• This record comes from PubMed

On the Common Journey of Neural Cells through Ischemic Brain Injury and Alzheimer's Disease

. 2021 Sep 07 ; 22 (18) : . [epub] 20210907

Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
21-24674S Grantová Agentura České Republiky

Ischemic brain injury and Alzheimer's disease (AD) both lead to cell death in the central nervous system (CNS) and thus negatively affect particularly the elderly population. Due to the lack of a definitive cure for brain ischemia and AD, it is advisable to carefully study, compare, and contrast the mechanisms that trigger, and are involved in, both neuropathologies. A deeper understanding of these mechanisms may help ameliorate, or even prevent, the destructive effects of neurodegenerative disorders. In this review, we deal with ischemic damage and AD, with the main emphasis on the common properties of these CNS disorders. Importantly, we discuss the Wnt signaling pathway as a significant factor in the cell fate determination and cell survival in the diseased adult CNS. Finally, we summarize the interesting findings that may improve or complement the current sparse and insufficient treatments for brain ischemia and AD, and we delineate prospective directions in regenerative medicine.

See more in PubMed

Katan M., Luft A. Global Burden of Stroke. Semin. Neurol. 2018;38:208–211. doi: 10.1055/s-0038-1649503. PubMed DOI

DeTure M.A., Dickson D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 2019;14:1–18. doi: 10.1186/s13024-019-0333-5. PubMed DOI PMC

Pluta R., Januszewski S., Czuczwar S.J. Brain Ischemia as a Prelude to Alzheimer’s Disease. Front. Aging Neurosci. 2021;13:636653. doi: 10.3389/fnagi.2021.636653. PubMed DOI PMC

Nakagawa T., Hasegawa Y., Uekawa K., Senju S., Nakagata N., Matsui K., Kim-Mitsuyama S. Transient Mild Cerebral Ischemia Significantly Deteriorated Cognitive Impairment in a Mouse Model of Alzheimer’s DiseaseviaAngiotensin AT1 Receptor. Am. J. Hypertens. 2016;30:141–150. doi: 10.1093/ajh/hpw099. PubMed DOI

World Health Organization (WHO) The Top 10 Causes of Death. [(accessed on 4 July 2021)]. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.

Nadarajan V., Perry R.J., Johnson J., Werring D.J. Transient ischaemic attacks: Mimics and chameleons. Pract. Neurol. 2014;14:23–31. doi: 10.1136/practneurol-2013-000782. PubMed DOI PMC

Kirdajova D.B., Kriska J., Tureckova J., Anderova M. Ischemia-Triggered Glutamate Excitotoxicity From the Perspective of Glial Cells. Front. Cell. Neurosci. 2020;14:51. doi: 10.3389/fncel.2020.00051. PubMed DOI PMC

Anderova M., Vorisek I., Pivonkova H., Benesova J., Vargova L., Cicanic M., Chvatal A., Sykova E. Cell Death/Proliferation and Alterations in Glial Morphology Contribute to Changes in Diffusivity in the Rat Hippocampus after Hypoxia—Ischemia. Br. J. Pharmacol. 2010;31:894–907. doi: 10.1038/jcbfm.2010.168. PubMed DOI PMC

Ferrer I., Planas A.M. Signaling of Cell Death and Cell Survival Following Focal Cerebral Ischemia: Life and Death Struggle in the Penumbra. J. Neuropathol. Exp. Neurol. 2003;62:329–339. doi: 10.1093/jnen/62.4.329. PubMed DOI

Brouns R., De Deyn P. The complexity of neurobiological processes in acute ischemic stroke. Clin. Neurol. Neurosurg. 2009;111:483–495. doi: 10.1016/j.clineuro.2009.04.001. PubMed DOI

A Donnan G., Fisher M., Macleod M.R., Davis S.M. Stroke. Lancet. 2008;371:1612–1623. doi: 10.1016/S0140-6736(08)60694-7. PubMed DOI

Puig B., Brenna S., Magnus T. Molecular Communication of a Dying Neuron in Stroke. Int. J. Mol. Sci. 2018;19:2834. doi: 10.3390/ijms19092834. PubMed DOI PMC

Thirugnanachandran T., Ma H., Singhal S., Slater L.-A., Davis S.M., A Donnan G., Phan T. Refining the ischemic penumbra with topography. Int. J. Stroke. 2017;13:277–284. doi: 10.1177/1747493017743056. PubMed DOI

Choudhury G.R., Ding S. Reactive astrocytes and therapeutic potential in focal ischemic stroke. Neurobiol. Dis. 2016;85:234–244. doi: 10.1016/j.nbd.2015.05.003. PubMed DOI PMC

Ding S. Dynamic reactive astrocytes after focal ischemia. Neural Regen. Res. 2014;9:2048–2052. doi: 10.4103/1673-5374.147929. PubMed DOI PMC

Okada S., Hara M., Kobayakawa K., Matsumoto Y., Nakashima Y. Astrocyte reactivity and astrogliosis after spinal cord injury. Neurosci. Res. 2018;126:39–43. doi: 10.1016/j.neures.2017.10.004. PubMed DOI

Morizawa Y.M., Hirayama Y., Ohno N., Shibata S., Shigetomi E., Sui Y., Nabekura J., Sato K., Okajima F., Takebayashi H., et al. Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nat. Commun. 2017;8 doi: 10.1038/s41467-017-00037-1. PubMed DOI PMC

Hu X., Li P., Guo Y., Wang H., Leak R.K., Chen S., Gao Y., Chen J. Microglia/Macrophage Polarization Dynamics Reveal Novel Mechanism of Injury Expansion after Focal Cerebral Ischemia. Stroke. 2012;43:3063–3070. doi: 10.1161/STROKEAHA.112.659656. PubMed DOI

Xu S., Lu J., Shao A., Zhang J.H., Zhang J. Glial Cells: Role of the Immune Response in Ischemic Stroke. Front. Immunol. 2020;11:294. doi: 10.3389/fimmu.2020.00294. PubMed DOI PMC

Barakat R.R., Redzic Z.B. The Role of Activated Microglia and Resident Macrophages in the Neurovascular Unit during Cerebral Ischemia: Is the Jury Still Out? Med. Princ. Pract. 2016;25:3–14. doi: 10.1159/000435858. PubMed DOI PMC

Woodruff T.M., Thundyil J., Tang S.-C., Sobey C.G., Taylor S.M., Arumugam T.V. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol. Neurodegener. 2011;6:11–19. doi: 10.1186/1750-1326-6-11. PubMed DOI PMC

Brouns R., Sheorajpanday R., Wauters A., De Surgeloose D., Mariën P., De Deyn P.P. Evaluation of lactate as a marker of metabolic stress and cause of secondary damage in acute ischemic stroke or TIA. Clin. Chim. Acta. 2008;397:27–31. doi: 10.1016/j.cca.2008.07.016. PubMed DOI

Abramov A.Y., Scorziello A., Duchen M. Three Distinct Mechanisms Generate Oxygen Free Radicals in Neurons and Contribute to Cell Death during Anoxia and Reoxygenation. J. Neurosci. 2007;27:1129–1138. doi: 10.1523/JNEUROSCI.4468-06.2007. PubMed DOI PMC

Rossi D.J., Brady J.D., Mohr C. Astrocyte metabolism and signaling during brain ischemia. Nat. Neurosci. 2007;10:1377–1386. doi: 10.1038/nn2004. PubMed DOI PMC

Liang D., Bhatta S., Gerzanich V., Simard J.M. Cytotoxic edema: Mechanisms of pathological cell swelling. Neurosurg. Focus. 2007;22:1–9. doi: 10.3171/foc.2007.22.5.3. PubMed DOI PMC

Wu M.-Y., Yiang G.-T., Liao W.-T., Tsai A., Cheng Y.-L., Cheng P.-W., Li C.-Y. Current Mechanistic Concepts in Ischemia and Reperfusion Injury. Cell. Physiol. Biochem. 2018;46:1650–1667. doi: 10.1159/000489241. PubMed DOI

2020 Alzheimer’s Disease Facts and Figures. Alzheimers Dementia. [(accessed on 27 July 2021)]. Available online: https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1002/alz.12068. DOI

Niu H., Álvarez-Álvarez I., Guillén-Grima F., Aguinaga-Ontoso I. Prevalencia e incidencia de la enfermedad de Alzheimer en Europa: Metaanálisis. Neurología. 2017;32:523–532. doi: 10.1016/j.nrl.2016.02.016. PubMed DOI

Hebert L.E., Weuve J., Scherr P.A., Evans D.A. Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology. 2013;80:1778–1783. doi: 10.1212/WNL.0b013e31828726f5. PubMed DOI PMC

Prince M., Bryce R., Albanese E., Wimo A., Ribeiro W., Ferri C. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimer’s Dement. 2013;9:63–75. doi: 10.1016/j.jalz.2012.11.007. PubMed DOI

Russ T.C., Batty G., Hearnshaw G.F., Fenton C., Starr J.M. Geographical variation in dementia: Systematic review with meta-analysis. Int. J. Epidemiol. 2012;41:1012–1032. doi: 10.1093/ije/dys103. PubMed DOI PMC

Lopez O.L., Kuller L.H. Handbook of Clinical Neurology. Volume 167. Elsevier; Amsterdam, The Netherlands: 2019. Epidemiology of aging and associated cognitive disorders: Prevalence and incidence of Alzheimer’s disease and other dementias; pp. 139–148. PubMed DOI

Sosa-Ortiz A.L., Castillo G.I.A., Prince M. Epidemiology of Dementias and Alzheimer’s Disease. Arch. Med. Res. 2012;43:600–608. doi: 10.1016/j.arcmed.2012.11.003. PubMed DOI

Chandra V., Ganguli M., Pandav R., Johnston J., Belle S., DeKosky S.T. Prevalence of Alzheimer’s disease and other dementias in rural India. Neurology. 1998;51:1000–1008. doi: 10.1212/WNL.51.4.1000. PubMed DOI

Hendrie H.C., O Osuntokun B., Hall K.S., O Ogunniyi A., Hui S.L., Unverzagt F.W., Gureje O., A Rodenberg C., Baiyewu O., Musick B.S. Prevalence of Alzheimer’s disease and dementia in two communities: Nigerian Africans and African Americans. Am. J. Psychiatry. 1995;152:1485–1492. doi: 10.1176/ajp.152.10.1485. PubMed DOI

Life expectancy. [(accessed on 27 July 2021)]. Available online: https://www.worlddata.info/life-expectancy.php.

Frisoni G.B., Fox N.C., Clifford R.J., Jr., Scheltens P., Thompson P. The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol. 2010;6:67–77. doi: 10.1038/nrneurol.2009.215. PubMed DOI PMC

Matsuda H. MRI morphometry in Alzheimer’s disease. Ageing Res. Rev. 2016;30:17–24. doi: 10.1016/j.arr.2016.01.003. PubMed DOI

Nordberg A., Rinne J.O., Kadir A., Långström B. The use of PET in Alzheimer disease. Nat. Rev. Neurol. 2010;6:78–87. doi: 10.1038/nrneurol.2009.217. PubMed DOI

Duara R., Lopez-Alberola R.F., Barker W.W., Loewenstein D.A., Zatinsky M., Eisdorfer C.E., Weinberg G.B. A comparison of familial and sporadic Alzheimer’s disease. Neurology. 1993;43:1377. doi: 10.1212/WNL.43.7.1377. PubMed DOI

Corder E.H., Saunders A.M., Strittmatter W.J., Schmechel D.E., Gaskell P.C., Small G.W., Roses A.D., Haines J.L., Pericak-Vance M.A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261:921–923. doi: 10.1126/science.8346443. PubMed DOI

Verghese P.B., Castellano J., Garai K., Wang Y., Jiang H., Shah A., Bu G., Frieden C., Holtzman D.M. ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/A association in physiological conditions. Proc. Natl. Acad. Sci. USA. 2013;110:E1807–E1816. doi: 10.1073/pnas.1220484110. PubMed DOI PMC

Cerf E., Gustot A., Goormaghtigh E., Ruysschaert J.-M., Raussens V. High ability of apolipoprotein E4 to stabilize amyloid-β peptide oligomers, the pathological entities responsible for Alzheimer’s disease. FASEB J. 2011;25:1585–1595. doi: 10.1096/fj.10-175976. PubMed DOI

Armstrong R.A. Risk factors for Alzheimer’s disease. Folia Neuropathol. 2019;57:87–105. doi: 10.5114/fn.2019.85929. PubMed DOI

Mendiola-Precoma J., Berumen L.C., Padilla K., Garcia-Alcocer G. Therapies for Prevention and Treatment of Alzheimer’s Disease. BioMed Res. Int. 2016;2016:2589276. doi: 10.1155/2016/2589276. PubMed DOI PMC

Jaunmuktane Z., Mead S., Ellis M., Wadsworth J., Nicoll A.J., Kenny J., Launchbury F., Linehan J.M., Richard-Loendt A., Walker A.S., et al. Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy. Nat. Cell Biol. 2015;525:247–250. doi: 10.1038/nature15369. PubMed DOI

Tarasoff-Conway J.M., Carare R.O., Osorio R., Glodzik L., Butler T., Fieremans E., Axel L., Rusinek H., Nicholson C., Zlokovic B.V., et al. Clearance systems in the brain—Implications for Alzheimer disease. Nat. Rev. Neurol. 2015;11:457–470. doi: 10.1038/nrneurol.2015.119. PubMed DOI PMC

Harrison I.F., Ismail O., Machhada A., Colgan N., Ohene Y., Nahavandi P., Ahmed Z., Fisher A., Meftah S., Murray T.K., et al. Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model. Brain. 2020;143:2576–2593. doi: 10.1093/brain/awaa179. PubMed DOI PMC

De Strooper B., Karran E. The Cellular Phase of Alzheimer’s Disease. Cell. 2016;164:603–615. doi: 10.1016/j.cell.2015.12.056. PubMed DOI

Jack C.R., Wiste H.J., Weigand S.D., A Rocca W., Knopman D.S., Mielke M., Lowe V.J., Senjem M.L., Gunter J.L., Preboske G.M., et al. Age-specific population frequencies of cerebral β-amyloidosis and neurodegeneration among people with normal cognitive function aged 50–89 years: A cross-sectional study. Lancet Neurol. 2014;13:997–1005. doi: 10.1016/S1474-4422(14)70194-2. PubMed DOI PMC

Jack C.R., Wiste H.J., Weigand S.D., Therneau T.M., Knopman D.S., Lowe V., Vemuri P., Mielke M., O Roberts R., Machulda M.M., et al. Age-specific and sex-specific prevalence of cerebral β-amyloidosis, tauopathy, and neurodegeneration in cognitively unimpaired individuals aged 50–95 years: A cross-sectional study. Lancet Neurol. 2017;16:435–444. doi: 10.1016/S1474-4422(17)30077-7. PubMed DOI PMC

Lazarevic V., Fieńko S., Andres-Alonso M., Anni D., Ivanova D., Montenegro-Venegas C., Gundelfinger E., Cousin M., Fejtova A. Physiological Concentrations of Amyloid Beta Regulate Recycling of Synaptic Vesicles via Alpha7 Acetylcholine Receptor and CDK5/Calcineurin Signaling. Front. Mol. Neurosci. 2017;10:221. doi: 10.3389/fnmol.2017.00221. PubMed DOI PMC

Zhang F., Gannon M., Chen Y., Yan S., Zhang S., Feng W., Tao J., Sha B., Liu Z., Saito T., et al. β-amyloid redirects norepinephrine signaling to activate the pathogenic GSK3β/tau cascade. Sci. Transl. Med. 2020;12:eaay6931. doi: 10.1126/scitranslmed.aay6931. PubMed DOI PMC

Barthélemy N.R., Network T.D.I.A., Li Y., Joseph-Mathurin N., Gordon B.A., Hassenstab J., Benzinger T.L.S., Buckles V., Fagan A.M., Perrin R.J., et al. A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer’s disease. Nat. Med. 2020;26:398–407. doi: 10.1038/s41591-020-0781-z. PubMed DOI PMC

Snyder E.M., Nong Y., Almeida C.G., Paul S., Moran T., Choi E.Y., Nairn A., Salter M.W., Lombroso P.J., Gouras G., et al. Regulation of NMDA receptor trafficking by amyloid-β. Nat. Neurosci. 2005;8:1051–1058. doi: 10.1038/nn1503. PubMed DOI

Shankar G.M., Bloodgood B., Townsend M., Walsh D.M., Selkoe D.J., Sabatini B.L. Natural Oligomers of the Alzheimer Amyloid-β Protein Induce Reversible Synapse Loss by Modulating an NMDA-Type Glutamate Receptor-Dependent Signaling Pathway. J. Neurosci. 2007;27:2866–2875. doi: 10.1523/JNEUROSCI.4970-06.2007. PubMed DOI PMC

Cleary J.P., Walsh D.M., Hofmeister J.J., Shankar G.M., A Kuskowski M., Selkoe D.J., Ashe K.H. Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nat. Neurosci. 2004;8:79–84. doi: 10.1038/nn1372. PubMed DOI

Wang Q., Walsh M.M., Rowan M.J., Selkoe D.J., Anwyl R. Block of Long-Term Potentiation by Naturally Secreted and Synthetic Amyloid β-Peptide in Hippocampal Slices Is Mediated via Activation of the Kinases c-Jun N-Terminal Kinase, Cyclin-Dependent Kinase 5, and p38 Mitogen-Activated Protein Kinase as well as Metabotropic Glutamate Receptor Type. J. Neurosci. 2004;24:3370–3378. doi: 10.1523/JNEUROSCI.1633-03.2004. PubMed DOI PMC

Li S., Hong S., Shepardson N.E., Walsh D.M., Shankar G.M., Selkoe D. Soluble Oligomers of Amyloid β Protein Facilitate Hippocampal Long-Term Depression by Disrupting Neuronal Glutamate Uptake. Neuron. 2009;62:788–801. doi: 10.1016/j.neuron.2009.05.012. PubMed DOI PMC

Xia M., Cheng X., Yi R., Gao D., Xiong J. The Binding Receptors of Aβ: An Alternative Therapeutic Target for Alzheimer’s Disease. Mol. Neurobiol. 2014;53:455–471. doi: 10.1007/s12035-014-8994-0. PubMed DOI

Benilova I., Karran E., De Strooper B. The toxic Aβ oligomer and Alzheimer’s disease: An emperor in need of clothes. Nat. Neurosci. 2012;15:349–357. doi: 10.1038/nn.3028. PubMed DOI

Viola K.L., Klein W.L. Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol. 2015;129:183–206. doi: 10.1007/s00401-015-1386-3. PubMed DOI PMC

Campioni S., Mannini B., Zampagni M., Pensalfini A., Parrini C., Evangelisti E., Relini A., Stefani M., Dobson C.M., Cecchi C., et al. A causative link between the structure of aberrant protein oligomers and their toxicity. Nat. Chem. Biol. 2010;6:140–147. doi: 10.1038/nchembio.283. PubMed DOI

Walsh D.M., Klyubin I., Fadeeva J.V., Cullen W.K., Anwyl R., Wolfe M.S., Rowan M.J., Selkoe D.J. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nat. Cell Biol. 2002;416:535–539. doi: 10.1038/416535a. PubMed DOI

Lesné S., Koh M.T., Kotilinek L., Kayed R., Glabe C.G., Yang A., Gallagher M., Ashe K.H. A specific amyloid-β protein assembly in the brain impairs memory. Nature. 2006;440:352–357. doi: 10.1038/nature04533. PubMed DOI

Prinz M., Jung S., Priller J. Microglia Biology: One Century of Evolving Concepts. Cell. 2019;179:292–311. doi: 10.1016/j.cell.2019.08.053. PubMed DOI

Salter M.W., Beggs S. Sublime Microglia: Expanding Roles for the Guardians of the CNS. Cell. 2014;158:15–24. doi: 10.1016/j.cell.2014.06.008. PubMed DOI

Li Y., Du X.-F., Liu C.-S., Wen Z.L., Du J.-L. Reciprocal Regulation between Resting Microglial Dynamics and Neuronal Activity In Vivo. Dev. Cell. 2012;23:1189–1202. doi: 10.1016/j.devcel.2012.10.027. PubMed DOI

Thériault P., ElAli A., Rivest S. The dynamics of monocytes and microglia in Alzheimer’s disease. Alzheimer’s Res. Ther. 2015;7:1–10. doi: 10.1186/s13195-015-0125-2. PubMed DOI PMC

Serrano-Pozo A., Muzikansky A., Gómez-Isla T., Growdon J.H., Betensky R.A., Frosch M.P., Hyman B.T. Differential Relationships of Reactive Astrocytes and Microglia to Fibrillar Amyloid Deposits in Alzheimer Disease. J. Neuropathol. Exp. Neurol. 2013;72:462–471. doi: 10.1097/NEN.0b013e3182933788. PubMed DOI PMC

Goetzl E.J., Miller B.L. Multicellular hypothesis for the pathogenesis of Alzheimer’s disease. FASEB J. 2017;31:1792–1795. doi: 10.1096/fj.201601221R. PubMed DOI

Babcock A.A., Ilkjær L., Clausen B.H., Villadsen B., Dissing-Olesen L., Bendixen A.T., Lyck L., Lambertsen K.L., Finsen B. Cytokine-producing microglia have an altered beta-amyloid load in aged APP/PS1 Tg mice. Brain Behav. Immun. 2015;48:86–101. doi: 10.1016/j.bbi.2015.03.006. PubMed DOI

Orre M., Kamphuis W., Dooves S., Kooijman L., Chan E.T., Kirk C.J., Smith V.D., Koot S., Mamber C., Jansen A.H., et al. Reactive glia show increased immunoproteasome activity in Alzheimer’s disease. Brain. 2013;136:1415–1431. doi: 10.1093/brain/awt083. PubMed DOI

Esolito E., Esastre M. Microglia Function in Alzheimer’s Disease. Front. Pharmacol. 2012;3:14. doi: 10.3389/fphar.2012.00014. PubMed DOI PMC

Yong V.W., Moumdjian R., Yong F.P., Ruijs T.C., Freedman M.S., Cashman N., Antel J. Gamma-interferon promotes proliferation of adult human astrocytes in vitro and reactive gliosis in the adult mouse brain in vivo. Proc. Natl. Acad. Sci. USA. 1991;88:7016–7020. doi: 10.1073/pnas.88.16.7016. PubMed DOI PMC

Blasko I., Veerhuis R., Stampfer-Kountchev M., Saurwein-Teissl M., Eikelenboom P., Grubeck-Loebenstein B. Costimulatory Effects of Interferon-γ and Interleukin-1β or Tumor Necrosis Factor α on the Synthesis of Aβ1-40 and Aβ1-42 by Human Astrocytes. Neurobiol. Dis. 2000;7:682–689. doi: 10.1006/nbdi.2000.0321. PubMed DOI

Kleinberger G., Yamanishi Y., Suárez-Calvet M., Czirr E., Lohmann E., Cuyvers E., Struyfs H., Pettkus N., Wenninger-Weinzierl A., Mazaheri F., et al. TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci. Transl. Med. 2014;6:243ra86. doi: 10.1126/scitranslmed.3009093. PubMed DOI

Griciuc A., Serrano-Pozo A., Parrado A.R., Lesinski A.N., Asselin C.N., Mullin K., Hooli B., Choi S.H., Hyman B.T., Tanzi R.E. Alzheimer’s Disease Risk Gene CD33 Inhibits Microglial Uptake of Amyloid Beta. Neuron. 2013;78:631–643. doi: 10.1016/j.neuron.2013.04.014. PubMed DOI PMC

Heneka M.T., Carson M.J., El Khoury J., Landreth G.E., Brosseron F., Feinstein D.L., Jacobs A.H., Wyss-Coray T., Vitorica J., Ransohoff R.M., et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405. doi: 10.1016/S1474-4422(15)70016-5. PubMed DOI PMC

Liu C., Cui G., Zhu M., Kang X., Guo H. Neuroinflammation in Alzheimer’s disease: Chemokines produced by astrocytes and chemokine receptors. Int. J. Clin. Exp. Pathol. 2014;7:8342–8355. PubMed PMC

Goetzl E.J., Mustapic M., Kapogiannis D., Eitan E., Lobach I.V., Goetzl L., Schwartz J.B., Miller B.L. Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer’s disease. FASEB J. 2016;30:3853–3859. doi: 10.1096/fj.201600756R. PubMed DOI PMC

Haj-Yasein N.N., Vindedal G.F., Eilert-Olsen M., Gundersen G.A., Skare Ø., Laake P., Klungland A., Thorén A.E., Burkhardt J.M., Ottersen O.P., et al. Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood-brain water uptake and confers barrier function on perivascular astrocyte endfeet. Proc. Natl. Acad. Sci. USA. 2011;108:17815–17820. doi: 10.1073/pnas.1110655108. PubMed DOI PMC

Lan Y.-L., Zhao J., Ma T., Li S. The Potential Roles of Aquaporin 4 in Alzheimer’s Disease. Mol. Neurobiol. 2016;53:5300–5309. doi: 10.1007/s12035-015-9446-1. PubMed DOI

Valenza M., Facchinetti R., Steardo L., Scuderi C. Altered Waste Disposal System in Aging and Alzheimer’s Disease: Focus on Astrocytic Aquaporin. Front Pharmacol. 2020;10:1656. doi: 10.3389/fphar.2019.01656. PubMed DOI PMC

Iram T., Trudler D., Kain D., Kanner S., Galron R., Vassar R., Barzilai A., Blinder P., Fishelson Z., Frenkel D. Astrocytes from old Alzheimer’s disease mice are impaired in Aβ uptake and in neuroprotection. Neurobiol. Dis. 2016;96:84–94. doi: 10.1016/j.nbd.2016.08.001. PubMed DOI

Hynd M.R., Scott H.L., Dodd P.R. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem. Int. 2004;45:583–595. doi: 10.1016/j.neuint.2004.03.007. PubMed DOI

Assefa B.T., Gebre A.K., Altaye B.M. Reactive Astrocytes as Drug Target in Alzheimer’s Disease. BioMed Res. Int. 2018;2018:4160247. doi: 10.1155/2018/4160247. PubMed DOI PMC

Acosta C., Anderson H.D., Anderson C.M. Astrocyte dysfunction in Alzheimer disease. J. Neurosci. Res. 2017;95:2430–2447. doi: 10.1002/jnr.24075. PubMed DOI

Bartzokis G. Alzheimer’s disease as homeostatic responses to age-related myelin breakdown. Neurobiol. Aging. 2011;32:1341–1371. doi: 10.1016/j.neurobiolaging.2009.08.007. PubMed DOI PMC

Behrendt G., Baer K., Buffo A., Curtis M., Faull R., Rees M., Götz M., Dimou L. Dynamic changes in myelin aberrations and oligodendrocyte generation in chronic amyloidosis in mice and men. Glia. 2013;61:273–286. doi: 10.1002/glia.22432. PubMed DOI

Desai M.K., Mastrangelo M.A., Ryan D., Sudol K.L., Narrow W.C., Bowers W.J. Early Oligodendrocyte/Myelin Pathology in Alzheimer’s Disease Mice Constitutes a Novel Therapeutic Target. Am. J. Pathol. 2010;177:1422–1435. doi: 10.2353/ajpath.2010.100087. PubMed DOI PMC

Lall R., Mohammed R., Ojha U. What are the links between hypoxia and Alzheimer’s disease? Neuropsychiatr. Dis. Treat. 2019;ume 15:1343–1354. doi: 10.2147/NDT.S203103. PubMed DOI PMC

Silva M.V.F., Loures C.D.M.G., Alves L.C.V., De Souza L.C., Borges K.B.G., Carvalho M.D.G. Alzheimer’s disease: Risk factors and potentially protective measures. J. Biomed. Sci. 2019;26:1–11. doi: 10.1186/s12929-019-0524-y. PubMed DOI PMC

Huang H.-D., Yang C.-M., Shu H.-F., Kuang Y.-Q., Yang T., He W.-Q., Zhao K., Xia X., Cheng J.-M., Ma Y., et al. Genetic predisposition of stroke: Understanding the evolving landscape through meta-analysis. Int. J. Clin. Exp. Med. 2015;8:1315–1323. PubMed PMC

Chauhan G., Debette S. Genetic Risk Factors for Ischemic and Hemorrhagic Stroke. Curr. Cardiol. Rep. 2016;18:124. doi: 10.1007/s11886-016-0804-z. PubMed DOI PMC

Rosenberg G.A. Understanding aging effects on brain ischemia. Neurobiol. Dis. 2019;126:3–4. doi: 10.1016/j.nbd.2019.04.002. PubMed DOI

Li J., Shan W., Zuo Z. Age-Related Upregulation of Carboxyl Terminal Modulator Protein Contributes to the Decreased Brain Ischemic Tolerance in Older Rats. Mol. Neurobiol. 2017;55:6145–6154. doi: 10.1007/s12035-017-0826-6. PubMed DOI PMC

Cortes-Canteli M., Iadecola C. Alzheimer’s Disease and Vascular Aging. J. Am. Coll. Cardiol. 2020;75:942–951. doi: 10.1016/j.jacc.2019.10.062. PubMed DOI PMC

Sengoku R. Aging and Alzheimer’s disease pathology. Neuropathology. 2019;40:22–29. doi: 10.1111/neup.12626. PubMed DOI

Habib N., McCabe C., Medina S., Varshavsky M., Kitsberg D., Dvir-Szternfeld R., Green G., Dionne D., Nguyen L., Marshall J.L., et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat. Neurosci. 2020;23:701–706. doi: 10.1038/s41593-020-0624-8. PubMed DOI PMC

Yassine H.N., Finch C.E. APOE Alleles and Diet in Brain Aging and Alzheimer’s Disease. Front. Aging Neurosci. 2020;12:150. doi: 10.3389/fnagi.2020.00150. PubMed DOI PMC

Pan B., Jin X., Jun L., Qiu S., Zheng Q., Pan M. The relationship between smoking and stroke. Medicine. 2019;98:e14872. doi: 10.1097/MD.0000000000014872. PubMed DOI PMC

Wallin C., Sholts S.B., Österlund N., Luo J., Jarvet J., Roos P.M., Ilag L., Gräslund A., Wärmländer S.K.T.S. Alzheimer’s disease and cigarette smoke components: Effects of nicotine, PAHs, and Cd(II), Cr(III), Pb(II), Pb(IV) ions on amyloid-β peptide aggregation. Sci. Rep. 2017;7:14423. doi: 10.1038/s41598-017-13759-5. PubMed DOI PMC

Ułamek-Kozioł M., Pluta R., Januszewski S., Kocki J., Bogucka-Kocka A., Czuczwar S.J. Expression of Alzheimer’s disease risk genes in ischemic brain degeneration. Pharmacol. Rep. 2016;68:1345–1349. doi: 10.1016/j.pharep.2016.09.006. PubMed DOI

Ułamek-Kozioł M., Pluta R., Bogucka-Kocka A., Januszewski S., Kocki J., Czuczwar S.J. Brain ischemia with Alzheimer phenotype dysregulates Alzheimer’s disease-related proteins. Pharmacol. Rep. 2016;68:582–591. doi: 10.1016/j.pharep.2016.01.006. PubMed DOI

Pluta R., Ułamek-Kozioł M., Januszewski S., Czuczwar S.J. Participation of Amyloid and Tau Protein in Neuronal Death and Neurodegeneration after Brain Ischemia. Int. J. Mol. Sci. 2020;21:4599. doi: 10.3390/ijms21134599. PubMed DOI PMC

Badan I., Dinca I., Buchhold B., Suofu Y., Walker L., Gratz M., Platt D.H., Kessler C.H., Popa-Wagner A. Accelerated accumulation of N- and C-terminal betaAPP fragments and delayed recovery of microtubule-associated protein 1B expression following stroke in aged rats. Eur. J. Neurosci. 2004;19:2270–2280. doi: 10.1111/j.0953-816X.2004.03323.x. PubMed DOI

Shi J., Yang S., Stubley L., Day A., Simpkins J. Hypoperfusion induces overexpression of β-amyloid precursor protein mRNA in a focal ischemic rodent model. Brain Res. 2000;853:1–4. doi: 10.1016/S0006-8993(99)02113-7. PubMed DOI

Pluta R., Januszewski S., Jabłoński M., Ułamek M. Brain Edema XIV. Volume 106. Springer; Vienna, Austria: 2010. Factors in Creepy Delayed Neuronal Death in Hippocampus Following Brain Ischemia–Reperfusion Injury with Long-Term Survival; pp. 37–41. PubMed DOI

Qi J.-P., Wu H., Yang Y., Wang D.-D., Chen Y.-X., Gu Y.-H., Liu T. Cerebral Ischemia and Alzheimer’s Disease: The Expression of Amyloid-β and Apolipoprotein E in Human Hippocampus. J. Alzheimer’s Dis. 2007;12:335–341. doi: 10.3233/JAD-2007-12406. PubMed DOI

Blumenau S., Foddis M., Müller S., Holtgrewe M., Bentele K., Berchtold D., Beule D., Dirnagl U., Sassi C. Investigating APOE, APP-Aβ metabolism genes and Alzheimer’s disease GWAS hits in brain small vessel ischemic disease. Sci. Rep. 2020;10:7103. doi: 10.1038/s41598-020-63183-5. PubMed DOI PMC

Pluta R., Ułamek-Kozioł M., Januszewski S., Sciślewska M., Bogucka-Kocka A., Kocki J. Alzheimer’s factors in postischemic dementia. Rom. J. Morphol. Embryol. 2012;53:461–466. PubMed

Pluta R., Ułamek-Kozioł M., Januszewski S., Czuczwar S.J. Tau Protein Dysfunction after Brain Ischemia. J. Alzheimer’s Dis. 2018;66:429–437. doi: 10.3233/JAD-180772. PubMed DOI PMC

Pluta R., Bogucka-Kocka A., Ułamek-Kozioł M., Bogucki J., Januszewski S., Kocki J., Czuczwar S.J. Ischemic tau protein gene induction as an additional key factor driving development of Alzheimer’s phenotype changes in CA1 area of hippocampus in an ischemic model of Alzheimer’s disease. Pharmacol. Rep. 2018;70:881–884. doi: 10.1016/j.pharep.2018.03.004. PubMed DOI

Pluta R. Astroglial Expression of the β-Amyloid in Ischemia-Reperfusion Brain Injury. Ann. N. Y. Acad. Sci. 2002;977:102–108. doi: 10.1111/j.1749-6632.2002.tb04803.x. PubMed DOI

Guo C.-Y., Xiong T.-Q., Tan B.-H., Gui Y., Ye N., Li S.-L., Li Y.-C. The temporal and spatial changes of actin cytoskeleton in the hippocampal CA1 neurons following transient global ischemia. Brain Res. 2019;1720:146297. doi: 10.1016/j.brainres.2019.06.016. PubMed DOI

Takuma K., Baba A., Matsuda T. Astrocyte apoptosis: Implications for neuroprotection. Prog. Neurobiol. 2004;72:111–127. doi: 10.1016/j.pneurobio.2004.02.001. PubMed DOI

Milewski K., Bogacińska-Karaś M., Hilgier W., Albrecht J., Zielińska M. TNFα increases STAT3-mediated expression of glutaminase isoform KGA in cultured rat astrocytes. Cytokine. 2019;123:154774. doi: 10.1016/j.cyto.2019.154774. PubMed DOI

Gülke E., Gelderblom M., Magnus T. Danger signals in stroke and their role on microglia activation after ischemia. Ther. Adv. Neurol. Disord. 2018;11:1756286418774254. doi: 10.1177/1756286418774254. PubMed DOI PMC

Koistinaho M., Koistinaho J. Interactions between Alzheimer’s disease and cerebral ischemia—Focus on inflammation. Brain Res. Rev. 2005;48:240–250. doi: 10.1016/j.brainresrev.2004.12.014. PubMed DOI

Radenovic L., Nenadic M., Ułamek-Kozioł M., Januszewski S., Czuczwar S.J., Andjus P.R., Pluta R. Heterogeneity in brain distribution of activated microglia and astrocytes in a rat ischemic model of Alzheimer’s disease after 2 years of survival. Aging. 2020;12:12251–12267. doi: 10.18632/aging.103411. PubMed DOI PMC

Valny M., Honsa P., Kriska J., Anderova M. Multipotency and therapeutic potential of NG2 cells. Biochem. Pharmacol. 2017;141:42–55. doi: 10.1016/j.bcp.2017.05.008. PubMed DOI

Kirdajova D., Valihrach L., Valny M., Kriska J., Krocianova D., Benesova S., Abaffy P., Zucha D., Klassen R., Kolenicova D., et al. Transient astrocyte-like NG2 glia subpopulation emerges solely following permanent brain ischemia. Glia. 2021 doi: 10.1002/glia.24064. PubMed DOI PMC

Valny M., Honsa P., Waloschkova E., Matuskova H., Kriska J., Kirdajova D., Androvic P., Valihrach L., Kubista M., Anderova M. A single-cell analysis reveals multiple roles of oligodendroglial lineage cells during post-ischemic regeneration. Glia. 2018;66:1068–1081. doi: 10.1002/glia.23301. PubMed DOI

Honsa P., Valny M., Kriska J., Matuskova H., Harantova L., Kirdajova D., Valihrach L., Androvic P., Kubista M., Anderova M. Generation of reactive astrocytes from NG2 cells is regulated by sonic hedgehog. Glia. 2016;64:1518–1531. doi: 10.1002/glia.23019. PubMed DOI

Doyle S., Hansen D.B., Vella J., Bond P., Harper G., Zammit C., Valentino M., Fern R. Vesicular glutamate release from central axons contributes to myelin damage. Nat. Commun. 2018;9:1032. doi: 10.1038/s41467-018-03427-1. PubMed DOI PMC

Nasrabady S.E., Rizvi B., Goldman J.E., Brickman A.M. White matter changes in Alzheimer’s disease: A focus on myelin and oligodendrocytes. Acta Neuropathol. Commun. 2018;6:1–10. doi: 10.1186/s40478-018-0515-3. PubMed DOI PMC

Veeresh P., Kaur H., Sarmah D., Mounica L., Verma G., Kotian V., Kesharwani R., Kalia K., Borah A., Wang X., et al. Endoplasmic reticulum–mitochondria crosstalk: From junction to function across neurological disorders. Ann. N. Y. Acad. Sci. 2019;1457:41–60. doi: 10.1111/nyas.14212. PubMed DOI

Tang Y.-C., Tian H.-X., Yi T., Chen H.-B. The critical roles of mitophagy in cerebral ischemia. Protein Cell. 2016;7:699–713. doi: 10.1007/s13238-016-0307-0. PubMed DOI PMC

Shao Z., Dou S., Zhu J., Wang H., Xu D., Wang C., Cheng B., Bai B. The Role of Mitophagy in Ischemic Stroke. Front. Neurol. 2020;11:608610. doi: 10.3389/fneur.2020.608610. PubMed DOI PMC

Reddy P.H., Oliver D.M. Amyloid Beta and Phosphorylated Tau-Induced Defective Autophagy and Mitophagy in Alzheimer’s Disease. Cells. 2019;8:488. doi: 10.3390/cells8050488. PubMed DOI PMC

Fang E.F., Hou Y., Palikaras K., Adriaanse B.A., Kerr J.S., Yang B., Lautrup S., Hasan-Olive M.M., Caponio D., Dan X., et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat. Neurosci. 2019;22:401–412. doi: 10.1038/s41593-018-0332-9. PubMed DOI PMC

Kolenicova D., Tureckova J., Pukajova B., Harantova L., Kriska J., Kirdajova D., Vorisek I., Kamenicka M., Valihrach L., Androvic P., et al. High potassium exposure reveals the altered ability of astrocytes to regulate their volume in the aged hippocampus of GFAP/EGFP mice. Neurobiol. Aging. 2020;86:162–181. doi: 10.1016/j.neurobiolaging.2019.10.009. PubMed DOI

Tannenberg R., Scott H., Westphalen R., Dodd P. The Identification and Characterization of Excitotoxic Nerve-endings in Alzheimer Disease. Curr. Alzheimer Res. 2004;1:11–25. doi: 10.2174/1567205043480591. PubMed DOI

Wang R., Reddy P.H. Role of Glutamate and NMDA Receptors in Alzheimer’s Disease. J. Alzheimer’s Dis. 2017;57:1041–1048. doi: 10.3233/JAD-160763. PubMed DOI PMC

Liu J., Chang L., Song Y., Li H., Wu Y. The Role of NMDA Receptors in Alzheimer’s Disease. Front. Neurosci. 2019;13:43. doi: 10.3389/fnins.2019.00043. PubMed DOI PMC

Kulijewicz-Nawrot M., Syková E., Chvatal A., Verkhratsky A., Rodríguez J.J. Astrocytes and Glutamate Homoeostasis in Alzheimer’s Disease: A Decrease in Glutamine Synthetase, But Not in Glutamate Transporter-1, in the Prefrontal Cortex. ASN Neuro. 2013;5 doi: 10.1042/AN20130017. PubMed DOI PMC

Esposito Z., Belli L., Toniolo S., Sancesario G., Bianconi C., Martorana A. Amyloid β, Glutamate, Excitotoxicity in Alzheimer’s Disease: Are We on the Right Track? CNS Neurosci. Ther. 2013;19:549–555. doi: 10.1111/cns.12095. PubMed DOI PMC

Rossi D.J., Oshima T., Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nat. Cell Biol. 2000;403:316–321. doi: 10.1038/35002090. PubMed DOI

Setti S.E., Hunsberger H.C., Reed M.N. Alterations in hippocampal activity and Alzheimer’s disease. Transl. Issues Psychol. Sci. 2017;3:348–356. doi: 10.1037/tps0000124. PubMed DOI PMC

Costea L., Mészáros Á., Bauer H., Bauer H.-C., Traweger A., Wilhelm I., Farkas A.E., Krizbai I.A. The Blood–Brain Barrier and Its Intercellular Junctions in Age-Related Brain Disorders. Int. J. Mol. Sci. 2019;20:5472. doi: 10.3390/ijms20215472. PubMed DOI PMC

Li Y., Zhong W., Jiang Z., Tang X. New progress in the approaches for blood–brain barrier protection in acute ischemic stroke. Brain Res. Bull. 2019;144:46–57. doi: 10.1016/j.brainresbull.2018.11.006. PubMed DOI

Jiang X., Andjelkovic A.V., Zhu L., Yang T., Bennett M.V.L., Chen J., Keep R.F., Shi Y. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog. Neurobiol. 2018;163–164:144–171. doi: 10.1016/j.pneurobio.2017.10.001. PubMed DOI PMC

Kowalski R.G., Haarbauer-Krupa J.K., Bell J.M., Corrigan J.D., Hammond F.M., Torbey M.T., Hofmann M.C., Dams-O’Connor K., Miller A.C., Whiteneck G.G. Acute Ischemic Stroke after Moderate to Severe Traumatic Brain Injury. Stroke. 2017;48:1802–1809. doi: 10.1161/STROKEAHA.117.017327. PubMed DOI PMC

Abrahamson E.E., Ikonomovic M.D. Brain injury-induced dysfunction of the blood brain barrier as a risk for dementia. Exp. Neurol. 2020;328:113257. doi: 10.1016/j.expneurol.2020.113257. PubMed DOI

Wang L., Ma S., Hu Z., McGuire T.F., Xie X.-Q. Chemogenomics Systems Pharmacology Mapping of Potential Drug Targets for Treatment of Traumatic Brain Injury. J. Neurotrauma. 2019;36:565–575. doi: 10.1089/neu.2018.5757. PubMed DOI PMC

Nagelhus E.A., Ottersen O.P. Physiological Roles of Aquaporin-4 in Brain. Physiol. Rev. 2013;93:1543–1562. doi: 10.1152/physrev.00011.2013. PubMed DOI PMC

Benfenati V., Caprini M., Dovizio M., Mylonakou M.N., Ferroni S., Ottersen O.P., Amiry-Moghaddam M. An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proc. Natl. Acad. Sci. USA. 2011;108:2563–2568. doi: 10.1073/pnas.1012867108. PubMed DOI PMC

Tourdias T., Mori N., Dragonu I., Cassagno N., Boiziau C., Aussudre J., Brochet B., Moonen C., Petry K.G., Dousset V. Differential aquaporin 4 expression during edema build-up and resolution phases of brain inflammation. J. Neuroinflamm. 2011;8:143. doi: 10.1186/1742-2094-8-143. PubMed DOI PMC

Butenko O., Dzamba D., Benesova J., Honsa P., Benfenati V., Rusnakova V., Ferroni S., Anderova M. The Increased Activity of TRPV4 Channel in the Astrocytes of the Adult Rat Hippocampus after Cerebral Hypoxia/Ischemia. PLoS ONE. 2012;7:e39959. doi: 10.1371/journal.pone.0039959. PubMed DOI PMC

Lee J.C., Choe S.Y. Age-related changes in the distribution of transient receptor potential vanilloid 4 channel (TRPV4) in the central nervous system of rats. J. Mol. Histol. 2014;45:497–505. doi: 10.1007/s10735-014-9578-z. PubMed DOI

Liu N., Yan F., Ma Q., Zhao J. Modulation of TRPV4 and BKCa for treatment of brain diseases. Bioorg. Med. Chem. 2020;28:115609. doi: 10.1016/j.bmc.2020.115609. PubMed DOI

Lamus F., Martín C., Carnicero E., Moro J., Fernández J., Mano A., Gato Á., Alonso M.I. FGF2/EGF contributes to brain neuroepithelial precursor proliferation and neurogenesis in rat embryos: The involvement of embryonic cerebrospinal fluid. Dev. Dyn. 2019;249:141–153. doi: 10.1002/dvdy.135. PubMed DOI

Ho D.M., Artavanis-Tsakonas S., Louvi A. The Notch pathway in CNS homeostasis and neurodegeneration. Wiley Interdiscip. Rev. Dev. Biol. 2020;9:e358. doi: 10.1002/wdev.358. PubMed DOI

Eskandari S., Sajadimajd S., Alaei L., Soheilikhah Z., Derakhshankhah H., Bahrami G. Targeting Common Signaling Pathways for the Treatment of Stroke and Alzheimer’s: A Comprehensive Review. Neurotox. Res. 2021:1–24. doi: 10.1007/s12640-021-00381-7. PubMed DOI

Rakers C., Schleif M., Blank N., Matušková H., Ulas T., Händler K., Torres S.V., Schumacher T., Tai K., Schultze J.L., et al. Stroke target identification guided by astrocyte transcriptome analysis. Glia. 2019;67:619–633. doi: 10.1002/glia.23544. PubMed DOI

Reichenbach N., Delekate A., Plescher M., Schmitt F., Krauss S., Blank N., Halle A., Petzold G.C. Inhibition of Stat3-mediated astrogliosis ameliorates pathology in an Alzheimer’s disease model. EMBO Mol. Med. 2019;11:e9665. doi: 10.15252/emmm.201809665. PubMed DOI PMC

Gruber J., Yee Z., Tolwinski N.S. Developmental Drift and the Role of Wnt Signaling in Aging. Cancers. 2016;8:73. doi: 10.3390/cancers8080073. PubMed DOI PMC

Palomer E., Buechler J., Salinas P.C. Wnt Signaling Deregulation in the Aging and Alzheimer’s Brain. Front. Cell. Neurosci. 2019;13:227. doi: 10.3389/fncel.2019.00227. PubMed DOI PMC

Masckauchán T.N.H., Shawber C.J., Funahashi Y., Li C.-M., Kitajewski J. Wnt/β-Catenin Signaling Induces Proliferation, Survival and Interleukin-8 in Human Endothelial Cells. Angiogenesis. 2005;8:43–51. doi: 10.1007/s10456-005-5612-9. PubMed DOI

Kriska J., Janeckova L., Kirdajova D., Honsa P., Knotek T., Dzamba D., Kolenicova D., Butenko O., Vojtechova M., Capek M., et al. Wnt/β-Catenin Signaling Promotes Differentiation of Ischemia-Activated Adult Neural Stem/Progenitor Cells to Neuronal Precursors. Front. Neurosci. 2021;15:628983. doi: 10.3389/fnins.2021.628983. PubMed DOI PMC

Kriska J., Honsa P., Dzamba D., Butenko O., Kolenicova D., Janeckova L., Nahacka Z., Andera L., Kozmik Z., Taketo M.M., et al. Manipulating Wnt signaling at different subcellular levels affects the fate of neonatal neural stem/progenitor cells. Brain Res. 2016;1651:73–87. doi: 10.1016/j.brainres.2016.09.026. PubMed DOI

Kuwabara T., Hsieh J., Muotri A., Yeo E., Warashina M., Lie D.C., Moore L., Nakashima K., Asashima M., Gage F.H. Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat. Neurosci. 2009;12:1097–1105. doi: 10.1038/nn.2360. PubMed DOI PMC

Hartung N., Benary U., Wolf J., Kofahl B. Paracrine and autocrine regulation of gene expression by Wnt-inhibitor Dickkopf in wild-type and mutant hepatocytes. BMC Syst. Biol. 2017;11:98. doi: 10.1186/s12918-017-0470-9. PubMed DOI PMC

Katoh M. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review) Int. J. Oncol. 2017;51:1357–1369. doi: 10.3892/ijo.2017.4129. PubMed DOI PMC

De Herreros A.G., Duñach M., De Herreros G. Intracellular Signals Activated by Canonical Wnt Ligands Independent of GSK3 Inhibition and β-Catenin Stabilization. Cells. 2019;8:1148. doi: 10.3390/cells8101148. PubMed DOI PMC

Flores-Hernández E., Velázquez D.M., Castañeda-Patlán M.C., Fuentes-García G., Fonseca-Camarillo G., Yamamoto-Furusho J.K., Romero-Avila M.T., García-Sáinz J.A., Robles-Flores M. Canonical and non-canonical Wnt signaling are simultaneously activated by Wnts in colon cancer cells. Cell. Signal. 2020;72:109636. doi: 10.1016/j.cellsig.2020.109636. PubMed DOI

Gao C., Chen Y.-G. Dishevelled: The hub of Wnt signaling. Cell. Signal. 2010;22:717–727. doi: 10.1016/j.cellsig.2009.11.021. PubMed DOI

Nusse R., Clevers H. Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell. 2017;169:985–999. doi: 10.1016/j.cell.2017.05.016. PubMed DOI

Green J., Nusse R., Van Amerongen R. The Role of Ryk and Ror Receptor Tyrosine Kinases in Wnt Signal Transduction. Cold Spring Harb. Perspect. Biol. 2014;6:a009175. doi: 10.1101/cshperspect.a009175. PubMed DOI PMC

Ameyar M., Wisniewska M., Weitzman J. A role for AP-1 in apoptosis: The case for and against. Biochimie. 2003;85:747–752. doi: 10.1016/j.biochi.2003.09.006. PubMed DOI

Vandervorst K., Dreyer C.A., Konopelski S.E., Lee H., Ho H.-Y.H., Carraway K.L. Wnt/PCP Signaling Contribution to Carcinoma Collective Cell Migration and Metastasis. Cancer Res. 2019;79:1719–1729. doi: 10.1158/0008-5472.CAN-18-2757. PubMed DOI PMC

Knotek T., Janeckova L., Kriska J., Korinek V., Anderova M. Glia and Neural Stem and Progenitor Cells of the Healthy and Ischemic Brain: The Workplace for the Wnt Signaling Pathway. Genes. 2020;11:804. doi: 10.3390/genes11070804. PubMed DOI PMC

Martínez M., Inestrosa N.C. The transcriptional landscape of Alzheimer’s disease and its association with Wnt signaling pathway. Neurosci. Biobehav. Rev. 2021;128:454–466. doi: 10.1016/j.neubiorev.2021.06.029. PubMed DOI

Taciak B., Pruszynska I., Kiraga L., Bialasek M., Krol M. Wnt signaling pathway in development and cancer. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2018;69:185–196. PubMed

Liang C.-J., Wang Z.-W., Chang Y.-W., Lee K.-C., Lin W.-H., Lee J.-L. SFRPs Are Biphasic Modulators of Wnt-Signaling-Elicited Cancer Stem Cell Properties beyond Extracellular Control. Cell Rep. 2019;28:1511–1525. doi: 10.1016/j.celrep.2019.07.023. PubMed DOI

Semënov M.V., Zhang X., He X. DKK1 Antagonizes Wnt Signaling without Promotion of LRP6 Internalization and Degradation. J. Biol. Chem. 2008;283:21427–21432. doi: 10.1074/jbc.M800014200. PubMed DOI PMC

Jia L., Piña-Crespo J., Li Y. Restoring Wnt/β-catenin signaling is a promising therapeutic strategy for Alzheimer’s disease. Mol. Brain. 2019;12:1–11. doi: 10.1186/s13041-019-0525-5. PubMed DOI PMC

Xia M.-Y., Zhao X.-Y., Huang Q.-L., Sun H.-Y., Sun C., Yuan J., He C., Sun Y., Huang X., Kong W., et al. Activation of Wnt/β-catenin signaling by lithium chloride attenuatesd-galactose-induced neurodegeneration in the auditory cortex of a rat model of aging. FEBS Open Bio. 2017;7:759–776. doi: 10.1002/2211-5463.12220. PubMed DOI PMC

Inestrosa N.C., de Ferrari G.V., Garrido J.L., Alvarez A., Olivares G., Barría M.I., Bronfman M., A Chacón M. Wnt signaling involvement in β-amyloid-dependent neurodegeneration. Neurochem. Int. 2002;41:341–344. doi: 10.1016/S0197-0186(02)00056-6. PubMed DOI

Inestrosa N.C., Rojas C.T. Loss of canonical Wnt signaling is involved in the pathogenesis of Alzheimer’s disease. Neural Regen. Res. 2018;13:1705–1710. doi: 10.4103/1673-5374.238606. PubMed DOI PMC

Libro R., Bramanti P., Mazzon E. The role of the Wnt canonical signaling in neurodegenerative diseases. Life Sci. 2016;158:78–88. doi: 10.1016/j.lfs.2016.06.024. PubMed DOI

Zhan L., Liu D., Wen H., Hu J., Pang T., Sun W., Xu E. Hypoxic postconditioning activates the Wnt/β-catenin pathway and protects against transient global cerebral ischemia through Dkk1 Inhibition and GSK-3β inactivation. FASEB J. 2019;33:9291–9307. doi: 10.1096/fj.201802633R. PubMed DOI

Oliva C., Vargas J.Y., Inestrosa N.C. Wnt signaling: Role in LTP, neural networks and memory. Ageing Res. Rev. 2013;12:786–800. doi: 10.1016/j.arr.2013.03.006. PubMed DOI

Jansen O., Rohr A. Neurothrombectomy in the treatment of acute ischaemic stroke. Nat. Rev. Neurol. 2013;9:645–652. doi: 10.1038/nrneurol.2013.204. PubMed DOI

Mastroiacovo F., Busceti C.L., Biagioni F., Moyanova S., Meisler M.H., Battaglia G., Caricasole A., Bruno V.M.G., Nicoletti F. Induction of the Wnt Antagonist, Dickkopf-1, Contributes to the Development of Neuronal Death in Models of Brain Focal Ischemia. Br. J. Pharmacol. 2008;29:264–276. doi: 10.1038/jcbfm.2008.111. PubMed DOI

Li Q., Dashwood W.M., Zhong X., Nakagama H., Dashwood R.H. Bcl-2 overexpression in PhIP-induced colon tumors: Cloning of the rat Bcl-2 promoter and characterization of a pathway involving β-catenin, c-Myc and E2F. Oncogene. 2007;26:6194–6202. doi: 10.1038/sj.onc.1210438. PubMed DOI PMC

Seifert-Held T., Pekar T., Gattringer T., Simmet N.E., Scharnagl H., Stojakovic T., Fazekas F., Storch M.K. Circulating Dickkopf-1 in acute ischemic stroke and clinically stable cerebrovascular disease. Atherosclerosis. 2011;218:233–237. doi: 10.1016/j.atherosclerosis.2011.05.015. PubMed DOI

He X.-W., Wang E., Bao Y.-Y., Wang F., Zhu M., Hu X.-F., Jin X.-P. High serum levels of sclerostin and Dickkopf-1 are associated with acute ischaemic stroke. Atherosclerosis. 2016;253:22–28. doi: 10.1016/j.atherosclerosis.2016.08.003. PubMed DOI

Zhang J., Zhang J., Qi C., Yang P., Chen X., Liu Y. Activation of Wnt3α/β-catenin signal pathway attenuates apoptosis of the cerebral microvascular endothelial cells induced by oxygen-glucose deprivation. Biochem. Biophys. Res. Commun. 2017;490:71–77. doi: 10.1016/j.bbrc.2017.03.130. PubMed DOI

Chacón M.A., Varela-Nallar L., Inestrosa N.C. Frizzled-1 is involved in the neuroprotective effect of Wnt3a against Aβ oligomers. J. Cell. Physiol. 2008;217:215–227. doi: 10.1002/jcp.21497. PubMed DOI

Abe T., Zhou P., Jackman K., Capone C., Casolla B., Hochrainer K., Kahles T., Ross M.E., Anrather J., Iadecola C. Lipoprotein Receptor–Related Protein-6 Protects the Brain from Ischemic Injury. Stroke. 2013;44:2284–2291. doi: 10.1161/STROKEAHA.113.001320. PubMed DOI PMC

Zhou X., Zhou J., Li X., Guo C., Fang T., Chen Z. GSK-3β inhibitors suppressed neuroinflammation in rat cortex by activating autophagy in ischemic brain injury. Biochem. Biophys. Res. Commun. 2011;411:271–275. doi: 10.1016/j.bbrc.2011.06.117. PubMed DOI

Hurn P.D., Macrae I.M. Estrogen as a Neuroprotectant in Stroke. Br. J. Pharmacol. 2000;20:631–652. doi: 10.1097/00004647-200004000-00001. PubMed DOI

Scott E.L., Brann D.W. Estrogen regulation of Dkk1 and Wnt/β-Catenin signaling in neurodegenerative disease. Brain Res. 2013;1514:63–74. doi: 10.1016/j.brainres.2012.12.015. PubMed DOI PMC

Zhang Q.-G., Wang R., Khan M., Mahesh V., Brann D.W. Role of Dickkopf-1, an Antagonist of the Wnt/β-Catenin Signaling Pathway, in Estrogen-Induced Neuroprotection and Attenuation of Tau Phosphorylation. J. Neurosci. 2008;28:8430–8441. doi: 10.1523/JNEUROSCI.2752-08.2008. PubMed DOI PMC

Boldrini M., Fulmore C.A., Tartt A.N., Simeon L.R., Pavlova I., Poposka V., Rosoklija G.B., Stankov A., Arango V., Dwork A.J., et al. Human Hippocampal Neurogenesis Persists throughout Aging. Cell Stem Cell. 2018;22:589–599. doi: 10.1016/j.stem.2018.03.015. PubMed DOI PMC

Zhang R.L., Chopp M., Roberts C., Liu X., Wei M., Nejad-Davarani S., Wang X., Zhang Z.G. Stroke Increases Neural Stem Cells and Angiogenesis in the Neurogenic Niche of the Adult Mouse. PLoS ONE. 2014;9:e113972. doi: 10.1371/journal.pone.0113972. PubMed DOI PMC

Cui X.-P., Xing Y., Chen J.-M., Dong S.-W., Ying D.-J., Yew D.T. Wnt/beta-catenin is involved in the proliferation of hippocampal neural stem cells induced by hypoxia. Ir. J. Med Sci. 2010;180:387–393. doi: 10.1007/s11845-010-0566-3. PubMed DOI

Piccin D., Morshead C.M. Wnt Signaling Regulates Symmetry of Division of Neural Stem Cells in the Adult Brain and in Response to Injury. Stem Cells. 2011;29:528–538. doi: 10.1002/stem.589. PubMed DOI

Qi C., Zhang J., Chen X., Wan J., Wang J., Zhang P., Liu Y. Hypoxia stimulates neural stem cell proliferation by increasing HIF-1α expression and activating Wnt/β-catenin signaling. Cell. Mol. Biol. 2017;63:12–19. doi: 10.14715/cmb/2017.63.7.2. PubMed DOI PMC

Chen X., Zhou B., Yan T., Wu H., Feng J., Chen H., Gao C., Peng T., Yang D., Shen J. Peroxynitrite enhances self-renewal, proliferation and neuronal differentiation of neural stem/progenitor cells through activating HIF-1α and Wnt/β-catenin signaling pathway. Free. Radic. Biol. Med. 2018;117:158–167. doi: 10.1016/j.freeradbiomed.2018.02.011. PubMed DOI

Zhang X., Zhu C., Luo Q., Dong J., Liu L., Li M., Zhu H., Ma X., Wang J. Impact of siRNA targeting of β-catenin on differentiation of rat neural stem cells and gene expression of Ngn1 and BMP4 following in vitro hypoxic-ischemic brain damage. Mol. Med. Rep. 2016;14:3595–3601. doi: 10.3892/mmr.2016.5667. PubMed DOI PMC

Shruster A., Ben-Zur T., Melamed E., Offen D. Wnt Signaling Enhances Neurogenesis and Improves Neurological Function after Focal Ischemic Injury. PLoS ONE. 2012;7:e40843. doi: 10.1371/journal.pone.0040843. PubMed DOI PMC

Laksitorini M., Yathindranath V., Xiong W., Hombach-Klonisch S., Miller D.W. Modulation of Wnt/β-catenin signaling promotes blood-brain barrier phenotype in cultured brain endothelial cells. Sci. Rep. 2019;9:19718. doi: 10.1038/s41598-019-56075-w. PubMed DOI PMC

Menet R., Lecordier S., ElAli A. Wnt Pathway: An Emerging Player in Vascular and Traumatic Mediated Brain Injuries. Front. Physiol. 2020;11:565667. doi: 10.3389/fphys.2020.565667. PubMed DOI PMC

Martowicz A., Trusohamn M., Jensen N., Wisniewska-Kruk J., Corada M., Ning F.C., Kele J., Dejana E., Nyqvist D. Endothelial β-Catenin Signaling Supports Postnatal Brain and Retinal Angiogenesis by Promoting Sprouting, Tip Cell Formation, and VEGFR (Vascular Endothelial Growth Factor Receptor) 2 Expression. Arter. Thromb. Vasc. Biol. 2019;39:2273–2288. doi: 10.1161/ATVBAHA.119.312749. PubMed DOI

Peghaire C., Bats M.-L., Sewduth R., Jeanningros S., Jaspard-Vinassa B., Couffinhal T., Duplàa C., Dufourcq P. Fzd7 (Frizzled-7) Expressed by Endothelial Cells Controls Blood Vessel Formation through Wnt/β-Catenin Canonical Signaling. Arter. Thromb. Vasc. Biol. 2016;36:2369–2380. doi: 10.1161/ATVBAHA.116.307926. PubMed DOI

Hübner K., Cabochette P., Diéguez-Hurtado R., Wiesner C., Wakayama Y., Grassme K.S., Hubert M., Guenther S., Belting H.-G., Affolter M., et al. Wnt/β-catenin signaling regulates VE-cadherin-mediated anastomosis of brain capillaries by counteracting S1pr1 signaling. Nat. Commun. 2018;9:4860. doi: 10.1038/s41467-018-07302-x. PubMed DOI PMC

Corada M., Orsenigo F., Bhat G.P., Conze L.L., Breviario F., Cunha S.I., Claesson-Welsh L., Beznoussenko G.V., Mironov A.A., Bacigaluppi M., et al. Fine-Tuning of Sox17 and Canonical Wnt Coordinates the Permeability Properties of the Blood-Brain Barrier. Circ. Res. 2019;124:511–525. doi: 10.1161/CIRCRESAHA.118.313316. PubMed DOI PMC

De Ferrari G.V., E Avila M., Medina M., Pérez-Palma E., Bustos B., Alarcon M. Wnt/β-Catenin Signaling in Alzheimer’s Disease. CNS Neurol. Disord.-Drug Targets. 2014;13:745–754. doi: 10.2174/1871527312666131223113900. PubMed DOI

Hu Y., Chen W., Wu L., Jiang L., Liang N., Tan L., Liang M., Tang N. TGF-β1 Restores Hippocampal Synaptic Plasticity and Memory in Alzheimer Model via the PI3K/Akt/Wnt/β-Catenin Signaling Pathway. J. Mol. Neurosci. 2019;67:142–149. doi: 10.1007/s12031-018-1219-7. PubMed DOI

Folke J., Pakkenberg B., Brudek T. Impaired Wnt Signaling in the Prefrontal Cortex of Alzheimer’s Disease. Mol. Neurobiol. 2018;56:873–891. doi: 10.1007/s12035-018-1103-z. PubMed DOI

Ochalek A., Mihalik B., Avci H.X., Chandrasekaran A., Téglási A., Bock I., Giudice M.L., Táncos Z., Molnar K., Laszlo L., et al. Neurons derived from sporadic Alzheimer’s disease iPSCs reveal elevated TAU hyperphosphorylation, increased amyloid levels, and GSK3B activation. Alzheimer’s Res. Ther. 2017;9:90. doi: 10.1186/s13195-017-0317-z. PubMed DOI PMC

Zhang Z., Hartmann H., Do V.M., Abramowski D., Sturchler-Pierrat C., Staufenbiel M., Sommer B., Van De Wetering M., Clevers H., Saftig P., et al. Destabilization of β-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nat. Cell Biol. 1998;395:698–702. doi: 10.1038/27208. PubMed DOI

Tachibana M., Holm M.-L., Liu C.-C., Shinohara M., Aikawa T., Oue H., Yamazaki Y., Martens Y.A., Murray M., Sullivan P.M., et al. APOE4-mediated amyloid-β pathology depends on its neuronal receptor LRP. J. Clin. Investig. 2019;129:1272–1277. doi: 10.1172/JCI124853. PubMed DOI PMC

Caricasole A., Copani A., Caraci F., Aronica E., Rozemuller A.J., Caruso A., Storto M., Gaviraghi G., Terstappen G.C., Nicoletti F. Induction of Dickkopf-1, a Negative Modulator of the Wnt Pathway, Is Associated with Neuronal Degeneration in Alzheimer’s Brain. J. Neurosci. 2004;24:6021–6027. doi: 10.1523/JNEUROSCI.1381-04.2004. PubMed DOI PMC

Rojas C.T., Burgos P.V., Inestrosa N.C. Inhibition of Wnt signaling induces amyloidogenic processing of amyloid precursor protein and the production and aggregation of Amyloid-β (Aβ)42peptides. J. Neurochem. 2016;139:1175–1191. doi: 10.1111/jnc.13873. PubMed DOI

Ly P.T., Wu Y., Zou H., Wang R., Zhou W., Kinoshita A., Zhang M., Yang Y., Cai F., Woodgett J., et al. Inhibition of GSK3β-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J. Clin. Investig. 2012;123:224–235. doi: 10.1172/JCI64516. PubMed DOI PMC

Su Y., Ryder J., Li B., Wu X., Fox N., Solenberg P., Brune K., Paul S., Zhou Y., Liu F., et al. Lithium, a Common Drug for Bipolar Disorder Treatment, Regulates Amyloid-β Precursor Protein Processing. Biochemistry. 2004;43:6899–6908. doi: 10.1021/bi035627j. PubMed DOI

Fiorentini A., Rosi M.C., Grossi C., Luccarini I., Casamenti F. Lithium Improves Hippocampal Neurogenesis, Neuropathology and Cognitive Functions in APP Mutant Mice. PLoS ONE. 2010;5:e14382. doi: 10.1371/journal.pone.0014382. PubMed DOI PMC

Rojas C.T., Inestrosa N.C. Wnt signaling loss accelerates the appearance of neuropathological hallmarks of Alzheimer’s disease in J20-APP transgenic and wild-type mice. J. Neurochem. 2018;144:443–465. doi: 10.1111/jnc.14278. PubMed DOI

Plattner F., Angelo M., Giese K.P. The Roles of Cyclin-dependent Kinase 5 and Glycogen Synthase Kinase 3 in Tau Hyperphosphorylation. J. Biol. Chem. 2006;281:25457–25465. doi: 10.1074/jbc.M603469200. PubMed DOI

Amaral A.C., Perez-Nievas B.G., Chong M.S.T., Gonzalez-Martinez A., Argente-Escrig H., Rubio-Guerra S., Commins C., Muftu S., Eftekharzadeh B., Hudry E., et al. Isoform-selective decrease of glycogen synthase kinase-3-beta (GSK-3β) reduces synaptic tau phosphorylation, transcellular spreading, and aggregation. iScience. 2021;24:102058. doi: 10.1016/j.isci.2021.102058. PubMed DOI PMC

Wan W., Xia S., Kalionis B., Liu L., Li Y. The Role of Wnt Signaling in the Development of Alzheimer’s Disease: A Potential Therapeutic Target? BioMed Res. Int. 2014;2014:301575. doi: 10.1155/2014/301575. PubMed DOI PMC

Norwitz N.G., Mota A.S., Norwitz S.G., Clarke K. Multi-Loop Model of Alzheimer Disease: An Integrated Perspective on the Wnt/GSK3β, α-Synuclein, and Type 3 Diabetes Hypotheses. Front. Aging Neurosci. 2019;11:184. doi: 10.3389/fnagi.2019.00184. PubMed DOI PMC

Vossel K.A., Xu J.C., Fomenko V., Miyamoto T., Suberbielle E., Knox J.A., Ho K., Kim D.H., Yu G.-Q., Mucke L. Tau reduction prevents Aβ-induced axonal transport deficits by blocking activation of GSK3β. J. Cell Biol. 2015;209:419–433. doi: 10.1083/jcb.201407065. PubMed DOI PMC

Koh S.-H., Noh M.Y., Kim S.H. Amyloid-beta-induced neurotoxicity is reduced by inhibition of glycogen synthase kinase. Brain Res. 2008;1188:254–262. doi: 10.1016/j.brainres.2007.10.064. PubMed DOI

Sellers K., Elliott C., Jackson J., Ghosh A., Ribe E., I Rojo A., Jarosz-Griffiths H., Watson I.A., Xia W., Semenov M., et al. Amyloid β synaptotoxicity is Wnt-PCP dependent and blocked by fasudil. Alzheimer’s Dement. 2018;14:306–317. doi: 10.1016/j.jalz.2017.09.008. PubMed DOI PMC

Purro S.A., Dickins E.M., Salinas P.C. The Secreted Wnt Antagonist Dickkopf-1 Is Required for Amyloid β-Mediated Synaptic Loss. J. Neurosci. 2012;32:3492–3498. doi: 10.1523/JNEUROSCI.4562-11.2012. PubMed DOI PMC

Killick R., Ribe E., Al-Shawi R., Malik B., Hooper C., Fernandes C., Dobson R., Nolan P., Lourdusamy A., Furney S., et al. Clusterin regulates β-amyloid toxicity via Dickkopf-1-driven induction of the wnt–PCP–JNK pathway. Mol. Psychiatry. 2014;19:88–98. doi: 10.1038/mp.2012.163. PubMed DOI PMC

Zeng Q., Long Z., Feng M., Zhao Y., Luo S., Wang K., Wang Y., Yang G., He G. Valproic Acid Stimulates Hippocampal Neurogenesis via Activating the Wnt/β-Catenin Signaling Pathway in the APP/PS1/Nestin-GFP Triple Transgenic Mouse Model of Alzheimer’s Disease. Front. Aging Neurosci. 2019;11:62. doi: 10.3389/fnagi.2019.00062. PubMed DOI PMC

Xuan A.-G., Pan X.-B., Wei P., Ji W.-D., Zhang W.-J., Liu J.-H., Hong L.-P., Chen W.-L., Long D.-H. Valproic Acid Alleviates Memory Deficits and Attenuates Amyloid-β Deposition in Transgenic Mouse Model of Alzheimer’s Disease. Mol. Neurobiol. 2014;51:300–312. doi: 10.1007/s12035-014-8751-4. PubMed DOI

Bian H., Bian W., Lin X., Ma Z., Chen W., Pu Y. RNA Interference Silencing of Glycogen Synthase Kinase 3β Inhibites Tau Phosphorylation in Mice with Alzheimer Disease. Neurochem. Res. 2016;41:2470–2480. doi: 10.1007/s11064-016-1960-7. PubMed DOI

Rockenstein E., Torrance M., Adame A., Mante M., Bar-On P., Rose J.B., Crews L., Masliah E. Neuroprotective Effects of Regulators of the Glycogen Synthase Kinase-3 Signaling Pathway in a Transgenic Model of Alzheimer’s Disease Are Associated with Reduced Amyloid Precursor Protein Phosphorylation. J. Neurosci. 2007;27:1981–1991. doi: 10.1523/JNEUROSCI.4321-06.2007. PubMed DOI PMC

Cisternas P., Oliva C.A., Torres V.I., Barrera D.P., Inestrosa N.C. Presymptomatic Treatment With Andrographolide Improves Brain Metabolic Markers and Cognitive Behavior in a Model of Early-Onset Alzheimer’s Disease. Front. Cell. Neurosci. 2019;13:295. doi: 10.3389/fncel.2019.00295. PubMed DOI PMC

Vargas J.Y., Fuenzalida M., Inestrosa N.C. In vivo Activation of Wnt Signaling Pathway Enhances Cognitive Function of Adult Mice and Reverses Cognitive Deficits in an Alzheimer’s Disease Model. J. Neurosci. 2014;34:2191–2202. doi: 10.1523/JNEUROSCI.0862-13.2014. PubMed DOI PMC

Zheng R., Zhang Z.-H., Chen C., Chen Y., Jia S.-Z., Liu Q., Ni J.-Z., Song G.-L. Selenomethionine promoted hippocampal neurogenesis via the PI3K-Akt-GSK3β-Wnt pathway in a mouse model of Alzheimer’s disease. Biochem. Biophys. Res. Commun. 2017;485:6–15. doi: 10.1016/j.bbrc.2017.01.069. PubMed DOI

Varela-Nallar L., Rojas-Abalos M., Abbott A.C., Moya E.A., Iturriaga R., Inestrosa N.C. Chronic hypoxia induces the activation of the Wnt/β-catenin signaling pathway and stimulates hippocampal neurogenesis in wild-type and APPswe-PS1ΔE9 transgenic mice in vivo. Front. Cell. Neurosci. 2014;8:17. doi: 10.3389/fncel.2014.00017. PubMed DOI PMC

Huang M., Liang Y., Chen H., Xu B., Chai C., Xing P. The Role of Fluoxetine in Activating Wnt/β-Catenin Signaling and Repressing β-Amyloid Production in an Alzheimer Mouse Model. Front. Aging Neurosci. 2018;10:164. doi: 10.3389/fnagi.2018.00164. PubMed DOI PMC

Aghaizu N.D., Jin H., Whiting P.J. Dysregulated Wnt Signalling in the Alzheimer’s Brain. Brain Sci. 2020;10:902. doi: 10.3390/brainsci10120902. PubMed DOI PMC

Ma Q., Zhao Z., Sagare A.P., Wu Y., Wang M., Owens N.C., Verghese P.B., Herz J., Holtzman D.M., Zlokovic B.V. Blood-brain barrier-associated pericytes internalize and clear aggregated amyloid-β42 by LRP1-dependent apolipoprotein E isoform-specific mechanism. Mol. Neurodegener. 2018;13:1–13. doi: 10.1186/s13024-018-0286-0. PubMed DOI PMC

Daneman R., Agalliu D., Zhou L., Kuhnert F., Kuo C.J., Barres B.A. Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc. Natl. Acad. Sci. USA. 2009;106:641–646. doi: 10.1073/pnas.0805165106. PubMed DOI PMC

Cisternas P., Zolezzi J.M., Martinez M., Torres V.I., Wong G.W., Inestrosa N.C. Wnt-induced activation of glucose metabolism mediates the in vivo neuroprotective roles of Wnt signaling in Alzheimer disease. J. Neurochem. 2019;149:54–72. doi: 10.1111/jnc.14608. PubMed DOI PMC

Reya T., Clevers H. Wnt signalling in stem cells and cancer. Nat. Cell Biol. 2005;434:843–850. doi: 10.1038/nature03319. PubMed DOI

Guan R., Zhang X., Guo M. Glioblastoma stem cells and Wnt signaling pathway: Molecular mechanisms and therapeutic targets. Chin. Neurosurg. J. 2020;6:1–6. doi: 10.1186/s41016-020-00207-z. PubMed DOI PMC

Davis M., O’Connell T., Johnson S., Cline S., Merikle E., Martenyi F., Simpson K.N. Estimating Alzheimer’s Disease Progression Rates from Normal Cognition through Mild Cognitive Impairment and Stages of Dementia. Curr. Alzheimer Res. 2018;15:777–788. doi: 10.2174/1567205015666180119092427. PubMed DOI PMC

Haile W.B., Wu J., Echeverry R., Wu F., An J., Yepes M. Tissue-Type Plasminogen Activator has a Neuroprotective Effect in the Ischemic Brain Mediated by Neuronal TNF-α. Br. J. Pharmacol. 2011;32:57–69. doi: 10.1038/jcbfm.2011.106. PubMed DOI PMC

Kim J.S. tPA Helpers in the Treatment of Acute Ischemic Stroke: Are They Ready for Clinical Use? J. Stroke. 2019;21:160–174. doi: 10.5853/jos.2019.00584. PubMed DOI PMC

Schneider L.S., Dagerman K.S., Higgins J., McShane R. Lack of Evidence for the Efficacy of Memantine in Mild Alzheimer Disease. Arch. Neurol. 2011;68:991–998. doi: 10.1001/archneurol.2011.69. PubMed DOI

Mangialasche F., Solomon A., Winblad B., Mecocci P., Kivipelto M. Alzheimer’s disease: Clinical trials and drug development. Lancet Neurol. 2010;9:702–716. doi: 10.1016/S1474-4422(10)70119-8. PubMed DOI

Hefti F., Goure W.F., Jerecic J., Iverson K.S., Walicke P.A., Krafft G.A. The case for soluble Aβ oligomers as a drug target in Alzheimer’s disease. Trends Pharmacol. Sci. 2013;34:261–266. doi: 10.1016/j.tips.2013.03.002. PubMed DOI

Rasool S., Martínez-Coria H., Wu J.W., LaFerla F., Glabe C.G. Systemic vaccination with anti-oligomeric monoclonal antibodies improves cognitive function by reducing Aβ deposition and tau pathology in 3xTg-AD mice. J. Neurochem. 2013;126:473–482. doi: 10.1111/jnc.12305. PubMed DOI PMC

Xiao C., Davis F.J., Chauhan B.C., Viola K.L., Lacor P.N., Velasco P.T., Klein W.L., Chauhan N.B. Brain Transit and Ameliorative Effects of Intranasally Delivered Anti-Amyloid-β Oligomer Antibody in 5XFAD Mice. J. Alzheimer’s Dis. 2013;35:777–788. doi: 10.3233/JAD-122419. PubMed DOI PMC

Tucker S., Möller C., Tegerstedt K., Lord A., Laudon H., Sjödahl J., Söderberg L., Spens E., Sahlin C., Waara E.R., et al. The Murine Version of BAN2401 (mAb158) Selectively Reduces Amyloid-β Protofibrils in Brain and Cerebrospinal Fluid of tg-ArcSwe Mice. J. Alzheimer’s Dis. 2014;43:575–588. doi: 10.3233/JAD-140741. PubMed DOI

Izzo N.J., Staniszewski A., To L., Fà M., Teich A., Saeed F., Wostein H., Walko T., Vaswani A., Wardius M., et al. Alzheimer’s Therapeutics Targeting Amyloid Beta 1–42 Oligomers I: Abeta 42 Oligomer Binding to Specific Neuronal Receptors Is Displaced by Drug Candidates That Improve Cognitive Deficits. PLoS ONE. 2014;9:e111898. doi: 10.1371/journal.pone.0111898. PubMed DOI PMC

Izzo N., Xu J., Zeng C., Kirk M.J., Mozzoni K., Silky C., Rehak C., Yurko R., Look G., Rishton G., et al. Alzheimer’s Therapeutics Targeting Amyloid Beta 1–42 Oligomers II: Sigma-2/PGRMC1 Receptors Mediate Abeta 42 Oligomer Binding and Synaptotoxicity. PLoS ONE. 2014;9:e111899. doi: 10.1371/journal.pone.0111899. PubMed DOI PMC

Blurton-Jones M., Kitazawa M., Martínez-Coria H., Castello N.A., Müller F.-J., Loring J., Yamasaki T.R., Poon W., Green K.N., LaFerla F.M. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc. Natl. Acad. Sci. USA. 2009;106:13594–13599. doi: 10.1073/pnas.0901402106. PubMed DOI PMC

Ager R.R., Davis J.L., Agazaryan A., Benavente F., Poon W., LaFerla F.M., Blurton-Jones M. Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer’s disease and neuronal loss. Hippocampus. 2015;25:813–826. doi: 10.1002/hipo.22405. PubMed DOI PMC

Boese A.C., Hamblin M.H., Lee J.-P. Neural stem cell therapy for neurovascular injury in Alzheimer’s disease. Exp. Neurol. 2020;324:113112. doi: 10.1016/j.expneurol.2019.113112. PubMed DOI

Rothstein J.D., Patel S.A., Regan M.R., Haenggeli C., Huang Y.H., Bergles D.E., Jin L., Hoberg M.D., Vidensky S., Chung D.S., et al. β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature. 2005;433:73–77. doi: 10.1038/nature03180. PubMed DOI

Zumkehr J., Rodriguez-Ortiz C.J., Cheng D., Kieu Z., Wai T., Hawkins C., Kilian J., Lim S.L., Medeiros R., Kitazawa M. Ceftriaxone ameliorates tau pathology and cognitive decline via restoration of glial glutamate transporter in a mouse model of Alzheimer’s disease. Neurobiol. Aging. 2015;36:2260–2271. doi: 10.1016/j.neurobiolaging.2015.04.005. PubMed DOI

Brann D.W., Dhandapani K., Wakade C., Mahesh V.B., Khan M. Neurotrophic and neuroprotective actions of estrogen: Basic mechanisms and clinical implications. Steroids. 2007;72:381–405. doi: 10.1016/j.steroids.2007.02.003. PubMed DOI PMC

Ji Y.-F., Xu S.-M., Zhu J., Wang X.-X., Shen Y. Insulin increases glutamate transporter GLT1 in cultured astrocytes. Biochem. Biophys. Res. Commun. 2011;405:691–696. doi: 10.1016/j.bbrc.2011.01.105. PubMed DOI

Frizzo M.E.D.S., Dall’Onder L.P., Dalcin K.B., Souza D. Riluzole Enhances Glutamate Uptake in Rat Astrocyte Cultures. Cell. Mol. Neurobiol. 2004;24:123–128. doi: 10.1023/B:CEMN.0000012717.37839.07. PubMed DOI

Etminan M., Gill S., Samii A. Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer’s disease: Systematic review and meta-analysis of observational studies. BMJ. 2003;327:128. doi: 10.1136/bmj.327.7407.128. PubMed DOI PMC

Wang J., Tan L., Wang H.-F., Tan C.-C., Meng X.-F., Wang C., Tang S.-W., Yu J.-T. Anti-Inflammatory Drugs and Risk of Alzheimer’s Disease: An Updated Systematic Review and Meta-Analysis. J. Alzheimer’s Dis. 2015;44:385–396. doi: 10.3233/JAD-141506. PubMed DOI

Miguel-Álvarez M., Santos-Lozano A., Sanchis-Gomar F., Fiuza-Luces C., Pareja-Galeano H., Garatachea N., Lucia A. Non-Steroidal Anti-Inflammatory Drugs as a Treatment for Alzheimer’s Disease: A Systematic Review and Meta-Analysis of Treatment Effect. Drugs Aging. 2015;32:139–147. doi: 10.1007/s40266-015-0239-z. PubMed DOI

Butchart J., Brook L., Hopkins V., Teeling J., Püntener U., Culliford D., Sharples R., Sharif S., McFarlane B., Raybould R., et al. Etanercept in Alzheimer disease: A randomized, placebo-controlled, double-blind, phase 2 trial. Neurology. 2015;84:2161–2168. doi: 10.1212/WNL.0000000000001617. PubMed DOI PMC

Duffy J.P., Harrington E.M., Salituro F.G., Cochran J.E., Green J., Gao H., Bemis G.W., Evindar G., Galullo V.P., Ford P.J., et al. The Discovery of VX-745: A Novel and Selective p38α Kinase Inhibitor. ACS Med. Chem. Lett. 2011;2:758–763. doi: 10.1021/ml2001455. PubMed DOI PMC

Dong Y., Li X., Cheng J., Hou L. Drug Development for Alzheimer’s Disease: Microglia Induced Neuroinflammation as a Target? Int. J. Mol. Sci. 2019;20:558. doi: 10.3390/ijms20030558. PubMed DOI PMC

Cummings J., Aisen P., Lemere C., Atri A., Sabbagh M., Salloway S. Aducanumab produced a clinically meaningful benefit in association with amyloid lowering. Alzheimer’s Res. Ther. 2021;13:1–3. doi: 10.1186/s13195-021-00838-z. PubMed DOI PMC

Bastrup J., Hansen K.H., Poulsen T.B., Kastaniegaard K., Asuni A.A., Christensen S., Belling D., Helboe L., Stensballe A., Volbracht C. Anti-Aβ Antibody Aducanumab Regulates the Proteome of Senile Plaques and Closely Surrounding Tissue in a Transgenic Mouse Model of Alzheimer’s Disease. J. Alzheimer’s Dis. 2021;79:249–265. doi: 10.3233/JAD-200715. PubMed DOI

Knopman D.S., Jones D.T., Greicius M.D. Failure to demonstrate efficacy of aducanumab: An analysis of the EMERGE and ENGAGE trials as reported by Biogen, December. Alzheimer’s Dement. 2021;17:696–701. doi: 10.1002/alz.12213. PubMed DOI

Gao K., Zhang T., Wang F., Lv C. Therapeutic Potential of Wnt-3a in Neurological Recovery after Spinal Cord Injury. Eur. Neurol. 2019;81:197–204. doi: 10.1159/000502004. PubMed DOI

Jope R.S., Cheng Y., Lowell J., Worthen R., Sitbon Y.H., Beurel E. Stressed and Inflamed, Can GSK3 Be Blamed? Trends Biochem. Sci. 2017;42:180–192. doi: 10.1016/j.tibs.2016.10.009. PubMed DOI PMC

Kawamoto E., Gleichmann M., Yshii L., Lima L.D.S., Mattson M., Scavone C. Effect of activation of canonical Wnt signaling by the Wnt-3a protein on the susceptibility of PC12 cells to oxidative and apoptotic insults. Braz. J. Med. Biol. Res. 2012;45:58–67. doi: 10.1590/S0100-879X2011007500157. PubMed DOI PMC

Iozzi S., Remelli R., Lelli B., Diamanti D., Pileri S., Bracci L., Roncarati R., Caricasole A., Bernocco S. Functional Characterization of a Small-Molecule Inhibitor of the DKK1-LRP6 Interaction. ISRN Mol. Biol. 2012;2012:823875. doi: 10.5402/2012/823875. PubMed DOI PMC

Ling S., Birnbaum Y., Nanhwan M.K., Thomas B., Bajaj M., Li Y., Li Y., Ye Y. Dickkopf-1 (DKK1) phosphatase and tensin homolog on chromosome 10 (PTEN) crosstalk via microRNA interference in the diabetic heart. Basic Res. Cardiol. 2013;108:352. doi: 10.1007/s00395-013-0352-2. PubMed DOI

Ross S.P., Baker K.E., Fisher A., Hoff L., Pak E.S., Murashov A.K. miRNA-431 Prevents Amyloid-β-Induced Synapse Loss in Neuronal Cell Culture Model of Alzheimer’s Disease by Silencing Kremen. Front. Cell. Neurosci. 2018;12:87. doi: 10.3389/fncel.2018.00087. PubMed DOI PMC

Silva-Alvarez C., Arrázola M.S., A Godoy J., Ordenes D., Inestrosa N.C. Canonical Wnt signaling protects hippocampal neurons from Aβ oligomers: Role of non-canonical Wnt-5a/Ca2+ in mitochondrial dynamics. Front. Cell. Neurosci. 2013;7:97. doi: 10.3389/fncel.2013.00097. PubMed DOI PMC

Chen J., Long Z., Li Y., Luo M., Luo S., He G. Alteration of the Wnt/GSK3β/β-catenin signalling pathway by rapamycin ameliorates pathology in an Alzheimer’s disease model. Int. J. Mol. Med. 2019;44:313–323. doi: 10.3892/ijmm.2019.4198. PubMed DOI

Vallée A., Vallée J.-N., Guillevin R., Lecarpentier Y. Riluzole: A therapeutic strategy in Alzheimer’s disease by targeting the WNT/β-catenin pathway. Aging. 2020;12:3095–3113. doi: 10.18632/aging.102830. PubMed DOI PMC

Farías G.G., Godoy J.A., Vázquez M.C., Adani R., Meshulam H., Avila J., Amitai G., Inestrosa N.C. The anti-inflammatory and cholinesterase inhibitor bifunctional compound IBU-PO protects from β-amyloid neurotoxicity by acting on Wnt signaling components. Neurobiol. Dis. 2005;18:176–183. doi: 10.1016/j.nbd.2004.09.012. PubMed DOI

Wiciński M., Socha M., Malinowski B., Wódkiewicz E., Walczak M., Górski K., Słupski M., Pawlak-Osińska K. Liraglutide and its Neuroprotective Properties—Focus on Possible Biochemical Mechanisms in Alzheimer’s Disease and Cerebral Ischemic Events. Int. J. Mol. Sci. 2019;20:1050. doi: 10.3390/ijms20051050. PubMed DOI PMC

Inestrosa N.C., Godoy J.A., Vargas J.Y., Arrázola M.S., Rios J.A., Carvajal F.J., Serrano F.G., Farías G.G. Nicotine Prevents Synaptic Impairment Induced by Amyloid-β Oligomers through α7-Nicotinic Acetylcholine Receptor Activation. Neuromolecular Med. 2013;15:549–569. doi: 10.1007/s12017-013-8242-1. PubMed DOI

Echuang D.-M., Ewang Z., Echiu C.-T. GSK-3 as a Target for Lithium-Induced Neuroprotection against Excitotoxicity in Neuronal Cultures and Animal Models of Ischemic Stroke. Front. Mol. Neurosci. 2011;4:15. doi: 10.3389/fnmol.2011.00015. PubMed DOI PMC

Tümpel S., Rudolph K.L. Quiescence: Good and Bad of Stem Cell Aging. Trends Cell Biol. 2019;29:672–685. doi: 10.1016/j.tcb.2019.05.002. PubMed DOI

Ji Y.-B., Gao Q., Tan X.-X., Huang X.-W., Ma Y.-Z., Fang C., Wang S.-N., Qiu L.-H., Cheng Y.-X., Guo F.-Y., et al. Lithium alleviates blood-brain barrier breakdown after cerebral ischemia and reperfusion by upregulating endothelial Wnt/β-catenin signaling in mice. Neuropharmacology. 2021;186:108474. doi: 10.1016/j.neuropharm.2021.108474. PubMed DOI

Mohamadianinejad S.E., Majdinasab N., Sajedi S.A., Abdollahi F., Moqaddam M.M., Sadr F. The Effect of Lithium in Post-Stroke Motor Recovery. Clin. Neuropharmacol. 2014;37:73–78. doi: 10.1097/WNF.0000000000000028. PubMed DOI

Clinical Trials. [(accessed on 27 July 2021)]; Available online: clinicaltrials.gov.

Doeppner T.R., Kaltwasser B., Sanchez-Mendoza E.H., Caglayan A.B., Bähr M., Hermann D.M. Lithium-induced neuroprotection in stroke involves increased miR-124 expression, reduced RE1-silencing transcription factor abundance and decreased protein deubiquitination by GSK3β inhibition-independent pathways. Br. J. Pharmacol. 2017;37:914–926. doi: 10.1177/0271678X16647738. PubMed DOI PMC

Pluta R., Ułamek-Kozioł M., Czuczwar S.J. Neuroprotective and Neurological/Cognitive Enhancement Effects of Curcumin after Brain Ischemia Injury with Alzheimer’s Disease Phenotype. Int. J. Mol. Sci. 2018;19:4002. doi: 10.3390/ijms19124002. PubMed DOI PMC

Pluta R., Bogucka-Kocka A., Ułamek-Kozioł M., Furmaga-Jabłońska W., Januszewski S., Brzozowska J., Jabłoński M., Kocki J. Review paper Neurogenesis and neuroprotection in postischemic brain neurodegeneration with Alzheimer phenotype: Is there a role for curcumin? Folia Neuropathol. 2015;2:89–99. doi: 10.5114/fn.2015.52405. PubMed DOI

Forouzanfar F., Read M.I., Barreto G.E., Sahebkar A. Neuroprotective effects of curcumin through autophagy modulation. IUBMB Life. 2020;72:652–664. doi: 10.1002/iub.2209. PubMed DOI

Tiwari S.K., Agarwal S., Tripathi A., Chaturvedi R.K. Bisphenol-A Mediated Inhibition of Hippocampal Neurogenesis Attenuated by Curcumin via Canonical Wnt Pathway. Mol. Neurobiol. 2016;53:3010–3029. doi: 10.1007/s12035-015-9197-z. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...