Exposure to nanoparticles of magnetite Fe3O4 in three different doses and their influence on selected respiratory parameters of bronchoalveolar lavage after intravenous instillation
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
38309704
DOI
10.21101/cejph.a7739
Knihovny.cz E-zdroje
- Klíčová slova
- bronchoalveolar lavage, dose dependence, inflammatory and cytotoxic parameters, nanoparticles,
- MeSH
- bronchoalveolární laváž MeSH
- bronchoalveolární lavážní tekutina MeSH
- intravenózní podání MeSH
- krysa rodu Rattus MeSH
- nanočástice * MeSH
- oxid železnato-železitý * MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- oxid železnato-železitý * MeSH
OBJECTIVES: Due to nano-dimensions (less than 100 nm), can nanoparticles probably penetrate through various membranes and travel from the bloodstream to other organs in the body. The aim of our study was to find out whether NPs Fe3O4 (coated with sodium oleate) injected into the tail vein of laboratory Wistar rats pass through the bloodstream to the respiratory tract (in comparison with a control group); and if so whether increasing doses of NPs Fe3O4 have an escalating harmful effect on selected bronchoalveolar lavage (BAL) parameters. METHODS: Wistar rats were intravenously given 3 doses of the suspension of NPs Fe3O4 (0.1% LD50 = 0.0364, 1.0% = 0.364 and 10.0% = 3.64 mg/kg animal body weight). Seven days later, we sacrificed the animals under anaesthesia, performed bronchoalveolar lavage (BAL), and isolated the collected cells. Many inflammatory and cytotoxic BAL parameters were examined. RESULTS: Both inflammatory and cytotoxic BAL parameters affected by Fe3O4 suspension were changed compared to control results, but not all were statistically significant. Thus, the NPs Fe3O4 passed through the bloodstream to the respiratory tract and affected it. The highest concentration of NPs Fe3O4 (10%) had the most influence on BAL parameters (7 of 12 parameters). Only 3 parameters showed a pure dose dependence. CONCLUSION: We assume that the adverse effect of Fe3O4 NPs in our study is probably not correlated with the dose, but rather with the size of the particles or with their surface area.
Faculty of Public Health Slovak Medical University Bratislava Slovak Republic
Medical Faculty Slovak Medical University Bratislava Slovak Republic
Zobrazit více v PubMed
Commission Recommendation of 18 October 2011 on the definition of nanomaterial (Text with EEA relevance). Off J Eur Union. 2011 Oct 20;54(L 275):38-40.
Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, et al. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A. 2002 Oct 25;65(20):1513-30. PubMed DOI
Kuka S, Hurbánková M, Drličková M, Baška T, Hudečková H, Tatarková Z. Nanomaterials - a new and former public health issue. The case of Slovakia. Cent Eur J Public Health. 2016 Dec;24(4):308-13. PubMed DOI
Hurbánková M, Romančíková D, Volkovová K, Wimmerová S, Moricová Š. Comparison of respiratory toxicity of TiO2 and Fe3O4 nanoparticles after intravenous instillation: an experimental study. Cent Eur J Public Health. 2020 Sep;28(3):202-7. PubMed DOI
Borm P, Muller-Schulte D. Nanoparticles in medicine. In: Donaldson K, Borm P, editors. Particle toxicology. Boca Raton: CRC Press, Taylor & Francis Group; 2007. p. 387-413.
Allhoff F, Lin P, Moore D. What is nanotechnology and why does it matter? From science to ethics. Oxford: Wiley - Blackwell; 2010. DOI
Kewal KJ. The handbook of nanomedicine. 3rd ed, Basel: Humana Press; 2008. DOI
Fornusek L, Vetvicka V, Kopecek J. [Phagocytosis of the peritoneal leukocytes - a new single method]. Immunol Zprav. 1982;(13):67-8. Czech.
Hurbankova M, Kaiglova A. Compared effects of asbestos and wollastonite fibrous dusts on various biological parameters measured in bronchoalveolar lavage fluid. J Trace Microprobe Tech. 1999;17(2):233-43.
Hurbánková M, Cerná S, Kováciková Z, Wimmerová S, Hrasková D, Marcisiaková J, et al. Effect of TiO2 nanofibres on selected bronchoalveolar parameters in acute and subacute phase-experimental study. Cent Eur J Public Health. 2013 Sep;21(3):165-70. PubMed DOI
Hurbankova M, Volkovova K, Hraskova D, Wimmerova S, Moricova S. Respiratory toxicity of Fe3O4 nanoparticles: experimental study. Rev Environ Health. 2017 Mar 1;32(1-2):207-10.
Dziedzic D, Wheeler CS, Gross KB. Bronchoalveolar lavage: detecting markers of lung injury. In: Corn M, editor. Handbook of hazardous materials. San Diego: Academic Press; 1993. p. 99-111. DOI
Hraskova D. [Monitoring of inflammatory and cytotoxic parameters of bronchoalveolar lavage after exposure to selected nanoparticles] [dissertation]. Bratislava: Slovak Medical University; 2015. Slovak.
Brody M, Böhm I, Bauer R. Mechanism of action of methotrexate: experimental evidence that methotrexate blocks the binding of interleukin 1 beta to the interleukin 1 receptor on target cells. Eur J Clin Chem Clin Biochem. 1993 Oct;31(10):667-74. PubMed DOI
Tarkowski M, Górski P. Macrophage activity in asbestos related diseases. Pol J Occup Med Environ Health. 1991;4(2):115-25.
Hurbánková M, Hraškov D, Beňo M, Černa S, Wimmerova S, Moricová Š. Combined effect of selected mineral fibres and tobacco smoke on respiratory tract in rats. Cent Eur J Public Health. 2014 Sep;22(3):159-63. PubMed DOI
Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007 Dec;2(4):MR17-71. PubMed DOI
Chlap Z, Kopinski P, Gil K. Proposal of new Cytological Entity: Macrophagic Alveolotis (Alveolitis Macrophagica) in Bronchoalveolar Lavage Analysis. In: Abstract Book from 6th International Conference On Bronchoalveolar Lavage; 1998 Jun 24-27; Corfu, Greece. Corfu; 1998. p. 31.
Beno M, Hurbankova M, Dusinska M, Cerna S, Volkovova K, Staruchova M, et al. Multinucleate cells (MNC) as sensitive semiquantitative biomarkers of the toxic effect after experimental fibrous dust and cigarette smoke inhalation by rats. Exp Toxicol Pathol. 2005 Aug;57(1):77-87. PubMed DOI
Ahamed M, Alhadlaq HA, Alam J, Khan MA, Ali D, Alarafi S. Iron oxide nanoparticle-induced oxidative stress and genotoxicity in human skin epithelial and lung epithelial cell lines. Curr Pharm Des. 2013;19(37):6681-90. PubMed DOI
Igor Pujalté I, Passagne I, Daculsi R, de Portal C, Ohayon-Courtèsc C, L'Azou B. Cytotoxic effects and cellular oxidative mechanisms of metallic nanoparticles on renal tubular cells: impact of particle solubility. Toxicol Res. 2015;(2):55-68. DOI
Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF. Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010 Sep-Oct;2(5):544-68. PubMed DOI
Pelclova D, Zdimal V, Kacer P, Fenclova Z, Vlckova S, Syslova K, et al. Oxidative stress markers are elevated in exhaled breath condensate of workers exposed to nanoparticles during iron oxide pigment production. J Breath Res. 2016 Feb 1;10(1):016004. doi: 10.1088/1752-7155/10/1/016004. PubMed DOI
Duffin R, Tran CL, Clouter A, Brown DM, MacNee W, Stone V, et al. The importance of surface area and specific reactivity in the acute pulmonary inflammatory response to particles. Ann Occup Hyg. 2002;46(Suppl 1):242-5.
Ruzer LS, Harley NH. Aerosols handbook: measurement, dosimetry, and health effects. 2nd ed. Boca Raton: CRC Press; 2004. DOI