Contemplation on wheat vernalization
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
36684728
PubMed Central
PMC9853533
DOI
10.3389/fpls.2022.1093792
Knihovny.cz E-zdroje
- Klíčová slova
- VRN, chromatin methylation, copy number variation, devernalization, vernalization, wheat,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Vernalization is a period of low non-freezing temperatures, which provides the competence to flower. This mechanism ensures that plants sown before winter develop reproductive organs in more favourable conditions during spring. Such an evolutionary mechanism has evolved in both monocot and eudicot plants. Studies in monocots, represented by temperate cereals like wheat and barley, have identified and proposed the VERNALIZATION1 (VRN1) gene as a key player in the vernalization response. VRN1 belongs to MADS-box transcription factors and is expressed in the leaves and the apical meristem, where it subsequently promotes flowering. Despite substantial research advancement in the last two decades, there are still gaps in our understanding of the vernalization mechanism. Here we summarise the present knowledge of wheat vernalization. We discuss VRN1 allelic variation, review vernalization models, talk VRN1 copy number variation and devernalization phenomenon. Finally, we suggest possible future directions of the vernalization research in wheat.
Zobrazit více v PubMed
Alonso-Peral M. M., Oliver S. N., Casao M. C., Greenup A. A., Trevaskis B. (2011). The promoter of the cereal VERNALIZATION1 gene is sufficient for transcriptional induction by prolonged cold. PloS One 6, e29456. doi: 10.1371/journal.pone.0029456 PubMed DOI PMC
Amasino R. (2004). Vernalization, competence, and the epigenetic memory of winter. THE Plant Cell Online 16, 2553–2559. doi: 10.1105/tpc.104.161070 PubMed DOI PMC
Bantignies F., Cavalli G. (2011). Polycomb group proteins: repression in 3D. Trends Genet. 27, 454–464. doi: 10.1016/j.tig.2011.06.008 PubMed DOI
Barrett B., Bayram M., Kidwell K., Weber W. E. (2002). Identifying AFLP and microsatellite markers for vernalization response gene vrn-B1 in hexaploid wheat using reciprocal mapping populations. Plant Breed. 121, 400–406. doi: 10.1046/j.1439-0523.2002.732319.x DOI
Beales J., Turner A., Griffiths S., Snape J. W., Laurie D. A. (2007). A pseudo-response regulator is misexpressed in the photoperiod insensitive ppd-D1a mutant of wheat (Triticum aestivum l.). Theor. Appl. Genet. 115, 721–733. doi: 10.1007/s00122-007-0603-4 PubMed DOI
Berezhnaya A., Kiseleva A., Leonova I., Salina E. (2021). Allelic variation analysis at the vernalization response and photoperiod genes in Russian wheat varieties identified two novel alleles of vrn-B3. Biomolecules 11. doi: 10.3390/biom11121897 PubMed DOI PMC
Bernier (1981). Volume II: Transition to reproductive growth (Boca Raton: CRC Press; ). doi: 10.1201/9781351075688 DOI
Bonnin I., Rousset M., Madur D., Sourdille P., Dupuits C., Brunel D., et al. . (2008). FT genome a and d polymorphisms are associated with the variation of earliness components in hexaploid wheat. Theor. Appl. Genet. 116, 383–394. doi: 10.1007/s00122-007-0676-0 PubMed DOI
Bouché F., Detry N., Périlleux C. (2015). Heat can erase epigenetic marks of vernalization in arabidopsis. Plant Signaling Behav. 10, e990799. doi: 10.4161/15592324.2014.990799 PubMed DOI PMC
Cha J.-K., O’Connor K., Alahmad S., Lee J.-H., Dinglasan E., Park H., et al. . (2022). Speed vernalization to accelerate generation advance in winter cereal crops. Mol. Plant 15, 1300–1309. doi: 10.1016/j.molp.2022.06.012 PubMed DOI
Chen Z., Cheng X., Chai L., Wang Z., Du D., Wang Z., et al. . (2020). Pleiotropic QTL influencing spikelet number and heading date in common wheat (Triticum aestivum l.). Theor. Appl. Genet. 133, 1825–1838. doi: 10.1007/s00122-020-03556-6 PubMed DOI
Chen A., Dubcovsky J. (2012). Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering. PloS Genet. 8, e1003134. doi: 10.1371/journal.pgen.1003134 PubMed DOI PMC
Chen F., Gao M., Zhang J., Zuo A., Shang X., Cui D. (2013). Molecular characterization of vernalization and response genes in bread wheat from the yellow and huai valley of China. BMC Plant Biol. 13. doi: 10.1186/1471-2229-13-199 PubMed DOI PMC
Chouard P. (1960). Vernalization and its relations to dormancy. Annu. Rev. Plant Physiol. 11, 191–238. doi: 10.1146/annurev.pp.11.060160.001203 DOI
Chujo H. (1970). Some observations on the reversal of vernalization effect of wheat. Nihon Sakumotsugaku Kai Kiji = Proc. Crop Sci. Soc. Japan 39, 451–456. doi: 10.1626/jcs.39.451 DOI
Chu C.-G., Tan C. T., Yu G.-T., Zhong S., Xu S. S., Yan L. (2011). A novel retrotransposon inserted in the dominant vrn-B1 allele confers spring growth habit in tetraploid wheat ( triticum turgidum l.). G3 Genes|Genomes|Genetics 1, 637–645. doi: 10.1534/g3.111.001131. PubMed DOI PMC
Corbesier L., Vincent C., Jang S., Fornara F., Fan Q., Searle I., et al. . (2007). FT protein movement contributes to long-distance signaling in floral induction of arabidopsis. Science 316, 1030–1033. doi: 10.1126/science.1141752 PubMed DOI
Danyluk J. (2003). TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol. 132, 1849–1860. doi: 10.1104/pp.103.023523 PubMed DOI PMC
Debernardi J. M., Woods D. P., Li K., Li C., Dubcovsky J. (2022). MiR172-APETALA2-like genes integrate vernalization and plant age to control flowering time in wheat. PloS Genet. 18, e1010157. doi: 10.1371/journal.pgen.1010157 PubMed DOI PMC
Díaz A., Zikhali M., Turner A. S., Isaac P., Laurie D. A. (2012). Copy number variation affecting the photoperiod-B1 and vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PloS One 7, e33234. doi: 10.1371/journal.pone.0033234 PubMed DOI PMC
Distelfeld A., Dubcovsky J. (2010). Characterization of the maintained vegetative phase deletions from diploid wheat and their effect on VRN2 and FT transcript levels. Mol. Genet. Genomics 283, 223–232. doi: 10.1007/s00438-009-0510-2 PubMed DOI PMC
Distelfeld A., Li C., Dubcovsky J. (2009. a). Regulation of flowering in temperate cereals. Curr. Opin. Plant Biol. 12, 178–184. doi: 10.1016/j.pbi.2008.12.010 PubMed DOI
Distelfeld A., Tranquilli G., Li C., Yan L., Dubcovsky J. (2009. b). Genetic and molecular characterization of the VRN2 loci in tetraploid wheat. Plant Physiol. 149, 245–257. doi: 10.1104/pp.108.129353 PubMed DOI PMC
Dubcovsky J., Dvorak J. (2007). Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316, 1862–1866. doi: 10.1126/science.1143986 PubMed DOI PMC
Dubcovsky J., Lijavetzky D., Appendino L., Tranquilli G. (1998). Comparative RFLP mapping of triticum monococcum genes controlling vernalization requirement. Theor. Appl. Genet. 97, 968–975. doi: 10.1007/s001220050978 DOI
Dubcovsky J., Loukoianov A., Fu D., Valarik M., Sanchez A., Yan L. (2006). Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol. Biol. 60, 469–480. doi: 10.1007/s11103-005-4814-2 PubMed DOI PMC
Fan M., Miao F., Jia H., Li G., Powers C., Nagarajan R., et al. . (2021). O -linked n -acetylglucosamine transferase is involved in fine regulation of flowering time in winter wheat. Nat. Commun. 12, 2303. doi: 10.1038/s41467-021-22564-8 PubMed DOI PMC
Fu D., Szucs P., Yan L., Helguera M., Skinner J. S., Von Zitzewitz J., et al. . (2005). Large Deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol. Genet. Genomics 273, 54–65. doi: 10.1007/s00438-004-1095-4 PubMed DOI
Galiba G., Quarrie S. A., Sutka J., Morgounov A., Snape J. W. (1995). RFLP mapping of the vernalization (Vrnl) and frost resistance (Frl) genes on chromosome 5A of wheat. Theoret. Appl. Genetics 90, 1174–1179. doi: 10.1007/BF00222940 PubMed DOI
Golovnina K. A., Kondratenko E. Y., Blinov A. G., Goncharov N. P. (2010). Molecular characterization of vernalization loci VRN1 in wild and cultivated wheats. BMC Plant Biol. 10, 168. doi: 10.1186/1471-2229-10-168 PubMed DOI PMC
Gregory F. G., Purvis O. N. (1948). Reversal of vernalization by high temperature. Nature 161, 859–860. doi: 10.1038/161859a0 PubMed DOI
Hastings P. J., Lupski J. R., Rosenberg S. M., Ira G. (2009). Mechanisms of change in gene copy number. Nat. Rev. Genet. 14, 551–564. doi: 10.1038/nrg2593 PubMed DOI PMC
Helliwell C. A., Robertson M., Finnegan E. J., Buzas D. M., Dennis E. S. (2011). Vernalization-repression of arabidopsis FLC requires promoter sequences but not antisense transcripts. PloS One 6, e21513. doi: 10.1371/journal.pone.0021513 PubMed DOI PMC
Heo J. B., Sung S. (2011). Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331, 76–79. doi: 10.1126/science.1197349 PubMed DOI
Huang M., Mheni N., Brown-Guedira G., McKendry A., Griffey C., Van Sanford D., et al. . (2018). Genetic analysis of heading date in winter and spring wheat. Euphytica 214, 128. doi: 10.1007/s10681-018-2199-y DOI
Ivaničová Z., Jakobson I., Reis D., Šafář J., Milec Z., Abrouk M., et al. . (2016). Characterization of new allele influencing flowering time in bread wheat introgressed from triticum militinae. New Biotechnol. 33, 718–727. doi: 10.1016/j.nbt.2016.01.008 PubMed DOI
Iwaki K., Nishida J., Yanagisawa T., Yoshida H., Kato K. (2002). Genetic analysis of vrn-B1 for vernalization requirement by using linked dCAPS markers in bread wheat (Triticum aestivum l.). Theor. Appl. Genet. 104, 571–576. doi: 10.1007/s00122-001-0769-0 PubMed DOI
Kane N. A., Agharbaoui Z., Diallo A. O., Adam H., Tominaga Y., Ouellet F., et al. . (2007). TaVRT2 represses transcription of the wheat vernalization gene TaVRN1: TaVRT2 represses TaVRN1 transcription. Plant J. 51, 670–680. doi: 10.1111/j.1365-313X.2007.03172.x PubMed DOI
Kim D.-H., Sung S. (2017). Vernalization-triggered intragenic chromatin-loop formation by long noncoding RNAs. Dev. Cell 40, 302–312.e4. doi: 10.1016/j.devcel.2016.12.021 PubMed DOI PMC
Kim D.-H., Xi Y., Sung S. (2017). Modular function of long noncoding RNA, COLDAIR, in the vernalization response. PloS Genet. 13. doi: 10.1371/journal.pgen.1006939 PubMed DOI PMC
Kippes N., Debernardi J. M., Vasquez-Gross H. A., Akpinar B. A., Budak H., Kato K., et al. . (2015). Identification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from south Asia. Proc. Natl. Acad. Sci. 112, E5401–E5410. doi: 10.1073/pnas.1514883112 PubMed DOI PMC
Košner J., Pánková K.. (2002). Vernalisation Response of Some Winter Wheat Cultivars. Czech Journal of Genetics and Plant Breeding 38, 97–103.
Kyung J., Jeon M., Jeong G., Shin Y., Seo E., Yu J., et al. . (2022). The two clock proteins CCA1 and LHY activate VIN3 transcription during vernalization through the vernalization-responsive cis-element. Plant Cell 34, 1020–1037. doi: 10.1093/plcell/koab304 PubMed DOI PMC
Law C. N. (1966). The location of genetic factors affecting a quantitative character in wheat. Genetics 53, 487–498. doi: 10.1093/genetics/53.3.487 PubMed DOI PMC
Law C. N., Wolfe M. S. (1966). Location of genetic factors for mildew resistance and ear emergence time on chromosome 7B of wheat. Canadian Journal of Genetics and Cytology 8 (3), 462–470. doi: 10.1139/g66-056 DOI
Law C. N., Worland A. J. (1997). Genetic analysis of some flowering time and adaptive traits in wheat. New Phytol. 137, 19–28. doi: 10.1046/j.1469-8137.1997.00814.x DOI
Law C. N., Worland A. J., Giorgi B. (1976). The genetic control of ear-emergence time by chromosomes 5A and 5D of wheat. Heredity 36, 49–58. doi: 10.1038/hdy.1976.5 DOI
Li G., Boontung R., Powers C., Belamkar V., Huang T., Miao F., et al. . (2017). Genetic basis of the very short life cycle of ‘Apogee’ wheat. BMC Genomics 18. doi: 10.1186/s12864-017-4239-8 PubMed DOI PMC
Li G., Yu M., Fang T., Cao S., Carver B. F., Yan L. (2013). Vernalization requirement duration in winter wheat is controlled by Ta VRN-A1 at the protein level. Plant J. 76, 742–753. doi: 10.1111/tpj.12326 PubMed DOI PMC
Lomax A., Woods D. P., Dong Y., Bouché F., Rong Y., Mayer K. S., et al. . (2018). An ortholog of CURLY LEAF/ENHANCER OF ZESTE like-1 is required for proper flowering in brachypodium distachyon. Plant J. 93, 871–882. doi: 10.1111/tpj.13815 PubMed DOI
Makhoul M., Chawla H. S., Wittkop B., Stahl A. (2022). Long-amplicon single-molecule sequencing reveals novel , trait-associated variants of VERNALIZATION1 homoeologs in hexaploid wheat. Front Plant Sci. 13, 942461. doi: 10.3389/fpls.2022.942461 PubMed DOI PMC
McIntosh RA, Hart GE, Devos KM, Gale MD, Roger WJ. (1998). Catalogue of gene symbols for wheat. In: Sinkard AE. Ed Proc 9th Int Wheat Genet Symp 5 (Saskatoon, Sask: University of Saskatoon Extension Press; ), 1–235.
Michaels S. D., Amasino R. M. (2000). Memories of winter: vernalization and the competence to flower. Plant, Cell and Environment 23, 1145–1153. doi: 10.1046/j.1365-3040.2000.00643.x DOI
Milec Z., Tomková L., Sumíková T., Pánková K. (2012). A new multiplex PCR test for the determination of vrn-B1 alleles in bread wheat (Triticum aestivum l.). Mol. Breed. 30, 317–323. doi: 10.1007/s11032-011-9621-7 DOI
Muterko A. F., Salina E. A. (2017). Analysis of the VERNALIZATION-A1 exon-4 polymorphism in polyploid wheat. Vavilov Journal of Genetics and Breeding 21, 323–333. doi: 10.18699/VJ16.19-o DOI
Muterko A., Balashova I., Cockram J., Kalendar R., Sivolap Y. (2015). The new wheat vernalization response allele vrn-D1s is caused by DNA transposon insertion in the first intron. Plant Mol. Biol. Rep. 33, 294–303. doi: 10.1007/s11105-014-0750-0 DOI
Muterko A., Kalendar R., Salina E. (2016). Novel alleles of the VERNALIZATION1 genes in wheat are associated with modulation of DNA curvature and flexibility in the promoter region. BMC Plant Biol. 16, 65–81. doi: 10.1186/s12870-015-0691-2 PubMed DOI PMC
Muterko A., Salina E. (2018). Origin and distribution of the VRN-A1 exon 4 and exon 7 haplotypes in domesticated wheat species. Agronomy 8, 156. doi: 10.3390/agronomy8080156 DOI
Muterko A., Salina E. (2019). VRN1-ratio test for polyploid wheat. Planta 250, 1955–1965. doi: 10.1007/s00425-019-03279-z PubMed DOI
Muterko A. F., Salina E. A. (2017). Analysis of the VERNALIZATION-A1 exon-4 polymorphism in polyploid wheat. Vavilov Journal of Genetics and Breeding 21, 323–333. doi: 10.18699/VJ16.19-o DOI
Neumann M., Xu X., Smaczniak C., Schumacher J., Yan W., Blüthgen N., et al. . (2022). A 3D gene expression atlas of the floral meristem based on spatial reconstruction of single nucleus RNA sequencing data. Nat. Commun. 13, 2838. doi: 10.1038/s41467-022-30177-y PubMed DOI PMC
Nishimura K., Handa H., Mori N., Kawaura K., Kitajima A., Nakazaki T. (2021). Geographical distribution and adaptive variation of VRN-A3 alleles in worldwide polyploid wheat (Triticum spp.) species collection. Planta 253, 1–14. doi: 10.1007/s00425-021-03646-9 PubMed DOI
Nishimura K., Moriyama R., Katsura K., Saito H., Takisawa R., Kitajima A., et al. . (2018). The early flowering trait of an emmer wheat accession (Triticum turgidum l. ssp. dicoccum) is associated with the cis-element of the vrn-A3 locus. Theor. Appl. Genet. 131, 2037–2053. doi: 10.1007/s00122-018-3131-5 PubMed DOI
Nitcher R., Distelfeld A., Tan C., Yan L., Dubcovsky J. (2013). Increased copy number at the HvFT1 locus is associated with accelerated flowering time in barley. Mol. Genet. Genomics 288, 261–275. doi: 10.1007/s00438-013-0746-8 PubMed DOI PMC
Oliver S. N., Finnegan E. J., Dennis E. S., Peacock W. J., Trevaskis B. (2009). Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proc. Natl. Acad. Sci. 106, 8386–8391. doi: 10.1073/pnas.0903566106 PubMed DOI PMC
Preston J. C., Kellogg E. A. (2006). Reconstructing the evolutionary history of paralogous APETALA1/FRUITFULL-like genes in grasses (Poaceae). Genetics 174, 421–437. doi: 10.1534/genetics.106.057125 PubMed DOI PMC
Pugsley A. (1971). A genetic analysis of the spring-winter habit of growth in wheat. Aust. J. Agric. Res. 22, 21. doi: 10.1071/AR9710021 DOI
Roh T.-Y., Cuddapah S., Cui K., Zhao K. (2006). The genomic landscape of histone modifications in human T cells. Proc. Natl. Acad. Sci. 103, 15782–15787. doi: 10.1073/pnas.0607617103 PubMed DOI PMC
Santra D. K., Santra M., Allan R. E., Campbell K. G., Kidwell K. K. (2009). Genetic and molecular characterization of vernalization genes vrn-A1 , vrn-B1, and vrn-D1 in spring wheat germplasm from the pacific northwest region of the U.S.A. Plant Breed. 128, 576–584. doi: 10.1111/j.1439-0523.2009.01681.x DOI
Shaw L. M., Li C., Woods D. P., Alvarez M. A., Lin H., Lau M. Y., et al. . (2020). Epistatic interactions between PHOTOPERIOD1, CONSTANS1 and CONSTANS2 modulate the photoperiodic response in wheat. PloS Genet. 16, e1008812. doi: 10.1371/journal.pgen.1008812 PubMed DOI PMC
Shcherban A. B., Efremova T. T., Salina E. A. (2012). Identification of a new vrn-B1 allele using two near-isogenic wheat lines with difference in heading time. Mol. Breed. 29, 675–685. doi: 10.1007/s11032-011-9581-y DOI
Shcherban A. B., Schichkina A. A., Salina E. A. (2016). The occurrence of spring forms in tetraploid timopheevi wheat is associated with variation in the first intron of the VRN-A1 gene. BMC Plant Biol. 16. doi: 10.1186/s12870-016-0925-y PubMed DOI PMC
Shcherban A. B., Strygina K. V., Salina E. A. (2015). VRN-1 gene- associated prerequisites of spring growth habit in wild tetraploid wheat t. dicoccoides and the diploid a genome species. BMC Plant Biol. 15, 94. doi: 10.1186/s12870-015-0473-x PubMed DOI PMC
Shimada S., Ogawa T., Kitagawa S., Suzuki T., Ikari C., Shitsukawa N., et al. . (2009). A genetic network of flowering-time genes in wheat leaves, in which an APETALA1 / FRUITFULL -like gene, VRN1 , is upstream of FLOWERING LOCUS T. Plant J. 58, 668–681. doi: 10.1111/j.1365-313X.2009.03806.x PubMed DOI PMC
Shitsukawa N., Ikari C., Mitsuya T., Sakiyama T., Ishikawa A., Takumi S., et al. . (2007. a). Wheat SOC1 functions independently of WAP1/VRN1, an integrator of vernalization and photoperiod flowering promotion pathways. Physiol. Plantarum 130, 627–636. doi: 10.1111/j.1399-3054.2007.00927.x DOI
Shitsukawa N., Ikari C., Shimada S., Kitagawa S., Sakamoto K., Saito H., et al. . (2007. b). The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene. Genes Genet. Syst. 82, 167–170. doi: 10.1266/ggs.82.167 PubMed DOI
Snape J., Butterworth K., Whitechurch E., Worland A. J. (2001). “Waiting for fine times: Genetics of flowering time in wheat,” in Wheat in a global environment. Eds. Bedö Z., Láng L. (Dordrecht: Springer Netherlands; ), 67–74. doi: 10.1007/978-94-017-3674-9_7 DOI
Steinfort U., Trevaskis B., Fukai S., Bell K. L., Dreccer M. F. (2017). Vernalisation and photoperiod sensitivity in wheat: Impact on canopy development and yield components. Field Crops Res. 201, 108–121. doi: 10.1016/j.fcr.2016.10.012 DOI
Stelmakh A. F. (1987). Growth habit in common wheat (Triticum aestivum l. em. thell.). Euphytica 36, 513–519. doi: 10.1007/BF00041495 DOI
Strayer C., Oyama T., Schultz T. F., Raman R., Somers D. E., Más P., et al. . (2000). Cloning of the arabidopsis clock gene TOC1 , an autoregulatory response regulator homolog. Science 289, 768–771. doi: 10.1126/science.289.5480.768 PubMed DOI
Strejčková B., Čegan R., Pecinka A., Milec Z., Šafář J. (2020). Identification of polycomb repressive complex 1 and 2 core components in hexaploid bread wheat. BMC Plant Biol 20, 175. doi: 10.1186/s12870-020-02384-6 PubMed DOI PMC
Strejčková B., Milec Z., Holušová K., Cápal P., Vojtková T., Čegan R., et al. . (2021). In-depth sequence analysis of bread wheat VRN1 genes. Int. J. Mol. Sci. 22, 12284. doi: 10.3390/ijms222212284 PubMed DOI PMC
Tan C., Yan L. (2016). Duplicated, deleted and translocated VRN2 genes in hexaploid wheat. Euphytica 208, 277–284. doi: 10.1007/s10681-015-1589-7 DOI
Trevaskis B. (2010). The central role of the VERNALIZATION1 gene in the vernalization response of cereals. Funct. Plant Biol. 37, 479. doi: 10.1071/FP10056 DOI
Trevaskis B., Bagnall D. J., Ellis M. H., Peacock W. J., Dennis E. S. (2003). MADS box genes control vernalization-induced flowering in cereals. Proc. Natl. Acad. Sci. 100, 13099–13104. doi: 10.1073/pnas.1635053100 PubMed DOI PMC
Turck F., Fornara F., Coupland G. (2008). Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu. Rev. Plant Biol. 59, 573–594. doi: 10.1146/annurev.arplant.59.032607.092755 PubMed DOI
VanGessel C., Hamilton J., Tabbita F., Dubcovsky J., Pearce S. (2022). Transcriptional signatures of wheat inflorescence development. Sci. Rep. 12, 17224. doi: 10.1038/s41598-022-21571-z PubMed DOI PMC
Woods D. P., Ream T. S., Bouché F., Lee J., Thrower N., Wilkerson C., et al. . (2017). Establishment of a vernalization requirement in brachypodium distachyon requires REPRESSOR OF VERNALIZATION1. Proc. Natl. Acad. Sci. 114, 6623–6628. doi: 10.1073/pnas.1700536114 PubMed DOI PMC
Würschum T., Boeven P. H. G., Langer S. M., Longin C. F. H., Leiser W. L. (2015). Multiply to conquer: Copy number variations at ppd-B1 and vrn-A1 facilitate global adaptation in wheat. BMC Genet. 16. doi: 10.1186/s12863-015-0258-0 PubMed DOI PMC
Wysocka J., Swigut T., Xiao H., Milne T. A., Kwon S. Y., Landry J., et al. . (2006). A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442, 86–90. doi: 10.1038/nature04815 PubMed DOI
Xiao J., Xu S., Li C., Xu Y., Xing L., Niu Y., et al. . (2014). O-GlcNAc-mediated interaction between VER2 and TaGRP2 elicits TaVRN1 mRNA accumulation during vernalization in winter wheat. Nat. Commun. 5. doi: 10.1038/ncomms5572 PubMed DOI PMC
Xiu-zhen L., Nai-bin H., Ke-hui T. (1987). Effect of devernalization on soluble protein component in winter wheat seedling and subsequent plant developmental state. J. Integr. Plant Biol. 29.
Xu S., Dong Q., Deng M., Lin D., Xiao J., Cheng P., et al. . (2021). The vernalization-induced long non-coding RNA VAS functions with the transcription factor TaRF2b to promote TaVRN1 expression for flowering in hexaploid wheat. Mol. Plant 14, 1525–1538. doi: 10.1016/j.molp.2021.05.026 PubMed DOI
Xu S., Xiao J., Yin F., Guo X., Xing L., Xu Y., et al. . (2019). The protein modifications of O-GlcNAcylation and phosphorylation mediate vernalization response for flowering in winter wheat. Plant Physiol. 180, 1436–1449. doi: 10.1104/pp.19.00081 PubMed DOI PMC
Yan L., Fu D., Li C., Blechl A., Tranquilli G., Bonafede M., et al. . (2006). The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl. Acad. Sci. 103, 19581–19586. doi: 10.1073/pnas.0607142103 PubMed DOI PMC
Yan L., Helguera M., Kato K., Fukuyama S., Sherman J., Dubcovsky J. (2004. a). Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor. Appl. Genet. 109, 1677–1686. doi: 10.1007/s00122-004-1796-4 PubMed DOI
Yan L., Loukoianov A., Blechl A., Tranquilli G., Ramakrishna W., SanMiguel P., et al. . (2004. b). The wheat VRN2 gene is a flowering repressor downregulated by vernalization. Science 303, 1640–1644. doi: 10.1126/science.1094305 PubMed DOI PMC
Yan L., Loukoianov A., Tranquilli G., Helguera M., Fahima T., Dubcovsky J. (2003). Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. 100, 6263–6268. doi: 10.1073/pnas.0937399100 PubMed DOI PMC
Yong W., Xu Y., Xu W., Wang X., Li N., Wu J., et al. . (2003). Vernalization-induced flowering in wheat is mediated by a lectin-like gene VER2. Planta 217, 261–270. doi: 10.1007/s00425-003-0994-7 PubMed DOI
Zhang X., Clarenz O., Cokus S., Bernatavichute Y. V., Pellegrini M., Goodrich J., et al. . (2007). Whole-genome analysis of histone H3 lysine 27 trimethylation in arabidopsis. PloS Biol. 5, e129. doi: 10.1371/journal.pbio.0050129 PubMed DOI PMC
Zhang X., Gao M., Wang S., Chen F., Cui D. (2015). Allelic variation at the vernalization and photoperiod sensitivity loci in Chinese winter wheat cultivars (Triticum aestivum l.). Front. Plant Sci. 6. doi: 10.3389/fpls.2015.00470 PubMed DOI PMC
Zhang B., Wang X., Wang X., Ma L., Wang Z., Zhang X. (2018). Molecular characterization of a novel vernalization allele vrn-B1d and its effect on heading time in Chinese wheat (Triticum aestivum l.) landrace hongchunmai. Mol. Breed. 38. doi: 10.1007/s11032-018-0870-6 DOI
Zhang J., Wang Y., Wu S., Yang J., Liu H., Zhou Y. (2012). A single nucleotide polymorphism at the vrn-D1 promoter region in common wheat is associated with vernalization response. Theor. Appl. Genet. 125, 1697–1704. doi: 10.1007/s00122-012-1946-z PubMed DOI
Żmień ko A., Samelak A., Kozłowski P., Figlerowicz M. (2014). Copy number polymorphism in plant genomes. Theor. Appl. Genet. 127, 1–18. doi: 10.1007/s00122-013-2177-7 PubMed DOI PMC