Out of the core: the impact of focal ischemia in regions beyond the penumbra
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
38504666
PubMed Central
PMC10948541
DOI
10.3389/fncel.2024.1336886
Knihovny.cz E-zdroje
- Klíčová slova
- NG2-glia, astrocyte, future outlooks, microglia, oligodendrocytes, remote areas, stroke, therapy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The changes in the necrotic core and the penumbra following induction of focal ischemia have been the focus of attention for some time. However, evidence shows, that ischemic injury is not confined to the primarily affected structures and may influence the remote areas as well. Yet many studies fail to probe into the structures beyond the penumbra, and possibly do not even find any significant results due to their short-term design, as secondary damage occurs later. This slower reaction can be perceived as a therapeutic opportunity, in contrast to the ischemic core defined as irreversibly damaged tissue, where the window for salvation is comparatively short. The pathologies in remote structures occur relatively frequently and are clearly linked to the post-stroke neurological outcome. In order to develop efficient therapies, a deeper understanding of what exactly happens in the exo-focal regions is necessary. The mechanisms of glia contribution to the ischemic damage in core/penumbra are relatively well described and include impaired ion homeostasis, excessive cell swelling, glutamate excitotoxic mechanism, release of pro-inflammatory cytokines and phagocytosis or damage propagation via astrocytic syncytia. However, little is known about glia involvement in post-ischemic processes in remote areas. In this literature review, we discuss the definitions of the terms "ischemic core", "penumbra" and "remote areas." Furthermore, we present evidence showing the array of structural and functional changes in the more remote regions from the primary site of focal ischemia, with a special focus on glia and the extracellular matrix. The collected information is compared with the processes commonly occurring in the ischemic core or in the penumbra. Moreover, the possible causes of this phenomenon and the approaches for investigation are described, and finally, we evaluate the efficacy of therapies, which have been studied for their anti-ischemic effect in remote areas in recent years.
Zobrazit více v PubMed
Acosta-Martinez M. (2020). Shaping microglial phenotypes through estrogen receptors: Relevance to sex-specific neuroinflammatory responses to brain injury and disease. J. Pharmacol. Exp. Ther. 375 223–236. 10.1124/jpet.119.264598 PubMed DOI
Agrawal K. L., Mittal B. R., Bhattacharya A., Khandelwal N., Prabhakar S. (2011). Crossed cerebellar diaschisis on F-18 FDG PET/CT. Indian J. Nucl. Med. 26 102–103. 10.4103/0972-3919.90263 PubMed DOI PMC
Akabori H., Moeinpour F., Bland K. I., Chaudry I. H. (2010). Mechanism of the anti-inflammatory effect of 17beta-estradiol on brain following trauma-hemorrhage. Shock 33 43–48. 10.1097/SHK.0b013e3181b0ebcb PubMed DOI
Aleithe S., Blietz A., Mages B., Hobusch C., Hartig W., Michalski D. (2019). Transcriptional response and morphological features of the neurovascular unit and associated extracellular matrix after experimental stroke in mice. Mol. Neurobiol. 56 7631–7650. 10.1007/s12035-019-1604-4 PubMed DOI PMC
Allen N. J., Lyons D. A. (2018). Glia as architects of central nervous system formation and function. Science 362 181–185. 10.1126/science.aat0473 PubMed DOI PMC
Andrew R. D., Hartings J. A., Ayata C., Brennan K. C., Dawson-Scully K. D., Farkas E., et al. (2022). The critical role of spreading depolarizations in early brain injury: Consensus and contention. Neurocrit. Care 37(Suppl 1) 83–101. 10.1007/s12028-021-01431-w PubMed DOI PMC
Annunziato L., Boscia F., Pignataro G. (2013). Ionic transporter activity in astrocytes, microglia, and oligodendrocytes during brain ischemia. J. Cereb. Blood Flow Metab. 33 969–982. 10.1038/jcbfm.2013.44 PubMed DOI PMC
Appelros P., Stegmayr B., Terent A. (2009). Sex differences in stroke epidemiology: A systematic review. Stroke 40 1082–1090. 10.1161/STROKEAHA.108.540781 PubMed DOI
Arlicot N., Petit E., Katsifis A., Toutain J., Divoux D., Bodard S., et al. (2010). Detection and quantification of remote microglial activation in rodent models of focal ischaemia using the TSPO radioligand CLINDE. Eur. J. Nucl. Med. Mol. Imaging 37 2371–2380. 10.1007/s00259-010-1598-7 PubMed DOI
Arvidsson A., Kokaia Z., Airaksinen M. S., Saarma M., Lindvall O. (2001). Stroke induces widespread changes of gene expression for glial cell line-derived neurotrophic factor family receptors in the adult rat brain. Neuroscience 106 27–41. 10.1016/s0306-4522(01)00268-8 PubMed DOI
Astrup J., Siesjo B. K., Symon L. (1981). Thresholds in cerebral ischemia – the ischemic penumbra. Stroke 12 723–725. 10.1161/01.str.12.6.723 PubMed DOI
Astrup J., Symon L., Branston N. M., Lassen N. A. (1977). Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 8 51–57. 10.1161/01.str.8.1.51 PubMed DOI
Bacigaluppi M., Pluchino S., Peruzzotti-Jametti L., Kilic E., Kilic U., Salani G., et al. (2009). Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms. Brain 132 2239–2251. 10.1093/brain/awp174 PubMed DOI
Balseanu A. T., Grigore M., Pinosanu L. R., Slevin M., Hermann D. M., Glavan D., et al. (2020). Electric stimulation of neurogenesis improves behavioral recovery after focal ischemia in aged rats. Front. Neurosci. 14:732. 10.3389/fnins.2020.00732 PubMed DOI PMC
Baranova O., Miranda L. F., Pichiule P., Dragatsis I., Johnson R. S., Chavez J. C. (2007). Neuron-specific inactivation of the hypoxia inducible factor 1 alpha increases brain injury in a mouse model of transient focal cerebral ischemia. J. Neurosci. 27 6320–6332. 10.1523/JNEUROSCI.0449-07.2007 PubMed DOI PMC
Baron J. C., Yamauchi H., Fujioka M., Endres M. (2014). Selective neuronal loss in ischemic stroke and cerebrovascular disease. J. Cereb. Blood Flow Metab. 34 2–18. 10.1038/jcbfm.2013.188 PubMed DOI PMC
Basser P. J., Pajevic S., Pierpaoli C., Duda J., Aldroubi A. (2000). In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44 625–632. 10.1002/1522-2594(200010)44:4<625::aid-mrm17<3.0.co;2-o PubMed DOI
Bice A. R., Xiao Q., Kong J., Yan P., Rosenthal Z. P., Kraft A. W., et al. (2022). Homotopic contralesional excitation suppresses spontaneous circuit repair and global network reconnections following ischemic stroke. Elife 11:e68852. 10.7554/eLife.68852 PubMed DOI PMC
Bingham D., Macrae I. M., Carswell H. V. (2005). Detrimental effects of 17beta-oestradiol after permanent middle cerebral artery occlusion. J. Cereb. Blood Flow Metab. 25 414–420. 10.1038/sj.jcbfm.9600031 PubMed DOI
Boltze J., Nitzsche B., Geiger K. D., Schoon H. A. (2011). Histopathological investigation of different MCAO modalities and impact of autologous bone marrow mononuclear cell administration in an ovine stroke model. Transl. Stroke Res. 2 279–293. 10.1007/s12975-011-0101-5 PubMed DOI PMC
Bona M., Hvizdosova N., Jachova J., Bonova P., Kluchova D. (2019). Response of distant regions affected by diaschisis commissuralis in one of the most common models of transient focal ischemia in rats. J. Chem. Neuroanat. 101:101666. 10.1016/j.jchemneu.2019.101666 PubMed DOI
Bonilha L., Nesland T., Rorden C., Fillmore P., Ratnayake R. P., Fridriksson J. (2014). Mapping remote subcortical ramifications of injury after ischemic strokes. Behav. Neurol. 2014:215380. 10.1155/2014/215380 PubMed DOI PMC
Bozzelli P. L., Alaiyed S., Kim E., Villapol S., Conant K. (2018). Proteolytic remodeling of perineuronal nets: Effects on synaptic plasticity and neuronal population dynamics. Neural Plast. 2018:5735789. 10.1155/2018/5735789 PubMed DOI PMC
Braeuninger S., Kleinschnitz C. (2009). Rodent models of focal cerebral ischemia: Procedural pitfalls and translational problems. Exp. Transl. Stroke Med. 1:8. 10.1186/2040-7378-1-8 PubMed DOI PMC
Brait V. H., Wright D. K., Nategh M., Oman A., Syeda W. T., Ermine C. M., et al. (2021). Longitudinal hippocampal volumetric changes in mice following brain infarction. Sci. Rep. 11:10269. 10.1038/s41598-021-88284-7 PubMed DOI PMC
Buffon F., Molko N., Herve D., Porcher R., Denghien I., Pappata S., et al. (2005). Longitudinal diffusion changes in cerebral hemispheres after MCA infarcts. J. Cereb. Blood Flow Metab. 25 641–650. 10.1038/sj.jcbfm.9600054 PubMed DOI
Butler T. L., Kassed C. A., Sanberg P. R., Willing A. E., Pennypacker K. R. (2002). Neurodegeneration in the rat hippocampus and striatum after middle cerebral artery occlusion. Brain Res. 929 252–260. 10.1016/s0006-8993(01)03371-6 PubMed DOI
Cabrera Zapata L. E., Garcia-Segura L. M., Cambiasso M. J., Arevalo M. A. (2022). Genetics and epigenetics of the X and Y chromosomes in the sexual differentiation of the brain. Int. J. Mol. Sci. 23:12288. 10.3390/ijms232012288 PubMed DOI PMC
Cai M., Zhang W., Weng Z., Stetler R. A., Jiang X., Shi Y., et al. (2017). Promoting neurovascular recovery in aged mice after ischemic stroke – prophylactic effect of omega-3 polyunsaturated fatty acids. Aging Dis. 8 531–545. 10.14336/AD.2017.0520 PubMed DOI PMC
Calabrese E., Badea A., Coe C. L., Lubach G. R., Shi Y., Styner M. A., et al. (2015). A diffusion tensor MRI atlas of the postmortem rhesus macaque brain. Neuroimage 117 408–416. 10.1016/j.neuroimage.2015.05.072 PubMed DOI PMC
Cao Z., Harvey S. S., Chiang T., Foltz A. G., Lee A. G., Cheng M. Y., et al. (2021). Unique subtype of microglia in degenerative thalamus after cortical stroke. Stroke 52 687–698. 10.1161/STROKEAHA.120.032402 PubMed DOI PMC
Carswell H. V., Bingham D., Wallace K., Nilsen M., Graham D. I., Dominiczak A. F., et al. (2004). Differential effects of 17beta-estradiol upon stroke damage in stroke prone and normotensive rats. J. Cereb. Blood Flow Metab. 24 298–304. 10.1097/01.WCB.0000112322.75217.FD PubMed DOI
Che X., Ye W., Panga L., Wu D. C., Yang G. Y. (2001). Monocyte chemoattractant protein-1 expressed in neurons and astrocytes during focal ischemia in mice. Brain Res. 902 171–177. 10.1016/s0006-8993(01)02328-9 PubMed DOI
Chen W., He S., Song H., Sun H., Wang F., Tan Z., et al. (2022). Quantitative ischemic characteristics and prognostic analysis of crossed cerebellar diaschisis in hyperacute ischemic stroke. J. Stroke Cerebrovasc. Dis. 31:106344. 10.1016/j.jstrokecerebrovasdis.2022.106344 PubMed DOI
Chen X. R., Liao S. J., Ye L. X., Gong Q., Ding Q., Zeng J. S., et al. (2014). Neuroprotective effect of chondroitinase ABC on primary and secondary brain injury after stroke in hypertensive rats. Brain Res. 1543 324–333. 10.1016/j.brainres.2013.12.002 PubMed DOI
Chen Y. B., Tong X. F., Ren J., Yu C. Q., Cui Y. L. (2019). Current research trends in traditional Chinese medicine formula: A bibliometric review from 2000 to 2016. Evid. Based Complement. Alternat. Med. 2019:3961395. 10.1155/2019/3961395 PubMed DOI PMC
Cheng H. Y., Wang Y. S., Hsu P. Y., Chen C. Y., Liao Y. C., Juo S. H. (2019). miR-195 has a potential to treat ischemic and hemorrhagic stroke through neurovascular protection and neurogenesis. Mol. Ther. Methods Clin. Dev. 13 121–132. 10.1016/j.omtm.2018.11.011 PubMed DOI PMC
Choi J. W., Ryoo I. W., Hong J. Y., Lee K. Y., Nam H. S., Kim W. C., et al. (2021). Clinical impact of estradiol/testosterone ratio in patients with acute ischemic stroke. BMC Neurol. 21:91. 10.1186/s12883-021-02116-9 PubMed DOI PMC
Chvatal A., Verkhratsky A. (2018). An early history of neuroglial research: Personalities. Neuroglia 1 245–257. 10.3390/neuroglia1010016 DOI
Clark T. A., Sullender C., Kazmi S. M., Speetles B. L., Williamson M. R., Palmberg D. M., et al. (2019). Artery targeted photothrombosis widens the vascular penumbra, instigates peri-infarct neovascularization and models forelimb impairments. Sci. Rep. 9:2323. 10.1038/s41598-019-39092-7 PubMed DOI PMC
Dang J., Mitkari B., Kipp M., Beyer C. (2011). Gonadal steroids prevent cell damage and stimulate behavioral recovery after transient middle cerebral artery occlusion in male and female rats. Brain Behav. Immun. 25 715–726. 10.1016/j.bbi.2011.01.013 PubMed DOI
Davidson J. O., Green C. R., Nicholson L. F., Bennet L., Gunn A. J. (2013). Connexin hemichannel blockade is neuroprotective after, but not during, global cerebral ischemia in near-term fetal sheep. Exp. Neurol. 248 301–308. 10.1016/j.expneurol.2013.06.026 PubMed DOI
Deeks E. D., Keam S. J. (2007). Rosiglitazone: A review of its use in type 2 diabetes mellitus. Drugs 67 2747–2779. 10.2165/00003495-200767180-00008 PubMed DOI
Deguchi K., Takaishi M., Hayashi T., Oohira A., Nagotani S., Li F., et al. (2005). Expression of neurocan after transient middle cerebral artery occlusion in adult rat brain. Brain Res. 1037 194–199. 10.1016/j.brainres.2004.12.016 PubMed DOI
del Zoppo G. J., Sharp F. R., Heiss W. D., Albers G. W. (2011). Heterogeneity in the penumbra. J. Cereb. Blood Flow Metab. 31, 1836–1851. 10.1038/jcbfm.2011.93 PubMed DOI PMC
Desowska A., Turner D. L. (2019). Dynamics of brain connectivity after stroke. Rev. Neurosci. 30 605–623. 10.1515/revneuro-2018-0082 PubMed DOI
Dewar D., Underhill S. M., Goldberg M. P. (2003). Oligodendrocytes and ischemic brain injury. J. Cereb. Blood Flow Metab. 23 263–274. 10.1097/01.WCB.0000053472.41007.F9 PubMed DOI
Dhir N., Medhi B., Prakash A., Goyal M. K., Modi M., Mohindra S. (2020). Pre-clinical to clinical translational failures and current status of clinical trials in stroke therapy: A brief review. Curr. Neuropharmacol. 18 596–612. 10.2174/1570159X18666200114160844 PubMed DOI PMC
Dihne M., Block F. (2001). Focal ischemia induces transient expression of IL-6 in the Substantia nigra pars reticulata. Brain Res. 889 165–173. 10.1016/s0006-8993(00)03129-2 PubMed DOI
Dihne M., Grommes C., Lutzenburg M., Witte O. W., Block F. (2002). Different mechanisms of secondary neuronal damage in thalamic nuclei after focal cerebral ischemia in rats. Stroke 33 3006–3011. 10.1161/01.str.0000039406.64644.cb PubMed DOI
Dimou L., Gallo V. (2015). NG2-glia and their functions in the central nervous system. Glia 63 1429–1451. 10.1002/glia.22859 PubMed DOI PMC
Doll D. N., Barr T. L., Simpkins J. W. (2014). Cytokines: Their role in stroke and potential use as biomarkers and therapeutic targets. Aging Dis. 5 294–306. 10.14336/AD.2014.0500294 PubMed DOI PMC
Dzyubenko E., Manrique-Castano D., Kleinschnitz C., Faissner A., Hermann D. M. (2018). Role of immune responses for extracellular matrix remodeling in the ischemic brain. Ther. Adv. Neurol. Disord. 11:1756286418818092. 10.1177/1756286418818092 PubMed DOI PMC
Ebinger M., De Silva D. A., Christensen S., Parsons M. W., Markus R., Donnan G. A., et al. (2009). Imaging the penumbra - strategies to detect tissue at risk after ischemic stroke. J. Clin. Neurosci. 16 178–187. 10.1016/j.jocn.2008.04.002 PubMed DOI
El Amki M., Clavier T., Perzo N., Bernard R., Guichet P. O., Castel H. (2015). Hypothalamic, thalamic and hippocampal lesions in the mouse MCAO model: Potential involvement of deep cerebral arteries? J. Neurosci. Methods 254 80–85. 10.1016/j.jneumeth.2015.07.008 PubMed DOI
Epp J. R., Niibori Y., Liz Hsiang H. L., Mercaldo V., Deisseroth K., Josselyn S. A., et al. (2015). Optimization of CLARITY for clearing whole-brain and other intact organs. eNeuro 2:ENEURO.0022-15.2015. 10.1523/ENEURO.0022-15.2015 PubMed DOI PMC
Ermine C. M., Bivard A., Parsons M. W., Baron J. C. (2021). The ischemic penumbra: From concept to reality. Int. J. Stroke 16 497–509. 10.1177/1747493020975229 PubMed DOI
Fang J., Wang Z., Miao C. Y. (2023). Angiogenesis after ischemic stroke. Acta Pharmacol. Sin. 44 1305–1321. 10.1038/s41401-023-01061-2 PubMed DOI PMC
Formisano L., Laudati G., Guida N., Mascolo L., Serani A., Cuomo O., et al. (2020). HDAC4 and HDAC5 form a complex with DREAM that epigenetically down-regulates NCX3 gene and its pharmacological inhibition reduces neuronal stroke damage. J. Cereb. Blood Flow Metab. 40 2081–2097. 10.1177/0271678X19884742 PubMed DOI PMC
French B. R., Boddepalli R. S., Govindarajan R. (2016). Acute ischemic stroke: Current status and future directions. Mo. Med. 113 480–486. PubMed PMC
Freret T., Valable S., Chazalviel L., Saulnier R., Mackenzie E. T., Petit E., et al. (2006). Delayed administration of deferoxamine reduces brain damage and promotes functional recovery after transient focal cerebral ischemia in the rat. Eur. J. Neurosci. 23 1757–1765. 10.1111/j.1460-9568.2006.04699.x PubMed DOI
Gaire B. P. (2022). Microglia as the critical regulators of neuroprotection and functional recovery in cerebral ischemia. Cell. Mol. Neurobiol. 42 2505–2525. 10.1007/s10571-021-01145-9 PubMed DOI
Gaire B. P., Sapkota A., Song M. R., Choi J. W. (2019). Lysophosphatidic acid receptor 1 (LPA(1)) plays critical roles in microglial activation and brain damage after transient focal cerebral ischemia. J. Neuroinflammation 16:170. 10.1186/s12974-019-1555-8 PubMed DOI PMC
Garbuzova-Davis S., Haller E., Williams S. N., Haim E. D., Tajiri N., Hernandez-Ontiveros D. G., et al. (2014). Compromised blood-brain barrier competence in remote brain areas in ischemic stroke rats at the chronic stage. J. Comp. Neurol. 522 3120–3137. 10.1002/cne.23582 PubMed DOI PMC
Garbuzova-Davis S., Rodrigues M. C., Hernandez-Ontiveros D. G., Tajiri N., Frisina-Deyo A., Boffeli S. M., et al. (2013). Blood-brain barrier alterations provide evidence of subacute diaschisis in an ischemic stroke rat model. PLoS One 8:e63553. 10.1371/journal.pone.0063553 PubMed DOI PMC
Genova H. M. (2011). “Ischemic penumbra,” in Encyclopedia of clinical neuropsychology, eds Kreutzer J. S., DeLuca J., Caplan B. (New York, NY: Springer New York; ), 1360–1360.
Gerhard A., Schwarz J., Myers R., Wise R., Banati R. B. (2005). Evolution of microglial activation in patients after ischemic stroke: A [11C](R)-PK11195 PET study. Neuroimage 24 591–595. 10.1016/j.neuroimage.2004.09.034 PubMed DOI
Gerloff C., Bushara K., Sailer A., Wassermann E. M., Chen R., Matsuoka T., et al. (2006). Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain 129 791–808. 10.1093/brain/awh713 PubMed DOI
Glendenning M. L., Lovekamp-Swan T., Schreihofer D. A. (2008). Protective effect of estrogen in endothelin-induced middle cerebral artery occlusion in female rats. Neurosci. Lett. 445 188–192. 10.1016/j.neulet.2008.09.006 PubMed DOI PMC
Gold L., Lauritzen M. (2002). Neuronal deactivation explains decreased cerebellar blood flow in response to focal cerebral ischemia or suppressed neocortical function. Proc. Natl. Acad. Sci. U.S.A. 99 7699–7704. 10.1073/pnas.112012499 PubMed DOI PMC
Gordon K. B., Macrae I. M., Carswell H. V. (2005). Effects of 17beta-oestradiol on cerebral ischaemic damage and lipid peroxidation. Brain Res. 1036 155–162. 10.1016/j.brainres.2004.12.052 PubMed DOI
Goubran M., Leuze C., Hsueh B., Aswendt M., Ye L., Tian Q., et al. (2019). Multimodal image registration and connectivity analysis for integration of connectomic data from microscopy to MRI. Nat. Commun. 10:5504. 10.1038/s41467-019-13374-0 PubMed DOI PMC
Gouix E., Leveille F., Nicole O., Melon C., Had-Aissouni L., Buisson A. (2009). Reverse glial glutamate uptake triggers neuronal cell death through extrasynaptic NMDA receptor activation. Mol. Cell Neurosci. 40 463–473. 10.1016/j.mcn.2009.01.002 PubMed DOI
Gradisnik L., Velnar T. (2023). Astrocytes in the central nervous system and their functions in health and disease: A review. World J. Clin. Cases 11 3385–3394. 10.12998/wjcc.v11.i15.3385 PubMed DOI PMC
Greda A. K., Nowicka D. (2021). Hyaluronidase inhibition accelerates functional recovery from stroke in the mouse brain. J. Neurochem. 157 781–801. 10.1111/jnc.15279 PubMed DOI
Gu Y., Zhou C., Piao Z., Yuan H., Jiang H., Wei H., et al. (2022). Cerebral edema after ischemic stroke: Pathophysiology and underlying mechanisms. Front. Neurosci. 16:988283. 10.3389/fnins.2022.988283 PubMed DOI PMC
Gulyaeva N. V., Onufriev M. V., Moiseeva Y. V. (2021). Ischemic stroke, glucocorticoids, and remote hippocampal damage: A translational outlook and implications for modeling. Front. Neurosci. 15:781964. 10.3389/fnins.2021.781964 PubMed DOI PMC
Guo K., Luo J., Feng D., Wu L., Wang X., Xia L., et al. (2021). Single-cell RNA sequencing with combined use of bulk RNA sequencing to reveal cell heterogeneity and molecular changes at acute stage of ischemic stroke in mouse cortex penumbra area. Front. Cell Dev. Biol. 9:624711. 10.3389/fcell.2021.624711 PubMed DOI PMC
Gusel’nikova V. V., Korzhevskiy D. E. (2015). NeuN as a neuronal nuclear antigen and neuron differentiation marker. Acta Nat. 7 42–47. PubMed PMC
Haberg A. K., Qu H., Sonnewald U. (2009). Acute changes in intermediary metabolism in cerebellum and contralateral hemisphere following middle cerebral artery occlusion in rat. J. Neurochem. 109 174–181. 10.1111/j.1471-4159.2009.05940.x PubMed DOI
Han L., Cai W., Mao L., Liu J., Li P., Leak R. K., et al. (2015). Rosiglitazone promotes white matter integrity and long-term functional recovery after focal cerebral ischemia. Stroke 46 2628–2636. 10.1161/STROKEAHA.115.010091 PubMed DOI PMC
Harry G. J. (2021). Microglia in neurodegenerative events-an initiator or a significant other? Int. J. Mol. Sci. 22:5818. 10.3390/ijms22115818 PubMed DOI PMC
Hartig W., Appel S., Suttkus A., Grosche J., Michalski D. (2016). Abolished perineuronal nets and altered parvalbumin-immunoreactivity in the nucleus reticularis thalami of wildtype and 3xTg mice after experimental stroke. Neuroscience 337 66–87. 10.1016/j.neuroscience.2016.09.004 PubMed DOI
Hartig W., Mages B., Aleithe S., Nitzsche B., Altmann S., Barthel H., et al. (2017). Damaged neocortical perineuronal nets due to experimental focal cerebral ischemia in mice, rats and sheep. Front. Integr. Neurosci. 11:15. 10.3389/fnint.2017.00015 PubMed DOI PMC
Hartings J. A., Shuttleworth C. W., Kirov S. A., Ayata C., Hinzman J. M., Foreman B., et al. (2017). The continuum of spreading depolarizations in acute cortical lesion development: Examining Leao’s legacy. J. Cereb. Blood Flow Metab. 37 1571–1594. 10.1177/0271678X16654495 PubMed DOI PMC
Hatakeyama M., Ninomiya I., Kanazawa M. (2020). Angiogenesis and neuronal remodeling after ischemic stroke. Neural Regen. Res. 15 16–19. 10.4103/1673-5374.264442 PubMed DOI PMC
Haupt C., Witte O. W., Frahm C. (2007). Temporal profile of connexin 43 expression after photothrombotic lesion in rat brain. Neuroscience 144 562–570. PubMed
Hernandez I. H., Villa-Gonzalez M., Martin G., Soto M., Perez-Alvarez M. J. (2021). Glial cells as therapeutic approaches in brain ischemia-reperfusion injury. Cells 10:1639. 10.3390/cells10071639 PubMed DOI PMC
Hirouchi Y., Suzuki E., Mitsuoka C., Jin H., Kitajima S., Kohjimoto Y., et al. (2007). Neuroimaging and histopathological evaluation of delayed neurological damage produced by artificial occlusion of the middle cerebral artery in Cynomolgus monkeys: Establishment of a monkey model for delayed cerebral ischemia. Exp. Toxicol. Pathol. 59 9–16. 10.1016/j.etp.2007.02.008 PubMed DOI
Hobohm C., Gunther A., Grosche J., Rossner S., Schneider D., Bruckner G. (2005). Decomposition and long-lasting downregulation of extracellular matrix in perineuronal nets induced by focal cerebral ischemia in rats. J. Neurosci. Res. 80 539–548. 10.1002/jnr.20459 PubMed DOI
Honsa P., Valny M., Kriska J., Matuskova H., Harantova L., Kirdajova D., et al. (2016). Generation of reactive astrocytes from NG2 cells is regulated by sonic hedgehog. Glia 64 1518–1531. 10.1002/glia.23019 PubMed DOI
Hosp J. A., Greiner K. L., Martinez Arellano L., Roth F., Loffler F., Reis J., et al. (2020). Progressive secondary exo-focal dopaminergic neurodegeneration occurs in not directly connected midbrain nuclei after pure motor-cortical stroke. Exp. Neurol. 327:113211. 10.1016/j.expneurol.2020.113211 PubMed DOI
Hu X., Li P., Guo Y., Wang H., Leak R. K., Chen S., et al. (2012). Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43 3063–3070. 10.1161/STROKEAHA.112.659656 PubMed DOI
Huh Y., Jung J. W., Park C., Ryu J. R., Shin C. Y., Kim W. K., et al. (2003). Microglial activation and tyrosine hydroxylase immunoreactivity in the substantia nigral region following transient focal ischemia in rats. Neurosci. Lett. 349 63–67. 10.1016/s0304-3940(03)00743-2 PubMed DOI
Ip Z., Rabiller G., He J. W., Chavan S., Nishijima Y., Akamatsu Y., et al. (2021). Local field potentials identify features of cortico-hippocampal communication impacted by stroke and environmental enrichment therapy. J. Neural Eng. 18:10.1088/1741-2552/ac0a54. 10.1088/1741-2552/ac0a54 PubMed DOI PMC
Ito D., Tanaka K., Suzuki S., Dembo T., Fukuuchi Y. (2001). Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke 32 1208–1215. 10.1161/01.str.32.5.1208 PubMed DOI
Izumi Y., Haida M., Hata T., Isozumi K., Kurita D., Shinohara Y. (2002). Distribution of brain oedema in the contralateral hemisphere after cerebral infarction: Repeated MRI measurement in the rat. J. Clin. Neurosci. 9 289–293. 10.1054/jocn.2001.0966 PubMed DOI
Jeon Y. W., Kim S. H., Lee J. Y., Whang K., Kim M. S., Kim Y. J., et al. (2012). Dynamic CT perfusion imaging for the detection of crossed cerebellar diaschisis in acute ischemic stroke. Korean J. Radiol. 13 12–19. 10.3348/kjr.2012.13.1.12 PubMed DOI PMC
Jia J., Yang L., Chen Y., Zheng L., Chen Y., Xu Y., et al. (2021). The role of microglial phagocytosis in ischemic stroke. Front. Immunol. 12:790201. 10.3389/fimmu.2021.790201 PubMed DOI PMC
Jimenez-Vergara A. C., Van Drunen R., Cagle T., Munoz-Pinto D. J. (2020). Modeling the effects of hyaluronic acid degradation on the regulation of human astrocyte phenotype using multicomponent interpenetrating polymer networks (mIPNs). Sci. Rep. 10:20734. 10.1038/s41598-020-77655-1 PubMed DOI PMC
Jones T. H., Morawetz R. B., Crowell R. M., Marcoux F. W., FitzGibbon S. J., DeGirolami U., et al. (1981). Thresholds of focal cerebral ischemia in awake monkeys. J. Neurosurg. 54, 773–782. 10.3171/jns.1981.54.6.0773 PubMed DOI
Joya A., Padro D., Gomez-Vallejo V., Plaza-Garcia S., Llop J., Martin A. (2018). PET imaging of crossed cerebellar diaschisis after long-term cerebral ischemia in rats. Contrast Media Mol. Imaging 2018:2483078. 10.1155/2018/2483078 PubMed DOI PMC
Jung Y. W., Choi I. J., Kwon T. H. (2007). Altered expression of sodium transporters in ischemic penumbra after focal cerebral ischemia in rats. Neurosci. Res. 59 152–159. 10.1016/j.neures.2007.06.1470 PubMed DOI
Justicia C., Ramos-Cabrer P., Hoehn M. (2008). MRI detection of secondary damage after stroke: Chronic iron accumulation in the thalamus of the rat brain. Stroke 39 1541–1547. 10.1161/STROKEAHA.107.503565 PubMed DOI
Kamali A., Kramer L. A., Frye R. E., Butler I. J., Hasan K. M. (2010). Diffusion tensor tractography of the human brain cortico-ponto-cerebellar pathways: A quantitative preliminary study. J. Magn. Reson. Imaging 32 809–817. 10.1002/jmri.22330 PubMed DOI PMC
Kamouchi M., Fujishima M., Saku Y., Ibayashi S., Iida M. (2004). Crossed cerebellar hypoperfusion in hyperacute ischemic stroke. J. Neurol. Sci. 225 65–69. 10.1016/j.jns.2004.07.004 PubMed DOI
Karetko-Sysa M., Skangiel-Kramska J., Nowicka D. (2011). Disturbance of perineuronal nets in the perilesional area after photothrombosis is not associated with neuronal death. Exp. Neurol. 231 113–126. 10.1016/j.expneurol.2011.05.022 PubMed DOI
Kaushal V., Schlichter L. C. (2008). Mechanisms of microglia-mediated neurotoxicity in a new model of the stroke penumbra. J. Neurosci. 28 2221–2230. 10.1523/JNEUROSCI.5643-07.2008 PubMed DOI PMC
Kawano H., Kimura-Kuroda J., Komuta Y., Yoshioka N., Li H. P., Kawamura K., et al. (2012). Role of the lesion scar in the response to damage and repair of the central nervous system. Cell Tissue Res. 349 169–180. 10.1007/s00441-012-1336-5 PubMed DOI PMC
Khodanovich M. Y., Kisel A. A., Akulov A. E., Atochin D. N., Kudabaeva M. S., Glazacheva V. Y., et al. (2018). Quantitative assessment of demyelination in ischemic stroke in vivo using macromolecular proton fraction mapping. J. Cereb. Blood Flow Metab. 38 919–931. 10.1177/0271678X18755203 PubMed DOI PMC
Kidani N., Hishikawa T., Hiramatsu M., Nishihiro S., Kin K., Takahashi Y., et al. (2020). Cerebellar blood flow and gene expression in crossed cerebellar diaschisis after transient middle cerebral artery occlusion in rats. Int. J. Mol. Sci. 21:4137. 10.3390/ijms21114137 PubMed DOI PMC
Kim T., Chelluboina B., Chokkalla A. K., Vemuganti R. (2019). Age and sex differences in the pathophysiology of acute CNS injury. Neurochem. Int. 127 22–28. 10.1016/j.neuint.2019.01.012 PubMed DOI PMC
Kim Y., Davidson J. O., Gunn K. C., Phillips A. R., Green C. R., Gunn A. J. (2016). Role of hemichannels in CNS inflammation and the inflammasome pathway. Adv. Protein Chem. Struct. Biol. 104 1–37. 10.1016/bs.apcsb.2015.12.001 PubMed DOI
Kirdajova D., Anderova M. (2020). NG2 cells and their neurogenic potential. Curr. Opin. Pharmacol. 50 53–60. 10.1016/j.coph.2019.11.005 PubMed DOI
Klein R., Mahlberg N., Ohren M., Ladwig A., Neumaier B., Graf R., et al. (2016). The neural cell adhesion molecule-derived (NCAM)-peptide FG loop (FGL) mobilizes endogenous neural stem cells and promotes endogenous regenerative capacity after stroke. J. Neuroimmune Pharmacol. 11 708–720. 10.1007/s11481-016-9694-5 PubMed DOI
Komatsu T., Ohta H., Motegi H., Hata J., Terawaki K., Koizumi M., et al. (2021). A novel model of ischemia in rats with middle cerebral artery occlusion using a microcatheter and zirconia ball under fluoroscopy. Sci. Rep. 11:12806. 10.1038/s41598-021-92321-w PubMed DOI PMC
Kronenberg G., Balkaya M., Prinz V., Gertz K., Ji S., Kirste I., et al. (2012). Exofocal dopaminergic degeneration as antidepressant target in mouse model of poststroke depression. Biol. Psychiatry 72 273–281. 10.1016/j.biopsych.2012.02.026 PubMed DOI
Kuroiwa T., Xi G., Hua Y., Nagaraja T. N., Fenstermacher J. D., Keep R. F. (2009). Development of a rat model of photothrombotic ischemia and infarction within the caudoputamen. Stroke 40 248–253. 10.1161/STROKEAHA.108.527853 PubMed DOI PMC
Ladwig A., Rogall R., Hucklenbroich J., Willuweit A., Schoeneck M., Langen K. J., et al. (2019). Osteopontin attenuates secondary neurodegeneration in the thalamus after experimental stroke. J. Neuroimmune Pharmacol. 14 295–311. 10.1007/s11481-018-9826-1 PubMed DOI
Lafrenaye A. D., Simard J. M. (2019). Bursting at the seams: Molecular mechanisms mediating astrocyte swelling. Int. J. Mol. Sci. 20:330. 10.3390/ijms20020330 PubMed DOI PMC
Lee D. R., Helps S. C., Gibbins I. L., Nilsson M., Sims N. R. (2003). Losses of NG2 and NeuN immunoreactivity but not astrocytic markers during early reperfusion following severe focal cerebral ischemia. Brain Res. 989 221–230. 10.1016/s0006-8993(03)03373-0 PubMed DOI
Lee M. C., Kim R. G., Lee T., Kim J. H., Lee K. H., Choi Y. D., et al. (2020). Ultrastructural dendritic changes underlying diaschisis after capsular infarct. J. Neuropathol. Exp. Neurol. 79 508–517. 10.1093/jnen/nlaa001 PubMed DOI
Lee Y., Lee S. R., Choi S. S., Yeo H. G., Chang K. T., Lee H. J. (2014). Therapeutically targeting neuroinflammation and microglia after acute ischemic stroke. Biomed. Res. Int. 2014:297241. PubMed PMC
Li F., Li C., Li X., Li Y., Zhong Y., Ling L. (2020). Altered circular RNA expression profiles in the non-ischemic thalamus in focal cortical infarction mice. Aging 12 13206–13219. 10.18632/aging.103424 PubMed DOI PMC
Li J. J., Xing S. H., Zhang J., Hong H., Li Y. L., Dang C., et al. (2011). Decrease of tight junction integrity in the ipsilateral thalamus during the acute stage after focal infarction and ablation of the cerebral cortex in rats. Clin. Exp. Pharmacol. Physiol. 38 776–782. 10.1111/j.1440-1681.2011.05591.x PubMed DOI
Li L., Zhou J., Han L., Wu X., Shi Y., Cui W., et al. (2022). The specific role of reactive astrocytes in stroke. Front. Cell Neurosci. 16:850866. 10.3389/fncel.2022.850866 PubMed DOI PMC
Li P., Murphy T. H. (2008). Two-photon imaging during prolonged middle cerebral artery occlusion in mice reveals recovery of dendritic structure after reperfusion. J. Neurosci. 28 11970–11979. 10.1523/JNEUROSCI.3724-08.2008 PubMed DOI PMC
Li Y., Chen J., Zhang C. L., Wang L., Lu D., Katakowski M., et al. (2005). Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia 49 407–417. 10.1002/glia.20126 PubMed DOI
Li Y., Wang D., Zhang H., Wang Y., Wu P., Zhang H., et al. (2016). Changes of brain connectivity in the primary motor cortex after subcortical stroke: A multimodal magnetic resonance imaging study. Medicine 95:e2579. 10.1097/MD.0000000000002579 PubMed DOI PMC
Liang Z., Wang X., Hao Y., Qiu L., Lou Y., Zhang Y., et al. (2020). The multifaceted role of astrocyte connexin 43 in ischemic stroke through forming hemichannels and gap junctions. Front. Neurol. 11:703. 10.3389/fneur.2020.00703 PubMed DOI PMC
Liddelow S. A., Barres B. A. (2017). Reactive astrocytes: Production, function, and therapeutic potential. Immunity 46 957–967. 10.1016/j.immuni.2017.06.006 PubMed DOI
Liddelow S. A., Guttenplan K. A., Clarke L. E., Bennett F. C., Bohlen C. J., Schirmer L., et al. (2017). Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541 481–487. 10.1038/nature21029 PubMed DOI PMC
Lin D. D., Kleinman J. T., Wityk R. J., Gottesman R. F., Hillis A. E., Lee A. W., et al. (2009). Crossed cerebellar diaschisis in acute stroke detected by dynamic susceptibility contrast MR perfusion imaging. AJNR Am. J. Neuroradiol. 30 710–715. 10.3174/ajnr.A1435 PubMed DOI PMC
Lindwall C., Olsson M., Osman A. M., Kuhn H. G., Curtis M. A. (2013). Selective expression of hyaluronan and receptor for hyaluronan mediated motility (Rhamm) in the adult mouse subventricular zone and rostral migratory stream and in ischemic cortex. Brain Res. 1503 62–77. 10.1016/j.brainres.2013.01.045 PubMed DOI
Ling L., Zeng J., Pei Z., Cheung R. T., Hou Q., Xing S., et al. (2009). Neurogenesis and angiogenesis within the ipsilateral thalamus with secondary damage after focal cortical infarction in hypertensive rats. J. Cereb. Blood Flow Metab. 29 1538–1546. 10.1038/jcbfm.2009.76 PubMed DOI
Lipsanen A., Hiltunen M., Jolkkonen J. (2011). Chronic ibuprofen treatment does not affect the secondary pathology in the thalamus or improve behavioral outcome in middle cerebral artery occlusion rats. Pharmacol. Biochem. Behav. 99 468–474. 10.1016/j.pbb.2011.04.019 PubMed DOI
Liu S., Levine S. R., Winn H. R. (2010). Targeting ischemic penumbra: Part I – from pathophysiology to therapeutic strategy. J. Exp. Stroke Transl. Med. 3 47–55. 10.6030/1939-067x-3.1.47 PubMed DOI PMC
Liu Y., Karonen J. O., Nuutinen J., Vanninen E., Kuikka J. T., Vanninen R. L. (2007). Crossed cerebellar diaschisis in acute ischemic stroke: A study with serial SPECT and MRI. J. Cereb. Blood Flow Metab. 27 1724–1732. 10.1038/sj.jcbfm.9600467 PubMed DOI
Liu Z., Li Y., Cui Y., Roberts C., Lu M., Wilhelmsson U., et al. (2014). Beneficial effects of gfap/vimentin reactive astrocytes for axonal remodeling and motor behavioral recovery in mice after stroke. Glia 62 2022–2033. 10.1002/glia.22723 PubMed DOI PMC
Loos M., Dihne M., Block F. (2003). Tumor necrosis factor-alpha expression in areas of remote degeneration following middle cerebral artery occlusion of the rat. Neuroscience 122 373–380. 10.1016/s0306-4522(03)00498-6 PubMed DOI
Lull M. E., Block M. L. (2010). Microglial activation and chronic neurodegeneration. Neurotherapeutics 7 354–365. 10.1016/j.nurt.2010.05.014 PubMed DOI PMC
Ma Z., Zhao X., Wang X., Ren Q., Zhang S., Lu L., et al. (2022). Evaluation of crossed cerebellar diaschisis after cerebral infarction in MCAO rats based on DKI. Eur. J. Clin. Invest. 52:e13716. 10.1111/eci.13716 PubMed DOI
Mabuchi T., Kitagawa K., Ohtsuki T., Kuwabara K., Yagita Y., Yanagihara T., et al. (2000). Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke 31 1735–1743. 10.1161/01.str.31.7.1735 PubMed DOI
Madai V. I., Altaner A., Stengl K. L., Zaro-Weber O., Heiss W. D., von Samson-Himmelstjerna F. C., et al. (2011). Crossed cerebellar diaschisis after stroke: Can perfusion-weighted MRI show functional inactivation? J. Cereb. Blood Flow Metab. 31 1493–1500. 10.1038/jcbfm.2011.15 PubMed DOI PMC
Manrique-Castano D., ElAli A. (2021). “Neurovascular reactivity in tissue scarring following cerebral ischemia,” in Cerebral ischemia, ed. Pluta R. (Brisbane, QL: Exon Publications; ). PubMed
Martin A., San Sebastian E., Gomez-Vallejo V., Llop J. (2012). Positron emission tomograghy with [(1)(3)N]ammonia evidences long-term cerebral hyperperfusion after 2h-transient focal ischemia. Neuroscience 213 47–53. 10.1016/j.neuroscience.2012.03.050 PubMed DOI
Mazzali M., Kipari T., Ophascharoensuk V., Wesson J. A., Johnson R., Hughes J. (2002). Osteopontin–a molecule for all seasons. QJM 95 3–13. 10.1093/qjmed/95.1.3 PubMed DOI
McCutcheon J. E., Marinelli M. (2009). Age matters. Eur. J. Neurosci. 29 997–1014. 10.1111/j.1460-9568.2009.06648.x PubMed DOI PMC
McEwen B. S., Milner T. A. (2017). Understanding the broad influence of sex hormones and sex differences in the brain. J. Neurosci. Res. 95 24–39. 10.1002/jnr.23809 PubMed DOI PMC
Meier J., Tewarie P., Hillebrand A., Douw L., van Dijk B. W., Stufflebeam S. M., et al. (2016). A mapping between structural and functional brain networks. Brain Connect. 6 298–311. 10.1089/brain.2015.0408 PubMed DOI PMC
Melani A., Amadio S., Gianfriddo M., Vannucchi M. G., Volonte C., Bernardi G., et al. (2006). P2X7 receptor modulation on microglial cells and reduction of brain infarct caused by middle cerebral artery occlusion in rat. J. Cereb. Blood Flow Metab. 26 974–982. 10.1038/sj.jcbfm.9600250 PubMed DOI
Michalski D., Pitsch R., Pillai D. R., Mages B., Aleithe S., Grosche J., et al. (2017). Delayed histochemical alterations within the neurovascular unit due to transient focal cerebral ischemia and experimental treatment with neurotrophic factors. PLoS One 12:e0174996. 10.1371/journal.pone.0174996 PubMed DOI PMC
Mihailova V., Stoyanova I., Tonchev A. B. (2023). Glial populations in the human brain following ischemic injury. Biomedicines 11:2332. 10.3390/biomedicines11092332 PubMed DOI PMC
Minassian A., Dobrivojevic Radmilovic M., Vogel S., Diedenhofen M., Nelles M., Stoeber M., et al. (2019). Cortical tissue loss and major structural reorganization as result of distal middle cerebral artery occlusion in the chronic phase of nude mice. Sci. Rep. 9:6823. 10.1038/s41598-019-43341-0 PubMed DOI PMC
Monif M., Reid C. A., Powell K. L., Smart M. L., Williams D. A. (2009). The P2X7 receptor drives microglial activation and proliferation: A trophic role for P2X7R pore. J. Neurosci. 29 3781–3791. 10.1523/JNEUROSCI.5512-08.2009 PubMed DOI PMC
Morita T., Asada M., Naito E. (2016). Contribution of neuroimaging studies to understanding development of human cognitive brain functions. Front. Hum. Neurosci. 10:464. 10.3389/fnhum.2016.00464 PubMed DOI PMC
Morris G. P., Wright A. L., Tan R. P., Gladbach A., Ittner L. M., Vissel B. (2016). A comparative study of variables influencing ischemic injury in the longa and koizumi methods of intraluminal filament middle cerebral artery occlusion in mice. PLoS One 11:e0148503. 10.1371/journal.pone.0148503 PubMed DOI PMC
Ni G. X., Liang C., Wang J., Duan C. Q., Wang P., Wang Y. L. (2020). Astragaloside IV improves neurobehavior and promotes hippocampal neurogenesis in MCAO rats though BDNF-TrkB signaling pathway. Biomed. Pharmacother. 130:10353. 10.1016/j.biopha.2020.110353 PubMed DOI
Niatsetskaya Z., Basso M., Speer R. E., McConoughey S. J., Coppola G., Ma T. C., et al. (2010). HIF prolyl hydroxylase inhibitors prevent neuronal death induced by mitochondrial toxins: Therapeutic implications for Huntington’s disease and Alzheimer’s disease. Antioxid. Redox Signal. 12 435–443. 10.1089/ars.2009.2800 PubMed DOI PMC
Nikonenko A. G., Radenovic L., Andjus P. R., Skibo G. G. (2009). Structural features of ischemic damage in the hippocampus. Anat. Rec. (Hoboken) 292 1914–1921. 10.1002/ar.20969 PubMed DOI
Nowicka D., Rogozinska K., Aleksy M., Witte O. W., Skangiel-Kramska J. (2008). Spatiotemporal dynamics of astroglial and microglial responses after photothrombotic stroke in the rat brain. Acta Neurobiol. Exp. 68 155–168. PubMed
Oermann E., Bidmon H. J., Witte O. W., Zilles K. (2004). Effects of 1alpha,25 dihydroxyvitamin D3 on the expression of HO-1 and GFAP in glial cells of the photothrombotically lesioned cerebral cortex. J. Chem. Neuroanat. 28 225–238. 10.1016/j.jchemneu.2004.07.003 PubMed DOI
Oh S. W., Harris J. A., Ng L., Winslow B., Cain N., Mihalas S., et al. (2014). A mesoscale connectome of the mouse brain. Nature 508 207–214. 10.1038/nature13186 PubMed DOI PMC
Onufriev M. V., Moiseeva Y. V., Zhanina M. Y., Lazareva N. A., Gulyaeva N. V. (2021). A comparative study of Koizumi and longa methods of intraluminal filament middle cerebral artery occlusion in rats: Early corticosterone and inflammatory response in the hippocampus and frontal cortex. Int. J. Mol. Sci. 22:13544. 10.3390/ijms222413544 PubMed DOI PMC
Ouyang F., Chen X., Chen Y., Liang J., Chen Y., Lu T., et al. (2020). Neuronal loss without amyloid-beta deposits in the thalamus and hippocampus in the late period after middle cerebral artery occlusion in cynomolgus monkeys. Brain Pathol. 30 165–178. 10.1111/bpa.12764 PubMed DOI PMC
Pallast N., Wieters F., Nill M., Fink G. R., Aswendt M. (2020). Graph theoretical quantification of white matter reorganization after cortical stroke in mice. Neuroimage 217:116873. 10.1016/j.neuroimage.2020.116873 PubMed DOI
Pan C., Cai R., Quacquarelli F. P., Ghasemigharagoz A., Lourbopoulos A., Matryba P., et al. (2016). Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat. Methods 13 859–867. 10.1038/nmeth.3964 PubMed DOI
Paradowski B., Pawlik B. (2005). [Diaschisis phenomenon in different neurological diseases]. Wiad. Lek. 58 675–677. PubMed
Park H. J., Shim H. S., Kim K. S., Shim I. (2011). The protective effect of black ginseng against transient focal ischemia-induced neuronal damage in rats. Korean J. Physiol. Pharmacol. 15 333–338. 10.4196/kjpp.2011.15.6.333 PubMed DOI PMC
Patkar S., Uwanogho D., Modo M., Tate R. J., Plevin R., Carswell H. V. O. (2022). Targeting 17beta-estradiol biosynthesis in neural stem cells improves stroke outcome. Front. Cell. Neurosci. 16:917181. 10.3389/fncel.2022.917181 PubMed DOI PMC
Pekny M., Nilsson M. (2005). Astrocyte activation and reactive gliosis. Glia 50 427–434. 10.1002/glia.20207 PubMed DOI
Pekny M., Wilhelmsson U., Pekna M. (2014). The dual role of astrocyte activation and reactive gliosis. Neurosci. Lett. 565 30–38. 10.1016/j.neulet.2013.12.071 PubMed DOI
Peng S. J., Chen Y. W., Hung A., Wang K. W., Tsai J. Z. (2023). Connectome-based predictive modeling for functional recovery of acute ischemic stroke. Neuroimage Clin. 38:103369. 10.1016/j.nicl.2023.103369 PubMed DOI PMC
Perego C., Fumagalli S., De Simoni M. G. (2011). Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J. Neuroinflammation 8:174. 10.1186/1742-2094-8-174 PubMed DOI PMC
Peters R. (2006). Ageing and the brain. Postgrad. Med. J. 82 84–88. 10.1136/pgmj.2005.036665 PubMed DOI PMC
Petrone A. B., Simpkins J. W., Barr T. L. (2014). 17beta-estradiol and inflammation: Implications for ischemic stroke. Aging Dis. 5 340–345. 10.14336/AD.2014.0500340 PubMed DOI PMC
Phatnani H., Maniatis T. (2015). Astrocytes in neurodegenerative disease. Cold Spring Harb. Perspect. Biol. 7:a020628. 10.1101/cshperspect.a020628 PubMed DOI PMC
Plosker G. L., Foster R. H. (2000). Tacrolimus: A further update of its pharmacology and therapeutic use in the management of organ transplantation. Drugs 59 323–389. 10.2165/00003495-200059020-00021 PubMed DOI
Poldrack R. A. (2010). Mapping mental function to brain structure: How can cognitive neuroimaging succeed? Perspect. Psychol. Sci. 5 753–761. 10.1177/1745691610388777 PubMed DOI PMC
Popp A., Jaenisch N., Witte O. W., Frahm C. (2009). Identification of ischemic regions in a rat model of stroke. PLoS One 4:e4764. 10.1371/journal.pone.0004764 PubMed DOI PMC
Poretti A., Boltshauser E. (2012). Crossed cerebro-cerebellar diaschisis. Neuropediatrics 43 53–54. 10.1055/s-0032-1310543 PubMed DOI
Prinz V., Hetzer A. M., Muller S., Balkaya M., Leithner C., Kronenberg G., et al. (2015). MRI heralds secondary nigral lesion after brain ischemia in mice: A secondary time window for neuroprotection. J. Cereb. Blood Flow Metab. 35 1903–1909. 10.1038/jcbfm.2015.153 PubMed DOI PMC
Quincozes-Santos A., Santos C. L., de Souza Almeida R. R., da Silva A., Thomaz N. K., Costa N. L. F., et al. (2021). Gliotoxicity and glioprotection: The dual role of glial cells. Mol. Neurobiol. 58 6577–6592. 10.1007/s12035-021-02574-9 PubMed DOI PMC
Radak D., Resanovic I., Isenovic E. R. (2014). Link between oxidative stress and acute brain ischemia. Angiology 65 667–676. 10.1177/0003319713506516 PubMed DOI
Radlinska B. A., Ghinani S. A., Lyon P., Jolly D., Soucy J. P., Minuk J., et al. (2009). Multimodal microglia imaging of fiber tracts in acute subcortical stroke. Ann. Neurol. 66 825–832. 10.1002/ana.21796 PubMed DOI
Raffaele S., Fumagalli M. (2022). Dynamics of microglia activation in the ischemic brain: Implications for myelin repair and functional recovery. Front. Cell. Neurosci. 16:950819. 10.3389/fncel.2022.950819 PubMed DOI PMC
Rehme A. K., Grefkes C. (2013). Cerebral network disorders after stroke: Evidence from imaging-based connectivity analyses of active and resting brain states in humans. J. Physiol. 591 17–31. 10.1113/jphysiol.2012.243469 PubMed DOI PMC
Reichmann G., Schroeter M., Jander S., Fischer H. G. (2002). Dendritic cells and dendritic-like microglia in focal cortical ischemia of the mouse brain. J. Neuroimmunol. 129 125–132. 10.1016/s0165-5728(02)00184-4 PubMed DOI
Reitmeir R., Kilic E., Kilic U., Bacigaluppi M., ElAli A., Salani G., et al. (2011). Post-acute delivery of erythropoietin induces stroke recovery by promoting perilesional tissue remodelling and contralesional pyramidal tract plasticity. Brain 134 84–99. 10.1093/brain/awq344 PubMed DOI
Rexrode K. M., Madsen T. E., Yu A. Y. X., Carcel C., Lichtman J. H., Miller E. C. (2022). The impact of sex and gender on stroke. Circ. Res. 130 512–528. 10.1161/CIRCRESAHA.121.319915 PubMed DOI PMC
Rodriguez-Vazquez A., Laredo C., Renu A., Rudilosso S., Llull L., Amaro S., et al. (2022). Optimizing the definition of ischemic core in CT perfusion: Influence of infarct growth and tissue-specific thresholds. AJNR Am. J. Neuroradiol. 43 1265–1270. 10.3174/ajnr.A7601 PubMed DOI PMC
Rolls A., Shechter R., Schwartz M. (2009). The bright side of the glial scar in CNS repair. Nat. Rev. Neurosci. 10 235–241. 10.1038/nrn2591 PubMed DOI
Rosenzweig S., Carmichael S. T. (2013). Age-dependent exacerbation of white matter stroke outcomes: A role for oxidative damage and inflammatory mediators. Stroke 44 2579–2586. 10.1161/STROKEAHA.113.001796 PubMed DOI PMC
Rossi D. J., Brady J. D., Mohr C. (2007). Astrocyte metabolism and signaling during brain ischemia. Nat. Neurosci. 10 1377–1386. 10.1038/nn2004 PubMed DOI PMC
Rovito C., Park A., Goldstein R., Zafonte R., Black-Schaffer R., Schneider J. C. (2021). A retrospective cohort comparing left and right middle cerebral artery ischemic stroke functional outcomes in acute inpatient rehabilitation. PM R 13 666–673. 10.1002/pmrj.12465 PubMed DOI
Rusinek H., Brys M., Glodzik L., Switalski R., Tsui W. H., Haas F., et al. (2011). Hippocampal blood flow in normal aging measured with arterial spin labeling at 3T. Magn. Reson. Med. 65 128–137. 10.1002/mrm.22611 PubMed DOI PMC
Sakoh M., Ostergaard L., Gjedde A., Rohl L., Vestergaard-Poulsen P., Smith D. F., et al. (2001). Prediction of tissue survival after middle cerebral artery occlusion based on changes in the apparent diffusion of water. J. Neurosurg. 95 450–458. 10.3171/jns.2001.95.3.0450 PubMed DOI
Saver J. L. (2017). Penumbral salvage and thrombolysis outcome: A drop of brain, a week of life. Brain 140 519–522. 10.1093/brain/awx020 PubMed DOI
Schaapsmeerders P., Tuladhar A. M., Arntz R. M., Franssen S., Maaijwee N. A., Rutten-Jacobs L. C., et al. (2016). Remote lower white matter integrity increases the risk of long-term cognitive impairment after ischemic stroke in young adults. Stroke 47 2517–2525. 10.1161/STROKEAHA.116.014356 PubMed DOI
Schoknecht K., Prager O., Vazana U., Kamintsky L., Harhausen D., Zille M., et al. (2014). Monitoring stroke progression: In vivo imaging of cortical perfusion, blood-brain barrier permeability and cellular damage in the rat photothrombosis model. J. Cereb. Blood Flow Metab. 34 1791–1801. 10.1038/jcbfm.2014.147 PubMed DOI PMC
Schroeter M., Jander S., Stoll G. (2002). Non-invasive induction of focal cerebral ischemia in mice by photothrombosis of cortical microvessels: Characterization of inflammatory responses. J. Neurosci. Methods 117 43–49. 10.1016/s0165-0270(02)00072-9 PubMed DOI
Sehara Y., Hayashi T., Deguchi K., Nagotani S., Zhang H., Shoji M., et al. (2006). Distribution of inducible nitric oxide synthase and cell proliferation in rat brain after transient middle cerebral artery occlusion. Brain Res. 1093 190–197. 10.1016/j.brainres.2006.03.092 PubMed DOI
Selvamani A., Sohrabji F. (2010). Reproductive age modulates the impact of focal ischemia on the forebrain as well as the effects of estrogen treatment in female rats. Neurobiol. Aging 31 1618–1628. 10.1016/j.neurobiolaging.2008.08.014 PubMed DOI PMC
Semenza G. L. (2000). HIF-1: Mediator of physiological and pathophysiological responses to hypoxia. J. Appl. Physiol. 88 1474–1480. 10.1152/jappl.2000.88.4.1474 PubMed DOI
Shahjouei S., Cai P. Y., Ansari S., Sharififar S., Azari H., Ganji S., et al. (2016). Middle cerebral artery occlusion model of stroke in rodents: A step-by-step approach. J. Vasc. Interv. Neurol. 8 1–8. PubMed PMC
Shen X., Li M., Shao K., Li Y., Ge Z. (2023). Post-ischemic inflammatory response in the brain: Targeting immune cell in ischemic stroke therapy. Front. Mol. Neurosci. 16:1076016. 10.3389/fnmol.2023.1076016 PubMed DOI PMC
Shi K., Tian D. C., Li Z. G., Ducruet A. F., Lawton M. T., Shi F. D. (2019). Global brain inflammation in stroke. Lancet Neurol. 18 1058–1066. 10.1016/S1474-4422(19)30078-X PubMed DOI
Shin Y. J., Kim H. L., Park J. M., Cho J. M., Kim S. Y., Lee M. Y. (2013). Characterization of nestin expression and vessel association in the ischemic core following focal cerebral ischemia in rats. Cell Tissue Res. 351 383–395. 10.1007/s00441-012-1538-x PubMed DOI
Shinohara Y., Kato A., Kuya K., Okuda K., Sakamoto M., Kowa H., et al. (2017). Perfusion MR imaging using a 3D pulsed continuous arterial spin-labeling method for acute cerebral infarction classified as branch atheromatous disease involving the lenticulostriate artery territory. AJNR Am. J. Neuroradiol. 38 1550–1554. 10.3174/ajnr.A5247 PubMed DOI PMC
Siddiq A., Aminova L. R., Troy C. M., Suh K., Messer Z., Semenza G. L., et al. (2009). Selective inhibition of hypoxia-inducible factor (HIF) prolyl-hydroxylase 1 mediates neuroprotection against normoxic oxidative death via HIF- and CREB-independent pathways. J. Neurosci. 29 8828–8838. 10.1523/JNEUROSCI.1779-09.2009 PubMed DOI PMC
Siddiq A., Ayoub I. A., Chavez J. C., Aminova L., Shah S., LaManna J. C., et al. (2005). Hypoxia-inducible factor prolyl 4-hydroxylase inhibition. A target for neuroprotection in the central nervous system. J. Biol. Chem. 280 41732–41743. 10.1074/jbc.M504963200 PubMed DOI PMC
Silver J., Miller J. H. (2004). Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5 146–156. 10.1038/nrn1326 PubMed DOI
Smirkin A., Matsumoto H., Takahashi H., Inoue A., Tagawa M., Ohue S., et al. (2010). Iba1(+)/NG2(+) macrophage-like cells expressing a variety of neuroprotective factors ameliorate ischemic damage of the brain. J. Cereb. Blood Flow Metab. 30 603–615. 10.1038/jcbfm.2009.233 PubMed DOI PMC
Sobesky J., Thiel A., Ghaemi M., Hilker R. H., Rudolf J., Jacobs A. H., et al. (2005). Crossed cerebellar diaschisis in acute human stroke: A PET study of serial changes and response to supratentorial reperfusion. J. Cereb. Blood Flow Metab. 25 1685–1691. 10.1038/sj.jcbfm.9600162 PubMed DOI
Sohrabji F., Okoreeh A., Panta A. (2019). Sex hormones and stroke: Beyond estrogens. Horm. Behav. 111 87–95. 10.1016/j.yhbeh.2018.10.010 PubMed DOI PMC
Song J., Nair V. A., Young B. M., Walton L. M., Nigogosyan Z., Remsik A., et al. (2015). DTI measures track and predict motor function outcomes in stroke rehabilitation utilizing BCI technology. Fron. Hum. Neurosci. 9:195. 10.3389/fnhum.2015.00195 PubMed DOI PMC
Sonne J., Reddy V., Beato M. R. (2023). Neuroanatomy, Substantia nigra: StatPearls. Treasure Island, FL: StatPearls. PubMed
Spychala M. S., Honarpisheh P., McCullough L. D. (2017). Sex differences in neuroinflammation and neuroprotection in ischemic stroke. J. Neurosci. Res. 95 462–471. 10.1002/jnr.23962 PubMed DOI PMC
Sueiras M., Thonon V., Santamarina E., Sanchez-Guerrero A., Poca M. A., Quintana M., et al. (2021). Cortical spreading depression phenomena are frequent in ischemic and traumatic penumbra: A prospective study in patients with traumatic brain injury and large hemispheric ischemic stroke. J. Clin. Neurophysiol. 38 47–55. 10.1097/WNP.0000000000000648 PubMed DOI
Sugimoto K., Nishioka R., Ikeda A., Mise A., Takahashi H., Yano H., et al. (2014). Activated microglia in a rat stroke model express NG2 proteoglycan in peri-infarct tissue through the involvement of TGF-beta1. Glia 62 185–198. 10.1002/glia.22598 PubMed DOI
Sun Y., Chen X., Zhang X., Shen X., Wang M., Wang X., et al. (2017). beta2-adrenergic receptor-mediated HIF-1alpha upregulation mediates blood brain barrier damage in acute cerebral ischemia. Front. Mol. Neurosci. 10:257. 10.3389/fnmol.2017.00257 PubMed DOI PMC
Suzuki S., Brown C. M., Wise P. M. (2009). Neuroprotective effects of estrogens following ischemic stroke. Front. Neuroendocrinol. 30:201–211. 10.1016/j.yfrne.2009.04.007 PubMed DOI PMC
Sykova E. (2004). Extrasynaptic volume transmission and diffusion parameters of the extracellular space. Neuroscience 129 861–876. 10.1016/j.neuroscience.2004.06.077 PubMed DOI
Symon L. (1980). The relationship between CBF, evoked potentials and the clinical features in cerebral ischaemia. Acta Neurol. Scand. Suppl. 78 175–190. PubMed
Szilagyi G., Vas A., Kerenyi L., Nagy Z., Csiba L., Gulyas B. (2012). Correlation between crossed cerebellar diaschisis and clinical neurological scales. Acta Neurol. Scand. 125 373–381. 10.1111/j.1600-0404.2011.01576.x PubMed DOI
Tagaya M., Haring H. P., Stuiver I., Wagner S., Abumiya T., Lucero J., et al. (2001). Rapid loss of microvascular integrin expression during focal brain ischemia reflects neuron injury. J. Cereb. Blood Flow Metab. 21 835–846. 10.1097/00004647-200107000-00009 PubMed DOI
Takano T., Oberheim N., Cotrina M. L., Nedergaard M. (2009). Astrocytes and ischemic injury. Stroke 40(Suppl. 3) S8–S12. 10.1161/STROKEAHA.108.533166 PubMed DOI PMC
Takasawa M., Watanabe M., Yamamoto S., Hoshi T., Sasaki T., Hashikawa K., et al. (2002). Prognostic value of subacute crossed cerebellar diaschisis: Single-photon emission CT study in patients with middle cerebral artery territory infarct. AJNR Am. J. Neuroradiol. 23 189–193. PubMed PMC
Takasawa K., Kitagawa K., Yagita Y., Sasaki T., Tanaka S., Matsushita K., et al. (2002). Increased proliferation of neural progenitor cells but reduced survival of newborn cells in the contralateral hippocampus after focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 22 299–307. 10.1097/00004647-200203000-00007 PubMed DOI
Takuwa H., Tajima Y., Kokuryo D., Matsuura T., Kawaguchi H., Masamoto K., et al. (2013). Hemodynamic changes during neural deactivation in awake mice: A measurement by laser-Doppler flowmetry in crossed cerebellar diaschisis. Brain Res. 1537 350–355. 10.1016/j.brainres.2013.09.023 PubMed DOI
Tanaka K., Nogawa S., Ito D., Suzuki S., Dembo T., Kosakai A., et al. (2001). Activation of NG2-positive oligodendrocyte progenitor cells during post-ischemic reperfusion in the rat brain. Neuroreport 12 2169–2174. 10.1097/00001756-200107200-00025 PubMed DOI
Tanaka M., Ikeda Y., Matsui S., Kato A., Nitori N., Kadomura T., et al. (2016). Right lateral decubitus approach to a laparoscopic modified Hassab’s operation. Asian J. Endosc. Surg. 9 97–100. 10.1111/ases.12252 PubMed DOI
Thiel A., Radlinska B. A., Paquette C., Sidel M., Soucy J. P., Schirrmacher R., et al. (2010). The temporal dynamics of poststroke neuroinflammation: A longitudinal diffusion tensor imaging-guided PET study with 11C-PK11195 in acute subcortical stroke. J. Nucl. Med. 51 1404–1412. 10.2967/jnumed.110.076612 PubMed DOI
Tomer R., Ye L., Hsueh B., Deisseroth K. (2014). Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat. Protoc. 9 1682–1697. 10.1038/nprot.2014.123 PubMed DOI PMC
Toth M., Little P., Arnberg F., Haggkvist J., Mulder J., Halldin C., et al. (2016). Acute neuroinflammation in a clinically relevant focal cortical ischemic stroke model in rat: Longitudinal positron emission tomography and immunofluorescent tracking. Brain Struct. Funct. 221 1279–1290. 10.1007/s00429-014-0970-y PubMed DOI
Turtzo L. C., Siegel C., McCullough L. D. (2011). X chromosome dosage and the response to cerebral ischemia. J. Neurosci. 31 13255–13259. 10.1523/JNEUROSCI.0621-11.2011 PubMed DOI PMC
Uchida H., Fujita Y., Matsueda M., Umeda M., Matsuda S., Kato H., et al. (2010). Damage to neurons and oligodendrocytes in the hippocampal CA1 sector after transient focal ischemia in rats. Cell. Mol. Neurobiol. 30 1125–1134. 10.1007/s10571-010-9545-5 PubMed DOI
Valny M., Honsa P., Kriska J., Anderova M. (2017). Multipotency and therapeutic potential of NG2 cells. Biochem. Pharmacol. 141 42–55. 10.1016/j.bcp.2017.05.008 PubMed DOI
Valny M., Honsa P., Waloschkova E., Matuskova H., Kriska J., Kirdajova D., et al. (2018). A single-cell analysis reveals multiple roles of oligodendroglial lineage cells during post-ischemic regeneration. Glia 66 1068–1081. 10.1002/glia.23301 PubMed DOI
van den Heuvel M. P., Sporns O. (2019). A cross-disorder connectome landscape of brain dysconnectivity. Nat. Rev. Neurosci. 20 435–446. 10.1038/s41583-019-0177-6 PubMed DOI PMC
Van Essen D. C., Smith S. M., Barch D. M., Behrens T. E., Yacoub E., Ugurbil K., et al. (2013). The WU-Minn human connectome project: An overview. Neuroimage 80 62–79. 10.1016/j.neuroimage.2013.05.041 PubMed DOI PMC
van Groen T., Puurunen K., Maki H. M., Sivenius J., Jolkkonen J. (2005). Transformation of diffuse beta-amyloid precursor protein and beta-amyloid deposits to plaques in the thalamus after transient occlusion of the middle cerebral artery in rats. Stroke 36 1551–1556. 10.1161/01.STR.0000169933.88903.cf PubMed DOI
van Putten M., Fahlke C., Kafitz K. W., Hofmeijer J., Rose C. R. (2021). Dysregulation of astrocyte ion homeostasis and its relevance for stroke-induced brain damage. Int. J. Mol. Sci. 22:5679. 10.3390/ijms22115679 PubMed DOI PMC
Vargova L., Sykova E. (2014). Astrocytes and extracellular matrix in extrasynaptic volume transmission. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369:20130608. 10.1098/rstb.2013.0608 PubMed DOI PMC
Verkhratsky A. (2007). Glial neurobiology: A textbook. Hoboken, NJ: Wiley. 10.1002/9780470517796 DOI
Wan T., Zhu W., Zhao Y., Zhang X., Ye R., Zuo M., et al. (2022). Astrocytic phagocytosis contributes to demyelination after focal cortical ischemia in mice. Nat. Commun. 13:1134. 10.1038/s41467-022-28777-9 PubMed DOI PMC
Wang F., Liang Z., Hou Q., Xing S., Ling L., He M., et al. (2007). Nogo-A is involved in secondary axonal degeneration of thalamus in hypertensive rats with focal cortical infarction. Neurosci. Lett. 417 255–260. 10.1016/j.neulet.2007.02.080 PubMed DOI
Wang H., Song G., Chuang H., Chiu C., Abdelmaksoud A., Ye Y., et al. (2018). Portrait of glial scar in neurological diseases. Int. J. Immunopathol. Pharmacol. 31:2058738418801406. 10.1177/2058738418801406 PubMed DOI PMC
Wang J., Pan L. J., Zhou B., Zu J. Y., Zhao Y. X., Li Y., et al. (2020). Crossed cerebellar diaschisis after stroke detected noninvasively by arterial spin-labeling MR imaging. BMC Neurosci. 21:46. 10.1186/s12868-020-00595-z PubMed DOI PMC
Wei Y., Yemisci M., Kim H. H., Yung L. M., Shin H. K., Hwang S. K., et al. (2011). Fingolimod provides long-term protection in rodent models of cerebral ischemia. Ann. Neurol. 69 119–129. 10.1002/ana.22186 PubMed DOI PMC
Wiessner C., Bareyre F. M., Allegrini P. R., Mir A. K., Frentzel S., Zurini M., et al. (2003). Anti-Nogo-A antibody infusion 24 hours after experimental stroke improved behavioral outcome and corticospinal plasticity in normotensive and spontaneously hypertensive rats. J. Cereb. Blood Flow Metab. 23 154–165. 10.1097/01.WCB.0000040400.30600.AF PubMed DOI
Wijeratne T., Sales C. (2021). Understanding why post-stroke depression may be the norm rather than the exception: The anatomical and neuroinflammatory correlates of post-stroke depression. J. Clin. Med. 10:1674. 10.3390/jcm10081674 PubMed DOI PMC
Witte O. W., Bidmon H. J., Schiene K., Redecker C., Hagemann G. (2000). Functional differentiation of multiple perilesional zones after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 20 1149–1165. 10.1097/00004647-200008000-00001 PubMed DOI
Witusik M., Piaskowski S., Hulas-Bigoszewska K., Zakrzewska M., Gresner S. M., Azizi S. A., et al. (2008). Successful elimination of non-neural cells and unachievable elimination of glial cells by means of commonly used cell culture manipulations during differentiation of GFAP and SOX2 positive neural progenitors (NHA) to neuronal cells. BMC Biotechnol. 8:56. 10.1186/1472-6750-8-56 PubMed DOI PMC
Woodburn S. C., Bollinger J. L., Wohleb E. S. (2021). The semantics of microglia activation: Neuroinflammation, homeostasis, and stress. J. Neuroinflammation 18:258. 10.1186/s12974-021-02309-6 PubMed DOI PMC
Xie X., Liu J. (2023). New role of astrocytes in neuroprotective mechanisms after ischemic stroke. Arq. Neuropsiquiatr. 81 748–755. 10.1055/s-0043-1770352 PubMed DOI PMC
Xiong X., Xu L., Wei L., White R. E., Ouyang Y. B., Giffard R. G. (2015). IL-4 is required for sex differences in vulnerability to focal ischemia in mice. Stroke 46 2271–2276. 10.1161/STROKEAHA.115.008897 PubMed DOI PMC
Xu S., Lu J., Shao A., Zhang J. H., Zhang J. (2020). Glial cells: Role of the immune response in ischemic stroke. Front. Immunol. 11:294. 10.3389/fimmu.2020.00294 PubMed DOI PMC
Xu W., Xiao P., Fan S., Chen Y., Huang W., Chen X., et al. (2020). Blockade of Nogo-A/Nogo-66 receptor 1 (NgR1) inhibits autophagic activation and prevents secondary neuronal damage in the thalamus after focal cerebral infarction in hypertensive rats. Neuroscience 431 103–114. 10.1016/j.neuroscience.2020.02.010 PubMed DOI
Yanev P., Seevinck P. R., Rudrapatna U. S., Bouts M. J., van der Toorn A., Gertz K., et al. (2017). Magnetic resonance imaging of local and remote vascular remodelling after experimental stroke. J. Cereb. Blood Flow Metab. 37 2768–2779. 10.1177/0271678X16674737 PubMed DOI PMC
Yang P., Tian Y. M., Deng W. X., Cai X., Liu W. H., Li L., et al. (2019). Sijunzi decoction may decrease apoptosis via stabilization of the extracellular matrix following cerebral ischaemia-reperfusion in rats. Exp. Ther. Med. 18 2805–2812. 10.3892/etm.2019.7878 PubMed DOI PMC
Yang Y., Gao L., Fu J., Zhang J., Li Y., Yin B., et al. (2013). Apparent diffusion coefficient evaluation for secondary changes in the cerebellum of rats after middle cerebral artery occlusion. Neural Regen. Res. 8 2942–2950. 10.3969/j.issn.1673-5374.2013.31.007 PubMed DOI PMC
Yenari M. A., Kauppinen T. M., Swanson R. A. (2010). Microglial activation in stroke: Therapeutic targets. Neurotherapeutics 7 378–391. 10.1016/j.nurt.2010.07.005 PubMed DOI PMC
Yu S., Carlson H. L., Mineyko A., Brooks B. L., Kuczynski A., Hodge J., et al. (2018). Bihemispheric alterations in myelination in children following unilateral perinatal stroke. Neuroimage Clin. 20 7–15. 10.1016/j.nicl.2018.06.028 PubMed DOI PMC
Yu W., Liang X., Li X., Zhang Y., Sun Z., Liu Y., et al. (2018). MicroRNA-195: A review of its role in cancers. Onco Targets Ther. 11 7109–7123. 10.2147/OTT.S183600 PubMed DOI PMC
Yu Y., Han Q., Ding X., Chen Q., Ye K., Zhang S., et al. (2016). Defining core and penumbra in ischemic stroke: A voxel– and volume-based analysis of whole brain CT perfusion. Sci. Rep. 6:20932. 10.1038/srep20932 PubMed DOI PMC
Zamanian J. L., Xu L., Foo L. C., Nouri N., Zhou L., Giffard R. G., et al. (2012). Genomic analysis of reactive astrogliosis. J. Neurosci. 32 6391–6410. 10.1523/JNEUROSCI.6221-11.2012 PubMed DOI PMC
Zbesko J. C., Nguyen T. V., Yang T., Frye J. B., Hussain O., Hayes M., et al. (2018). Glial scars are permeable to the neurotoxic environment of chronic stroke infarcts. Neurobiol. Dis. 112 63–78. 10.1016/j.nbd.2018.01.007 PubMed DOI PMC
Zhang J., Li H., Xu Z., Lu J., Cao C., Shen H., et al. (2023). Oestrogen ameliorates blood-brain barrier damage after experimental subarachnoid haemorrhage via the SHH pathway in male rats. Stroke Vasc. Neurol. 8 217–228. 10.1136/svn-2022-001907 PubMed DOI PMC
Zhang J., Zhang Y., Xing S., Liang Z., Zeng J. (2012). Secondary neurodegeneration in remote regions after focal cerebral infarction: A new target for stroke management? Stroke 43 1700–1705. 10.1161/STROKEAHA.111.632448 PubMed DOI
Zhang W., Zhu L., An C., Wang R., Yang L., Yu W., et al. (2020). The blood brain barrier in cerebral ischemic injury – disruption and repair. Brain Hemorrhages 1 34–53. 10.1016/j.hest.2019.12.004 DOI
Zhao F., Kuroiwa T., Miyasaka N., Nagaoka T., Nakane M., Tamura A., et al. (2002). Ultrastructural and MRI study of the Substantia nigra evolving exofocal post-ischemic neuronal death in the rat. Neuropathology 22 91–105. 10.1046/j.1440-1789.2002.00437.x PubMed DOI
Zhao Y., Rempe D. A. (2011). Prophylactic neuroprotection against stroke: Low-dose, prolonged treatment with deferoxamine or deferasirox establishes prolonged neuroprotection independent of HIF-1 function. J. Cereb. Blood Flow Metab. 31 1412–1423. 10.1038/jcbfm.2010.230 PubMed DOI PMC
Zhou J., Zhuang J., Li J., Ooi E., Bloom J., Poon C., et al. (2013). Long-term post-stroke changes include myelin loss, specific deficits in sensory and motor behaviors and complex cognitive impairment detected using active place avoidance. PLoS One 8:e57503. 10.1371/journal.pone.0057503 PubMed DOI PMC
Zhou P. T., Wang L. P., Qu M. J., Shen H., Zheng H. R., Deng L. D., et al. (2019). Dl-3-N-butylphthalide promotes angiogenesis and upregulates sonic hedgehog expression after cerebral ischemia in rats. CNS Neurosci. Ther. 25 748–758. 10.1111/cns.13104 PubMed DOI PMC
Zhu X., Bergles D. E., Nishiyama A. (2008). NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135 145–157. 10.1242/dev.004895 PubMed DOI