Impact of Zero-Valent Iron on Freshwater Bacterioplankton Metabolism as Predicted from 16S rRNA Gene Sequence Libraries
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
30001
Technical University of Liberec
LM2018124
Infrastructures NanoEnviCz
CZ.02.1.01/0.0/0.0/16_013/0001821
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
33521895
DOI
10.1007/s00284-021-02362-7
PII: 10.1007/s00284-021-02362-7
Knihovny.cz E-zdroje
- MeSH
- chemické látky znečišťující vodu * MeSH
- Chloroflexi * MeSH
- geny rRNA MeSH
- RNA ribozomální 16S genetika MeSH
- sladká voda MeSH
- železo MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- RNA ribozomální 16S MeSH
- železo MeSH
The application of zero-valent iron particles (ZVI) for the treatment of heavily polluted environment and its biological effects have been studied for at least two decades. Still, information on the impact on bacterial metabolic pathways is lacking. This study describes the effect of microscale and nanoscale ZVI (mZVI and nZVI) on the abundance of different metabolic pathways in freshwater bacterial communities. The metabolic pathways were inferred from metabolism modelling based on 16S rRNA gene sequence data using paprica pipeline. The nZVI changed the abundance of numerous metabolic pathways compared to a less influencing mZVI. We identified the 50 most affected pathways, where 31 were related to degradation, 17 to biosynthesis, and 2 to detoxification. The linkage between pathways was two times higher in nZVI samples compared to mZVI, and was specifically higher considering the arsenate detoxification II pathway. Limnohabitans and Roseiflexus were linked to the same pathways in both nZVI and mZVI. The prediction of metabolic pathways increases our knowledge of the impacts of nZVI and mZVI on freshwater bacterioplankton.
Zobrazit více v PubMed
Burdușel AC, Gherasim O, Grumezescu AM et al (2018) Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomaterials 8:1–25. https://doi.org/10.3390/nano8090681 DOI
Bardos P, Bone B, Černík M et al (2015) Nanoremediation and international environmental restoration markets. Remediat J 26:101–108. https://doi.org/10.1002/rem DOI
Cundy AB, Hopkinson L, Whitby RLD (2008) Use of iron-based technologies in contaminated land and groundwater remediation: a review. Sci Total Environ 400:42–51. https://doi.org/10.1016/j.scitotenv.2008.07.002 PubMed DOI
Grieger KD, Fjordbøge A, Hartmann NB et al (2010) Environmental benefits and risks of zero-valent iron nanoparticles ( nZVI ) for in situ remediation: risk mitigation or trade-off ? J Contam Hydrol 118:165–183. https://doi.org/10.1016/j.jconhyd.2010.07.011 PubMed DOI
Albergaria JT, Nouws HPA, Delerue-Matos CM (2013) Ecotoxicity of nanoscale zero-valent iron particles—a review. Vigilância Sanitária em Debate 1:38–42. https://doi.org/10.3395/vd.v1i4.62en DOI
Zhang W (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanoparticle Res 5:323–332. https://doi.org/10.1023/A:1025520116015 DOI
Klimkova S, Cernik M, Lacinova L et al (2011) Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching. Chemosphere 82:1178–1184. https://doi.org/10.1016/j.chemosphere.2010.11.075 PubMed DOI
Vogel M, Nijenhuis I, Lloyd J et al (2018) Combined chemical and microbiological degradation of tetrachloroethene during the application of Carbo-Iron at a contaminated field site. Sci Total Environ 628–629:1027–1036. https://doi.org/10.1016/j.scitotenv.2018.01.310 PubMed DOI
Czinnerová M, Vološčuková O, Marková K et al (2020) Combining nanoscale zero-valent iron with electrokinetic treatment for remediation of chlorinated ethenes and promoting biodegradation: a long-term field study. Water Res 175:115692. https://doi.org/10.1016/j.watres.2020.115692 PubMed DOI
Mueller NC, Braun J, Bruns J et al (2012) Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19:550–558. https://doi.org/10.1007/s11356-011-0576-3 DOI
Nguyen NHA, Špánek R, Kasalický V et al (2018) Different effects of nano-scale and micro-scale zero-valent iron particles on planktonic microorganisms from natural reservoir water. Environ Sci Nano 5:1117–1129. https://doi.org/10.1039/C7EN01120B DOI
Němeček J, Lhotský O, Cajthaml T (2014) Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations. Sci Total Environ 485–486:739–747. https://doi.org/10.1016/j.scitotenv.2013.11.105 PubMed DOI
Barnes RJ, van der Gast CJ, Riba O et al (2010) The impact of zero-valent iron nanoparticles on a river water bacterial community. J Hazard Mater 184:73–80. https://doi.org/10.1016/j.jhazmat.2010.08.006 PubMed DOI
Louca S, Jacques SMS, Pires APF et al (2017) Functional structure of the bromeliad tank microbiome is strongly shaped by local geochemical conditions. Environ Microbiol 19:3132–3151. https://doi.org/10.1111/1462-2920.13788 PubMed DOI
Martinez Arbizu (2020) P. pairwise.Adonis: Pairwise multilevel comparison using adonis. R package version 0.4 Available online: https://github.com/pmartinezarbizu/pairwiseAdonis
Langille MGI, Zaneveld J, Caporaso JG et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821. https://doi.org/10.1038/nbt.2676 PubMed DOI PMC
Douglas GM, Maffei VJ, Zaneveld J et al (2019) PICRUSt2: an improved and extensible approach for metagenome inference. BioRxiv 15:1–42. https://doi.org/10.1101/672295 DOI
Fajardo C, García-Cantalejo J, Botías P et al (2019) New insights into the impact of nZVI on soil microbial biodiversity and functionality. J Environ Sci Heal Part A 54:157–167. https://doi.org/10.1080/10934529.2018.1535159 DOI
Bowman JS, Ducklow HW (2015) Microbial communities can be described by metabolic structure: a general framework and application to a seasonally variable, depth-stratified microbial community from the coastal west antarctic peninsula. PLoS ONE 10:e0135868. https://doi.org/10.1371/journal.pone.0135868 PubMed DOI PMC
Ribas D, Cernik M, Martí V, Benito JA (2016) Improvements in nanoscale zero-valent iron production by milling through the addition of alumina. J Nanoparticle Res 18:181–192. https://doi.org/10.1007/s11051-016-3490-2 DOI
Matsen FA, Kodner RB, Armbrust EV (2010) Pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform 11:538. https://doi.org/10.1186/1471-2105-11-538 DOI
Karp PD, Paley SM, Krummenacker M et al (2010) Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology. Brief Bioinform 11:40–79. https://doi.org/10.1093/bib/bbp043 PubMed DOI
Oksanen AJ, Blanchet FG, Friendly M, et al (2016) Package ‘ vegan .’ https://cran.r-project.org , https://github.com/vegandevs/vegan 2.4–1:1–41
McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217. https://doi.org/10.1371/journal.pone.0061217 PubMed DOI PMC
Barret Schloerke GGally v1.4.0. https://www.rdocumentation.org/packages/GGally
Ševců A, El-Temsah YS, Joner EJ, Černík M (2011) Oxidative stress induced in microorganisms by zero-valent iron nanoparticles. Microbes Environ 26:271–281. https://doi.org/10.1264/jsme2.ME11126 PubMed DOI
Cerchiaro G, Coichev N (2009) Oxidative DNA damage induced by S(IV) in the presence of Cu(II) and Cu(I) complexes. J Brazilian Chem Soc 20:1302–1312 DOI
Maki H, Sekiguchi M (1992) MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. J Nat 355:273–275. https://doi.org/10.1038/355273a0 DOI
Patel PC, Goulhen F, Boothman C et al (2007) Arsenate detoxi W cation in a Pseudomonad hypertolerant to arsenic. Arch Microbiol 187:171–183. https://doi.org/10.1007/s00203-006-0182-9 PubMed DOI
Mateos LM, Ordóñez E, Letek M, Gil JA (2006) Corynebacterium glutamicum as a model bacterium for the bioremediation of arsenic. Int Microbiol 9:207–215 PubMed
Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92. https://doi.org/10.1016/S0014-5793(02)03186-1 PubMed DOI
Park H, Kanel SR, Choi H (2009) Arsenic removal by nano-scale zero valent iron and how it is affected by natural organic matter. ACS Symp Ser 1027:135–161. https://doi.org/10.1021/bk-2009-1027.ch008 DOI
Mosaferi M, Nemati S, Khataee A et al (2014) Removal of Arsenic (III, V) from aqueous solution by nanoscale zero-valent iron stabilized with starch and carboxymethyl cellulose. J Environ Heal Sci Eng 12:74. https://doi.org/10.1186/2052-336X-12-74 DOI
Chirino B, Strahsburger E, Agulló L et al (2013) Genomic and functional analyses of the 2-aminophenol catabolic pathway and partial conversion of its substrate into picolinic acid in Burkholderia xenovorans LB400. PLoS ONE 8:e75746. https://doi.org/10.1371/journal.pone.0075746 PubMed DOI PMC
Takenaka S, Murakami S, Shinke R, Aoki K (1998) Metabolism of 2-aminophenol by Pseudomonas sp. AP-3: modified meta-cleavage pathway. Arch Microbiol 170:132–137. https://doi.org/10.1007/s002030050624 PubMed DOI
Nishino SF, Spain JC (1993) Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Appl Environ Microbiol 59:2520–2525 DOI
Panas P, Ternan NG, Dooley JSG, McMullan G (2006) Detection of phosphonoacetate degradation and phnA genes in soil bacteria from distinct geographical origins suggest its possible biogenic origin. Environ Microbiol 8:939–945. https://doi.org/10.1111/j.1462-2920.2005.00974.x PubMed DOI
Kulakova AN, Kulakov LA, Quinn JP (1997) Cloning of the phosphonoacetate hydrolase gene from Pseudomonas fluorescens 23F encoding a new type of carbon–phosphorus bond cleaving enzyme and its expression in Escherichia coli and Pseudomonas putida. Gene 195:49–53. https://doi.org/10.1016/S0378-1119(97)00151-0 PubMed DOI
McMullan G, Harrington F, Quinn JP (1992) Metabolism of phosphonoacetate as the sole carbon and phosphorus source by an environmental bacterial isolate. Appl Environ Microbiol 58:1364–1366. https://doi.org/10.1128/AEM.58.4.1364-1366.1992 PubMed DOI PMC
Dolan SK, Wijaya A, Geddis SM et al (2018) Loving the poison: the methylcitrate cycle and bacterial pathogenesis. Microbiol (United Kingdom) 164:251–259. https://doi.org/10.1099/mic.0.000604 DOI
Zarzycki J, Fuchs G (2011) Coassimilation of organic substrates via the autotrophic 3-hydroxypropionate bi-cycle in Chloroflexus aurantiacus. Appl Environ Microbiol 77:6181–6188. https://doi.org/10.1128/AEM.00705-11 PubMed DOI PMC
Grostern A, Sales CM, Zhuang WQ et al (2012) Glyoxylate metabolism is a key feature of the metabolic degradation of 1,4-dioxane by Pseudonocardia dioxanivorans strain CB1190. Appl Environ Microbiol 78:3298–3308. https://doi.org/10.1128/AEM.00067-12 PubMed DOI PMC
Kornberg H, Morris J (1965) The Utilization of glycollate by micrococcus denitrificans: the β-hydroxyaspartate pathway. Biochem J 95:577–586. https://doi.org/10.1042/bj0950577 PubMed DOI PMC
Pelz O, Tesar M, Wittich RM et al (1999) Towards elucidation of microbial community metabolic pathways: unravelling the network of carbon sharing in a pollutant-degrading bacterial consortium by immunocapture and isotopic ratio mass spectrometry. Environ Microbiol 1:167–174. https://doi.org/10.1046/j.1462-2920.1999.00023.x PubMed DOI
Wongkittchote P, Mew N, Chapman K (2017) Propionyl-CoA carboxylase—a review. Mol Genet Metab 122:145–152. https://doi.org/10.1016/j.ymgme.2017.10.002 DOI
Shi L, Tu BP (2015) Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr Opin Cell Biol 33:125–131. https://doi.org/10.1016/j.ceb.2015.02.003 PubMed DOI PMC
Nygaard P (2014) Purine and pyrimidine salvage pathways. Bacillus subtilis and other Gram-positive bacteria. ASM Press, Washington, D.C., pp 359–378 DOI
Booth IR, Kroll RG (1983) Regulation of cytoplasmic pH (pH1) in bacteria and its relationship to metabolism. Biochem Soc Trans 11:70–72. https://doi.org/10.1042/bst0110070 PubMed DOI
Blomqvist K, Nikkola M, Lehtovaara P et al (1993) Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes. J Bacteriol 175:1392–1404. https://doi.org/10.1128/jb.175.5.1392-1404.1993 PubMed DOI PMC
Scolnik PA, Walker MA, Marrs BL (1980) Biosynthesis of carotenoids derived from neurosporene in Rhodopseudomonas capsulata. J Biol Chem 255:2427–2432 DOI