant Biol. 60, 910–923. doi:  10.1111/jipb.v60.10 PubMed DOI

Schenck D., Christian M., Jones A., Luthen H. (2010). Rapid auxin-induced cell expansion and gene expression: A four-decade-old question revisited. Plant Physiol. 152, 1183–1185. doi:  10.1104/pp.109.149591 PubMed DOI PMC

Shin Y., Chane A., Jung M., Lee Y. (2021). Recent advances in understanding the roles of pectin as an active participant in plant signaling networks. Plants (Basel Switzerland) 10:1712. doi:  10.3390/plants10081712 PubMed DOI PMC

Silvia M. V., Xiaoyuan G., Marçal G., Bibek A., Peter V., Elke B., et al. (2021). Xyloglucan remodeling defines auxin-dependent differential tissue expansion in plants. Int. J. Mol. Sci. 22. doi:  10.3390/ijms22179222 PubMed DOI PMC

Simon J. C., Matthew G., Asmini A., Andreas W. S., Ute B. (2011). Cell-specific vacuolar calcium storage mediated by CAX1 regulates apoplastic calcium concentration, gas exchange, and plant productivity in Arabidopsis. Plant Cell 23, 240–257. doi:  10.1105/tpc.109.072769 PubMed DOI PMC

Simonini S., Bencivenga S., Trick M., Østergaard L. (2017). Auxin-induced modulation of ETTIN activity orchestrates gene expression in arabidopsis. Plant Cell 29, 1864–1882. doi:  10.1105/tpc.17.00389 PubMed DOI PMC

Spartz A. K., Lee S. H., Wenger J. P., Gonzalez N., Itoh H., Inzé D., et al. (2012). The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion. Plant J. 70, 978–990. doi:  10.1111/j.1365-313X.2012.04946.x PubMed DOI PMC

Steffen V., Bert D. R., Gerrit T. S. B., Karin L., Ive D. S., Gert V. I., et al. (2005). Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana. Plant Cell 17, 3035–3050. doi:  10.1105/tpc.105.035493 PubMed DOI PMC

Taras P., Olaf T., Katja R., Maura B., Roland N., Benedetto R., et al. (2015). Protocol: an improved and universal procedure for whole-mount immunolocalization in plants. Plant Methods 11, 50. doi:  10.1186/s13007-015-0094-2 PubMed DOI PMC

Tode K., Lüthen H. (2001). Fusicoccin- and IAA-induced elongation growth share the same pattern of K+ dependence. J. Exp. Bot. 52, 251–255. PubMed

Velasquez S. M., Barbez E., Kleine-Vehn J., Estevez J. (2016). Auxin and cellular elongation. Plant Physiol. 22(17), 01863.2015. doi:  10.1104/pp.15.01863 PubMed DOI PMC

Wolf S., Hématy K., Höfte H. (2012). Growth control and cell wall signaling in plants. Annu. Rev. Plant Biol. 63, 381–407. doi:  10.1146/annurev-arplant-042811-105449 PubMed DOI

Zhang T., Tang H., Vavylonis D., Cosgrove D. J. (2019). Disentangling loosening from softening: insights into primary cell wall structure. Plant J. 100, 1101–1117. doi:  10.1111/tpj.v100.6 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...