Analysis of K+ accumulation reveals privileged extracellular region in the vicinity of glial cells in situ
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
    PubMed
          
           15478195
           
          
          
    DOI
          
           10.1002/jnr.20284
           
          
          
  
    Knihovny.cz E-zdroje
    
  
              
      
- MeSH
- biologické modely MeSH
- časové faktory MeSH
- draslík metabolismus MeSH
- elektrická stimulace MeSH
- extracelulární prostor účinky léků metabolismus MeSH
- hypotonické roztoky farmakologie MeSH
- imunohistochemie metody MeSH
- krysa rodu Rattus MeSH
- membránové potenciály účinky léků fyziologie účinky záření MeSH
- metoda terčíkového zámku metody MeSH
- mícha cytologie MeSH
- myši MeSH
- neuroglie účinky léků metabolismus MeSH
- novorozená zvířata MeSH
- oligodendroglie účinky léků metabolismus MeSH
- proteiny S100 metabolismus MeSH
- sukcinimidy metabolismus MeSH
- techniky in vitro MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- Alexa Fluor 488 carboxylic acid succinimidyl ester MeSH Prohlížeč
- draslík MeSH
- hypotonické roztoky MeSH
- proteiny S100 MeSH
- sukcinimidy MeSH
Astrocytes and oligodendrocytes in rat and mouse spinal cord slices, characterized by passive membrane currents during de- and hyperpolarizing stimulation pulses, express a high resting K+ conductance. In contrast to the case for astrocytes, a depolarizing prepulse in oligodendrocytes produces a significant shift of reversal potential (Vrev) to positive values, arising from the larger accumulation of K+ in the vicinity of the oligodendrocyte membrane. As a result, oligodendrocytes express large tail currents (Itail) after a depolarizing prepulse due to the shift of K+ into the cell. In the present study, we used a mathematical model to calculate the volume of the extracellular space (ECS) in the vicinity of astrocytes and oligodendrocytes (ESVv), defined as the volume available for K+ accumulation during membrane depolarization. A mathematical analysis of membrane currents revealed no differences between glial cells from mouse (n = 59) or rat (n = 60) spinal cord slices. We found that the Vrev of a cell after a depolarizing pulse increases with increasing Itail, expressed as the ratio of the integral inward current (Qin) after the depolarizing pulse to the total integral outward current (Qout) during the pulse. In astrocytes with small Itail and Vrev ranging from -50 to -70 mV, the Qin was only 3-19% of Qout, whereas, in oligodendrocytes with large Itail and Vrev between -20 and 0 mV, Qin/Qout was 30-75%. On the other hand, ESVv decreased with increasing values of Vrev. In astrocytes, ESVv ranged from 2 to 50 microm3, and, in oligodendrocytes, it ranged from 0.1 to 2.0 microm3. Cell swelling evoked by the application of hypotonic solution shifted Vrev to more positive values by 17.2 +/- 1.8 mV and was accompanied by a decrease in ESVv of 3.6 +/- 1.3 microm3. Our mathematical analysis reveals a 10-100 times smaller region of the extracellular space available for K+ accumulation during cell depolarization in the vicinity of oligodendrocytes than in the vicinity of astrocytes. The presence of such privileged regions around cells in the CNS may affect the accumulation and diffusion of other neuroactive substances and alter communication between cells in the CNS.
Citace poskytuje Crossref.org
