Tamoxifen in the Mouse Brain: Implications for Fate-Mapping Studies Using the Tamoxifen-Inducible Cre-loxP System
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27812322
PubMed Central
PMC5071318
DOI
10.3389/fncel.2016.00243
Knihovny.cz E-zdroje
- Klíčová slova
- Cre-loxP, brain metabolism, fate-mapping, gene-targeting, tamoxifen,
- Publikační typ
- časopisecké články MeSH
The tamoxifen-inducible Cre-loxP system is widely used to overcome gene targeting pre-adult lethality, to modify a specific cell population at desired time-points, and to visualize and trace cells in fate-mapping studies. In this study we focused on tamoxifen degradation kinetics, because for all genetic fate-mapping studies, the period during which tamoxifen or its metabolites remain active in the CNS, is essential. Additionally, we aimed to define the tamoxifen administration scheme, enabling the maximal recombination rate together with minimal animal mortality. The time window between tamoxifen injection and the beginning of experiments should be large enough to allow complete degradation of tamoxifen and its metabolites. Otherwise, these substances could promote an undesired recombination, leading to data misinterpretation. We defined the optimal time window, allowing the complete degradation of tamoxifen and its metabolites, such as 4-hydroxytamoxifen, N-desmethyltamoxifen, endoxifen and norendoxifen, in the mouse brain after intraperitoneal tamoxifen injection. We determined the biological activity of these substances in vitro, as well as a minimal effective concentration of the most potent metabolite 4-hydroxytamoxifen causing recombination in vivo. For this purpose, we analyzed the recombination rate in double transgenic Cspg4-cre/Esr1/ROSA26Sortm14(CAG-tdTomato) mice, in which tamoxifen administration triggers the expression of red fluorescent protein in NG2-expressing cells, and employed a liquid chromatography, coupled with mass spectrometry, to determine the concentration of studied substances in the brain. We determined the degradation kinetics of these substances, and revealed that this process is influenced by mouse strains, age of animals, and dosage. Our results revealed that tamoxifen and its metabolites were completely degraded within 8 days in young adult C57BL/6J mice, while the age-matched FVB/NJ male mice displayed more effective degradation. Moreover, aged C57BL/6J mice were unable to metabolize all substances within 8 days. The lowering of initial tamoxifen dose leads to a significantly faster degradation of all studied substances. A disruption of the blood-brain barrier caused no concentration changes of any tamoxifen metabolites in the ipsilateral hemisphere. Taken together, we showed that tamoxifen metabolism in mouse brains is age-, strain- and dose-dependent, and these factors should be taken into account in the experimental design.
Zobrazit více v PubMed
Benner E. J., Luciano D., Jo R., Abdi K., Paez-Gonzalez P., Sheng H., et al. (2013). Protective astrogenesis from the SVZ niche after injury is controlled by Notch modulator Thbs4. Nature 497 369–373. 10.1038/nature12069 PubMed DOI PMC
Berglund E., Li C., Poffenberger G., Ayala J. (2008). Glucose metabolism in vivo in four commonly used inbred mouse strains. Diabetes Metab. Res. Rev. 57 1790–1799. 10.2337/db07-1615 PubMed DOI PMC
Clarke L. E., Young K. M., Hamilton N. B., Li H., Richardson W. D., Attwell D. (2012). Properties and fate of oligodendrocyte progenitor cells in the corpus callosum, motor cortex, and piriform cortex of the mouse. J. Neurosci. 32 8173–8185. 10.1523/JNEUROSCI.0928-12.2012 PubMed DOI PMC
Coumoul X., Deng C.-X. (2003). Roles of FGF receptors in mammalian development and congenital diseases. Birth Defects Res. C Embryo Today 69 286–304. 10.1002/bdrc.10025 PubMed DOI
De Biase L. M., Kang S. H., Baxi E. G., Fukaya M., Pucak M. L., Mishina M., et al. (2011). NMDA receptor signaling in oligodendrocyte progenitors is not required for oligodendrogenesis and myelination. J. Neurosci. 31 12650–12662. 10.1523/JNEUROSCI.2455-11.2011 PubMed DOI PMC
Deng C.-X. (2002). Tumor formation in Brca1 conditional mutant mice. Environ. Mol. Mutagen. 39 171–177. 10.1002/em.10069 PubMed DOI
Desta Z., Ward B. A., Soukhova N. V., Flockhart D. A. (2004). Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J. Pharmacol. Exp. Ther. 310 1062–1075. 10.1124/jpet.104.065607 PubMed DOI
Friedberg E. C., Meira L. B. (2006). Database of mouse strains carrying targeted mutations in genes affecting biological responses to DNA damage Version 7. DNA Repair (Amst.) 5 189–209. 10.1016/j.dnarep.2005.09.009 PubMed DOI
Hayashi S., McMahon A. P. (2002). Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol. 244 305–318. 10.1006/dbio.2002.0597 PubMed DOI
Honsa P., Pivonkova H., Anderova M. (2013). Focal cerebral ischemia induces the neurogenic potential of mouse Dach1-expressing cells in the dorsal part of the lateral ventricles. Neuroscience 240 39–53. 10.1016/j.neuroscience.2013.02.048 PubMed DOI
Houtkooper R. H., Argmann C., Houten S. M., Cantó C., Jeninga E. H., Andreux P. A., et al. (2011). The metabolic footprint of aging in mice. Sci. Rep. 1 1–4. 10.1038/srep00134 PubMed DOI PMC
Iusuf D., Teunissen S. F., Wagenaar E., Rosing H., Beijnen J. H., Schinkel A. H. (2011). P-glycoprotein (ABCB1) transports the primary active tamoxifen metabolites endoxifen and 4-hydroxytamoxifen and restricts their brain penetration. J. Pharmacol. Exp. Ther. 337 710–717. 10.1124/jpet.110.178301 PubMed DOI
Jordan V. C. (2007). New insights into the metabolism of tamoxifen and its role in the treatment and prevention of breast cancer. Steroids 72 829–842. 10.1016/j.steroids.2007.07.009 PubMed DOI PMC
Kang S. H., Fukaya M., Yang J. K., Rothstein J. D., Bergles D. E. (2010). NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68 668–681. 10.1016/j.neuron.2010.09.009 PubMed DOI PMC
Kang S. H., Li Y., Fukaya M., Lorenzini I., Cleveland D. W., Ostrow L. W., et al. (2013). Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat. Neurosci. 16 571–579. 10.1038/nn.3357 PubMed DOI PMC
Katzenellenbogen B. S., Norman M. J., Eckert R. L., Peltz S. W., Mangel W. F. (1984). Bioactivities, estrogen receptor interactions, and plasminogen activator-inducing activities of tamoxifen and hydroxytamoxifen isomers in MCF-7 human breast cancer cells bioactivities, estrogen receptor interactions, and plasminogen tamoxifen isomers. Cancer Res. 44 112–119. PubMed
Komitova M., Serwanski D. R., Lu Q. R., Nishiyama A. (2011). NG2 cells are not a major source of reactive astrocytes after neocortical stab wound injury. Glia 59 800–809. 10.1002/glia.21152 PubMed DOI PMC
Le Y., Sauer B. (2000). Conditional gene knockout using cre recombinase. Methods Mol. Biol. 136 477–485. 10.1385/1-59259-065-9:477 PubMed DOI
Leone D. P., Genoud S., Atanasoski S., Grausenburger R., Berger P., Metzger D., et al. (2003). Tamoxifen-inducible glia-specific Cre mice for somatic mutagenesis in oligodendrocytes and Schwann cells. Mol. Cell. Neurosci. 22 430–440. 10.1016/S1044-7431(03)00029-0 PubMed DOI
Li L., Harms K. M., Ventura P. B., Lagace D. C., Eisch A. J., Cunningham L. A. (2010). Focal cerebral ischemia induces a multilineage cytogenic response from adult subventricular zone that is predominantly gliogenic. Glia 58 1610–1619. 10.1002/glia.21033 PubMed DOI PMC
Lien E. A., Solheim E., Ueland P. M. (1991). Distribution of tamoxifen and its metabolites in rat and human tissues during steady-state treatment. Cancer Res. 51 4837–4844. PubMed
Lim Y. C., Desta Z., Flockhart D. A., Skaar T. C. (2005). Endoxifen (4-hydroxy-N-desmethyl-tamoxifen) has anti-estrogenic effects in breast cancer cells with potency similar to 4-hydroxy-tamoxifen. Cancer Chemother. Pharmacol. 55 471–478. 10.1007/s00280-004-0926-7 PubMed DOI
Lu W. J., Xu C., Pei Z., Mayhoub A. S., Cushman M., Flockhart D. A. (2012). The tamoxifen metabolite norendoxifen is a potent and selective inhibitor of aromatase (CYP19) and a potential lead compound for novel therapeutic agents. Breast Cancer Res. Treat. 133 99–109. 10.1007/s10549-011-1699-4 PubMed DOI
Robins S. C., Trudel E., Rotondi O., Liu X., Djogo T., Kryzskaya D., et al. (2013). Evidence for NG2-glia derived, adult-born functional neurons in the hypothalamus. PLoS ONE 8:e78236 10.1371/journal.pone.0078236 PubMed DOI PMC
Teunissen S. F., Jager N. G. L., Rosing H., Schinkel A. H., Schellens J. H. M., Beijnen J. H. (2011). Development and validation of a quantitative assay for the determination of tamoxifen and its five main phase I metabolites in human serum using liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879 1677–1685. 10.1016/j.jchromb.2011.04.011 PubMed DOI
Vaillant F., Lauzier B., Poirier I., Gélinas R., Rivard M.-E., Robillard Frayne I., et al. (2014). Mouse strain differences in metabolic fluxes and function of ex vivo working hearts. Am. J. Physiol. Heart Circ. Physiol. 306 H78–H87. 10.1152/ajpheart.00465.2013 PubMed DOI
Weinstein M., Yang X., Deng C.-X. (2000). Functions of mammalian Smad genes as revealed by targeted gene disruption in mice. Cytokine Growth Factor Rev. 11 49–58. 10.1016/S1359-6101(99)00028-3 PubMed DOI
Yan G., Xuan Y., Dai Z., Zhang G., Xu H., Mikulis D., et al. (2015). Evolution of blood-brain barrier damage associated with changes in brain metabolites following acute ischemia. Neuroreport 26 945–951. 10.1097/WNR.0000000000000438 PubMed DOI
Zhu X., Hill R. A., Dietrich D., Komitova M., Suzuki R., Nishiyama A. (2011). Age-dependent fate and lineage restriction of single NG2 cells. Development 138 745–753. 10.1242/dev.047951 PubMed DOI PMC