Glia and Neural Stem and Progenitor Cells of the Healthy and Ischemic Brain: The Workplace for the Wnt Signaling Pathway

. 2020 Jul 16 ; 11 (7) : . [epub] 20200716

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32708801

Wnt signaling plays an important role in the self-renewal, fate-commitment and survival of the neural stem/progenitor cells (NS/PCs) of the adult central nervous system (CNS). Ischemic stroke impairs the proper functioning of the CNS and, therefore, active Wnt signaling may prevent, ameliorate, or even reverse the negative effects of ischemic brain injury. In this review, we provide the current knowledge of Wnt signaling in the adult CNS, its status in diverse cell types, and the Wnt pathway's impact on the properties of NS/PCs and glial cells in the context of ischemic injury. Finally, we summarize promising strategies that might be considered for stroke therapy, and we outline possible future directions of the field.

Zobrazit více v PubMed

Hoseth E.Z., Krull F., Dieset I., Mørch R.H., Hope S., Gardsjord E.S., Steen N.E., Melle I., Brattbakk H.R., Steen V.M., et al. Exploring the Wnt signaling pathway in schizophrenia and bipolar disorder. Transl. Psychiatry. 2018;8 doi: 10.1038/s41398-018-0102-1. PubMed DOI PMC

Tapia-Rojas C., Inestrosa N. Loss of canonical Wnt signaling is involved in the pathogenesis of Alzheimer’s disease. Neural Regen. Res. 2018;13:1705. doi: 10.4103/1673-5374.238606. PubMed DOI PMC

L’Episcopo F., Tirolo C., Peruzzotti-Jametti L., Serapide M.F., Testa N., Caniglia S., Balzarotti B., Pluchino S., Marchetti B. Neural stem cell grafts promote astroglia-driven neurorestoration in the aged parkinsonian brain via Wnt/β-catenin signaling. Stem Cells. 2018;36:1179–1197. doi: 10.1002/stem.2827. PubMed DOI

Belov Kirdajova D., Kriska J., Tureckova J., Anderova M. Ischemia-triggered glutamate excitotoxicity from the perspective of glial cells. Front. Cell. Neurosci. 2020;14 doi: 10.3389/fncel.2020.00051. PubMed DOI PMC

Zhan L., Liu D., Wen H., Hu J., Pang T., Sun W., Xu E. Hypoxic postconditioning activates the Wnt/β-catenin pathway and protects against transient global cerebral ischemia through Dkk1 Inhibition and GSK-3β inactivation. FASEB J. 2019;33:9291–9307. doi: 10.1096/fj.201802633R. PubMed DOI

Liu B., Tang J., Li S.Y., Zhang Y.Q., Li Y., Dong X.L. Involvement of the Wnt signaling pathway and cell apoptosis in the rat hippocampus following cerebral ischemia/reperfusion injury. Neural Regen. Res. 2013;8:70–75. doi: 10.3969/j.issn.1673-5374.2013.01.009. PubMed DOI PMC

Kirdajova D., Anderova M. NG2 cells and their neurogenic potential. Curr. Opin. Pharmacol. 2019;50:53–60. doi: 10.1016/j.coph.2019.11.005. PubMed DOI

Valny M., Honsa P., Waloschkova E., Matuskova H., Kriska J., Kirdajova D., Androvic P., Valihrach L., Kubista M., Anderova M. A single-cell analysis reveals multiple roles of oligodendroglial lineage cells during post-ischemic regeneration. Glia. 2018;66:1068–1081. doi: 10.1002/glia.23301. PubMed DOI

Bernstock J.D., Peruzzotti-Jametti L., Ye D., Gessler F.A., Maric D., Vicario N., Lee Y.-J., Pluchino S., Hallenbeck J.M. Neural stem cell transplantation in ischemic stroke: A role for preconditioning and cellular engineering. J. Cereb. Blood Flow Metab. 2017;37:2314–2319. doi: 10.1177/0271678X17700432. PubMed DOI PMC

Varela-Nallar L., Inestrosa N.C. Wnt signaling in the regulation of adult hippocampal neurogenesis. Front. Cell. Neurosci. 2013;7 doi: 10.3389/fncel.2013.00100. PubMed DOI PMC

Chae W.-J., Bothwell A.L.M. Canonical and non-canonical Wnt signaling in immune cells. Trends Immunol. 2018;39:830–847. doi: 10.1016/j.it.2018.08.006. PubMed DOI PMC

Komekado H., Yamamoto H., Chiba T., Kikuchi A. Glycosylation and palmitoylation of Wnt-3a are coupled to produce an active form of Wnt-3a. Genes Cells. 2007;12:521–534. doi: 10.1111/j.1365-2443.2007.01068.x. PubMed DOI

Bänziger C., Soldini D., Schütt C., Zipperlen P., Hausmann G., Basler K. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell. 2006;125:509–522. doi: 10.1016/j.cell.2006.02.049. PubMed DOI

De Herreros A.G., Duñach M. Intracellular signals activated by canonical Wnt ligands independent of GSK3 inhibition and β-catenin stabilization. Cells. 2019;8:1148. doi: 10.3390/cells8101148. PubMed DOI PMC

Van Amerongen R. Alternative Wnt pathways and receptors. Cold Spring Harb. Perspect. Biol. 2012;4 doi: 10.1101/cshperspect.a007914. PubMed DOI PMC

Katoh M. Canonical and non-canonical Wnt signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review) Int. J. Oncol. 2017;51:1357–1369. doi: 10.3892/ijo.2017.4129. PubMed DOI PMC

Hendrickx G., Boudin E., Verbeek M., Fransen E., Mortier G., Van Hul W. Wnt16 requires Gα subunits as intracellular partners for both its canonical and non-canonical WNT signalling activity in osteoblasts. Calcif. Tissue Int. 2020;106:294–302. doi: 10.1007/s00223-019-00633-x. PubMed DOI

Flores-Hernández E., Velázquez D.M., Castañeda-Patlán M.C., Fuentes-García G., Fonseca-Camarillo G., Yamamoto-Furusho J.K., Romero-Avila M.T., García-Sáinz J.A., Robles-Flores M. Canonical and non-canonical Wnt signaling are simultaneously activated by Wnts in colon cancer cells. Cell. Signal. 2020;72 doi: 10.1016/j.cellsig.2020.109636. PubMed DOI

Fan J., Wei Q., Liao J., Zou Y., Song D., Xiong D., Ma C., Hu X., Qu X., Chen L., et al. Noncanonical Wnt signaling plays an important role in modulating canonical Wnt-regulated stemness, proliferation and terminal differentiation of hepatic progenitors. Oncotarget. 2017;8:27105–27119. doi: 10.18632/oncotarget.15637. PubMed DOI PMC

Brembeck F.H., Rosário M., Birchmeier W. Balancing cell adhesion and Wnt signaling, the key role of β-catenin. Curr. Opin. Genet. Dev. 2006;16:51–59. doi: 10.1016/j.gde.2005.12.007. PubMed DOI

Ladoux B., Nelson W.J., Yan J., Mège R.M. The mechanotransduction machinery at work at adherens junctions. Integr. Biol. 2015;7:1109–1119. doi: 10.1039/c5ib00070j. PubMed DOI PMC

Dar M.S., Singh P., Singh G., Jamwal G., Hussain S.S., Rana A., Akhter Y., Monga S.P., Dar M.J. Terminal regions of β-catenin are critical for regulating its adhesion and transcription functions. Biochim. Biophys. Acta–Mol. Cell Res. 2016;1863:2345–2357. doi: 10.1016/j.bbamcr.2016.06.010. PubMed DOI

Gao J., Liao Y., Qiu M., Shen W. Wnt/β-catenin signaling in neural stem cell homeostasis and neurological diseases. Neuroscientist. 2020 doi: 10.1177/1073858420914509. PubMed DOI

Komiya Y., Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4:68–75. doi: 10.4161/org.4.2.5851. PubMed DOI PMC

Gao C., Chen Y.-G. Dishevelled: The hub of Wnt signaling. Cell. Signal. 2010;22:717–727. doi: 10.1016/j.cellsig.2009.11.021. PubMed DOI

Cselenyi C.S., Jernigan K.K., Tahinci E., Thorne C.A., Lee L.A., Lee E. LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3’s phosphorylation of β-catenin. Proc. Natl. Acad. Sci. USA. 2008;105:8032–8037. doi: 10.1073/pnas.0803025105. PubMed DOI PMC

Nusse R., Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–999. doi: 10.1016/j.cell.2017.05.016. PubMed DOI

Krausova M., Korinek V. Wnt signaling in adult intestinal stem cells and cancer. Cell. Signal. 2014;26:570–579. doi: 10.1016/j.cellsig.2013.11.032. PubMed DOI

The Wnt Homepage. [(accessed on 25 June 2020)]; Available online: http://web.stanford.edu/group/nusselab/cgi-bin/wnt/

Bengoa-Vergniory N., Kypta R.M. Canonical and noncanonical Wnt signaling in neural stem/progenitor cells. Cell. Mol. Life Sci. 2015;72:4157–4172. doi: 10.1007/s00018-015-2028-6. PubMed DOI PMC

Sugimura R., Li L. Noncanonical Wnt signaling in vertebrate development, stem cells, and diseases. Birth Defects Res. C Embryo Today. 2010;90:243–256. doi: 10.1002/bdrc.20195. PubMed DOI

Green J., Nusse R., Van Amerongen R. The role of Ryk and Ror receptor tyrosine kinases in wnt signal transduction. Cold Spring Harb. Perspect. Biol. 2014;6 doi: 10.1101/cshperspect.a009175. PubMed DOI PMC

Ameyar M., Wisniewska M., Weitzman J.B. A role for AP-1 in apoptosis: The case for and against. Biochimie. 2003;85:747–752. doi: 10.1016/j.biochi.2003.09.006. PubMed DOI

Schlessinger K., McManus E.J., Hall A. Cdc42 and noncanonical Wnt signal transduction pathways cooperate to promote cell polarity. J. Cell Biol. 2007;178:355–361. doi: 10.1083/jcb.200701083. PubMed DOI PMC

Ishitani T., Kishida S., Hyodo-Miura J., Ueno N., Yasuda J., Waterman M., Shibuya H., Moon R.T., Ninomiya-Tsuji J., Matsumoto K. The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca2+ pathway to antagonize Wnt/β-catenin signaling. Mol. Cell. Biol. 2003;23:131–139. doi: 10.1128/MCB.23.1.131-139.2003. PubMed DOI PMC

MacDonald B.T., Tamai K., He X. Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Dev. Cell. 2009;17:9–26. doi: 10.1016/j.devcel.2009.06.016. PubMed DOI PMC

Mao B., Wu W., Davidson G., Marhold J., Li M., Mechler B.M., Dellus H., Hoppe D., Stannek P., Walter C., et al. Kremen proteins are Dickkopf receptors that regulate Wnt/β-catenin signalling. Nature. 2002;417:664–667. doi: 10.1038/nature756. PubMed DOI

Okerlund N.D., Cheyette B.N.R. Synaptic Wnt signaling—A contributor to major psychiatric disorders? J. Neurodev. Disord. 2011;3:162–174. doi: 10.1007/s11689-011-9083-6. PubMed DOI PMC

Cselenyi C.S., Lee E. Context-dependent activation or inhibition of Wnt-beta-Catenin signaling by kremen. Sci. Signal. 2008;1:pe10. doi: 10.1126/stke.18pe10. PubMed DOI

Faigle R., Song H. Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochim. Biophys. Acta. 2013;1830:2435–2448. doi: 10.1016/j.bbagen.2012.09.002. PubMed DOI PMC

Prajerova I., Honsa P., Chvatal A., Anderova M. Distinct effects of sonic hedgehog and Wnt-7a on differentiation of neonatal neural stem/progenitor cells in vitro. Neuroscience. 2010;171:693–711. doi: 10.1016/j.neuroscience.2010.09.023. PubMed DOI

Li X.J., Zhang X., Johnson M.A., Wang Z.B., LaVaute T., Zhang S.C. Coordination of sonic hedgehog and Wnt signaling determines ventral and dorsal telencephalic neuron types from human embryonic stem cells. Development. 2009;136:4055–4063. doi: 10.1242/dev.036624. PubMed DOI PMC

Carballo G.B., Honorato J.R., De Lopes G.P.F., De Sampaio E Spohr T.C.L. A highlight on Sonic hedgehog pathway. Cell Commun. Signal. 2018;16:11. doi: 10.1186/s12964-018-0220-7. PubMed DOI PMC

Knoth R., Singec I., Ditter M., Pantazis G., Capetian P., Meyer R.P., Horvat V., Volk B., Kempermann G. Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS ONE. 2010;5:e8809. doi: 10.1371/journal.pone.0008809. PubMed DOI PMC

Wang C., Liu F., Liu Y.Y., Zhao C.H., You Y., Wang L., Zhang J., Wei B., Ma T., Zhang Q., et al. Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res. 2011;21:1534–1550. doi: 10.1038/cr.2011.83. PubMed DOI PMC

Boldrini M., Fulmore C.A., Tartt A.N., Simeon L.R., Pavlova I., Poposka V., Rosoklija G.B., Stankov A., Arango V., Dwork A.J., et al. Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell. 2018;22:589–599. doi: 10.1016/j.stem.2018.03.015. PubMed DOI PMC

Sorrells S.F., Paredes M.F., Cebrian-Silla A., Sandoval K., Qi D., Kelley K.W., James D., Mayer S., Chang J., Auguste K.I., et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 2018;555:377–381. doi: 10.1038/nature25975. PubMed DOI PMC

Mizrak D., Levitin H.M., Delgado A.C., Crotet V., Yuan J., Chaker Z., Silva-Vargas V., Sims P.A., Doetsch F. Single-cell analysis of regional differences in adult V-SVZ neural stem cell lineages. Cell Rep. 2019;26:394–406. doi: 10.1016/j.celrep.2018.12.044. PubMed DOI PMC

Shin J., Berg D.A., Zhu Y., Shin J.Y., Song J., Bonaguidi M.A., Enikolopov G., Nauen D.W., Christian K.M., Ming G.L., et al. Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell. 2015;17:360–372. doi: 10.1016/j.stem.2015.07.013. PubMed DOI PMC

Urbán N., Guillemot F. Neurogenesis in the embryonic and adult brain: Same regulators, different roles. Front. Cell. Neurosci. 2014;8 doi: 10.3389/fncel.2014.00396. PubMed DOI PMC

Kuwabara T., Hsieh J., Muotri A., Yeo G., Warashina M., Lie D.C., Moore L., Nakashima K., Asashima M., Gage F.H. Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat. Neurosci. 2009;12:1097–1105. doi: 10.1038/nn.2360. PubMed DOI PMC

Lie D.C., Colamarino S.A., Song H.J., Désiré L., Mira H., Consiglio A., Lein E.S., Jessberger S., Lansford H., Dearie A.R., et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature. 2005;437:1370–1375. doi: 10.1038/nature04108. PubMed DOI

Wexler E.M., Paucer A., Kornblum H.I., Plamer T.D., Geschwind D.H. Endogenous Wnt signaling maintains neural progenitor cell potency. Stem Cells. 2009;27:1130–1141. doi: 10.1002/stem.36. PubMed DOI PMC

Qu Q., Sun G., Li W., Yang S., Ye P., Zhao C., Yu R.T., Gage F.H., Evans R.M., Shi Y. Orphan nuclear receptor TLX activates Wnt/Β-catenin signalling to stimulate neural stem cell proliferation and self-renewal. Nat. Cell Biol. 2010;12:31–40. doi: 10.1038/ncb2001. PubMed DOI PMC

Adachi K., Mirzadeh Z., Sakaguchi M., Yamashita T., Nikolcheva T., Gotoh Y., Peltz G., Gong L., Kawase T., Alvarez-Buylla A., et al. β-catenin signaling promotes proliferation of progenitor cells in the adult mouse subventricular zone. Stem Cells. 2007;25:2827–2836. doi: 10.1634/stemcells.2007-0177. PubMed DOI

Mao Y., Ge X., Frank C.L., Madison J.M., Koehler A.N., Doud M.K., Tassa C., Berry E.M., Soda T., Singh K.K., et al. Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3β/β-catenin signaling. Cell. 2009;136:1017–1031. doi: 10.1016/j.cell.2008.12.044. PubMed DOI PMC

Qu Q., Sun G., Murai K., Ye P., Li W., Asuelime G., Cheung Y.-T., Shi Y. Wnt7a regulates multiple steps of neurogenesis. Mol. Cell. Biol. 2013;33:2551–2559. doi: 10.1128/MCB.00325-13. PubMed DOI PMC

Karalay Ö., Doberauer K., Vadodaria K.C., Knobloch M., Berti L., Miquelajauregui A., Schwark M., Jagasia R., Taketo M.M., Tarabykin V., et al. Prospero-related homeobox 1 gene (Prox1) is regulated by canonical Wnt signaling and has a stage-specific role in adult hippocampal neurogenesis. Proc. Natl. Acad. Sci. USA. 2011;108:5807–5812. doi: 10.1073/pnas.1013456108. PubMed DOI PMC

Marinaro C., Pannese M., Weinandy F., Sessa A., Bergamaschi A., Taketo M.M., Broccoli V., Comi G., Götz M., Martino G., et al. Wnt signaling has opposing roles in the developing and the adult brain that are modulated by Hipk1. Cereb. Cortex. 2012;22:2415–2427. doi: 10.1093/cercor/bhr320. PubMed DOI

Okamoto M., Inoue K., Iwamura H., Terashima K., Soya H., Asashima M., Kuwabara T. Reduction in paracrine Wnt3 factors during aging causes impaired adult neurogenesis. FASEB J. 2011;25:3570–3582. doi: 10.1096/fj.11-184697. PubMed DOI

Solberg N., Machon O., Krauss S. Effect of canonical Wnt inhibition in the neurogenic cortex, hippocampus, and premigratory dentate gyrus progenitor pool. Dev. Dyn. 2008;237:1799–1811. doi: 10.1002/dvdy.21586. PubMed DOI

Jang M.-H., Bonaguidi M.A., Kitabatake Y., Sun J., Song J., Kang E., Jun H., Zhong C., Su Y., Guo J.U., et al. Secreted frizzled-related protein 3 regulates activity-dependent adult hippocampal neurogenesis. Cell Stem Cell. 2013;12:215–223. doi: 10.1016/j.stem.2012.11.021. PubMed DOI PMC

Zhu Y., Demidov O.N., Goh A.M., Virshup D.M., Lane D.P., Bulavin D.V. Phosphatase WIP1 regulates adult neurogenesis and WNT signaling during aging. J. Clin. Investig. 2014;124:3263–3273. doi: 10.1172/JCI73015. PubMed DOI PMC

Seib D.R.M., Corsini N.S., Ellwanger K., Plaas C., Mateos A., Pitzer C., Niehrs C., Celikel T., Martin-Villalba A. Loss of Dickkopf-1 restores neurogenesis in old age and counteracts cognitive decline. Cell Stem Cell. 2013;12:204–214. doi: 10.1016/j.stem.2012.11.010. PubMed DOI

Marzo A., Galli S., Lopes D., McLeod F., Podpolny M., Segovia-Roldan M., Ciani L., Purro S., Cacucci F., Gibb A., et al. Reversal of synapse degeneration by restoring Wnt signaling in the adult hippocampus. Curr. Biol. 2016;26:2551–2561. doi: 10.1016/j.cub.2016.07.024. PubMed DOI PMC

Kase Y., Otsu K., Shimazaki T., Okano H. Involvement of p38 in age-related decline in adult neurogenesis via modulation of Wnt signaling. Stem Cell Rep. 2019;12:1313–1328. doi: 10.1016/j.stemcr.2019.04.010. PubMed DOI PMC

Bevilaqua L.R.M., Kerr D.S., Medina J.H., Izquierdo I., Cammarota M. Inhibition of hippocampal Jun N-terminal kinase enhances short-term memory but blocks long-term memory formation and retrieval of an inhibitory avoidance task. Eur. J. Neurosci. 2003;17:897–902. doi: 10.1046/j.1460-9568.2003.02524.x. PubMed DOI

Reinecke K., Herdegen T., Eminel S., Aldenhoff J.B., Schiffelholz T. Knockout of c-Jun N-terminal kinases 1, 2 or 3 isoforms induces behavioural changes. Behav. Brain Res. 2013;245:88–95. doi: 10.1016/j.bbr.2013.02.013. PubMed DOI

Farías G.G., Alfaro I.E., Cerpa W., Grabowski C.P., Godoy J.A., Bonansco C., Inestrosa N.C. Wnt-5a/JNK signaling promotes the clustering of PSD-95 in hippocampal neurons. J. Biol. Chem. 2009;284:15857–15866. doi: 10.1074/jbc.M808986200. PubMed DOI PMC

Varela-Nallar L., Alfaro I.E., Serrano F.G., Parodi J., Inestrosa N.C. Wingless-type family member 5A (Wnt-5a) stimulates synaptic differentiation and function of glutamatergic synapses. Proc. Natl. Acad. Sci. USA. 2010;107:21164–21169. doi: 10.1073/pnas.1010011107. PubMed DOI PMC

Slater P.G., Ramirez V.T., Gonzalez-Billault C., Varela-Nallar L., Inestrosa N.C. Frizzled-5 receptor is involved in neuronal polarity and morphogenesis of hippocampal neurons. PLoS ONE. 2013;8:e78892. doi: 10.1371/journal.pone.0078892. PubMed DOI PMC

Raivich G., Bohatschek M., Da Costa C., Iwata O., Galiano M., Hristova M., Nateri A.S., Makwana M., Riera-Sans L., Wolfer D.P., et al. The AP-1 transcription factor c-Jun is required for efficient axonal regeneration. Neuron. 2004;43:57–67. doi: 10.1016/j.neuron.2004.06.005. PubMed DOI

Bengoa-Vergniory N., Gorroño-Etxebarria I., González-Salazar I., Kypta R.M. A switch from canonical to noncanonical wnt signaling mediates early differentiation of human neural stem cells. Stem Cells. 2014;32:3196–3208. doi: 10.1002/stem.1807. PubMed DOI

Arredondo S.B., Guerrero F.G., Herrera-Soto A., Jensen-Flores J., Bustamante D.B., Oñate-Ponce A., Henny P., Varas-Godoy M., Inestrosa N.C., Varela-Nallar L. Wnt5a promotes differentiation and development of adult-born neurons in the hippocampus by noncanonical Wnt signaling. Stem Cells. 2020;38:422–436. doi: 10.1002/stem.3121. PubMed DOI

Yu J.M., Kim J.H., Song G.S., Jung J.S. Increase in proliferation and differentiation of neural progenitor cells isolated from postnatal and adult mice brain by Wnt-3a and Wnt-5a. Mol. Cell. Biochem. 2006;288:17–28. doi: 10.1007/s11010-005-9113-3. PubMed DOI

Schafer S.T., Han J., Pena M., Von Bohlen und Halbach O., Peters J., Gage F.H. The Wnt adaptor protein ATP6AP2 regulates multiple stages of adult hippocampal neurogenesis. J. Neurosci. 2015;35:4983–4998. doi: 10.1523/JNEUROSCI.4130-14.2015. PubMed DOI PMC

Chavali M., Klingener M., Kokkosis A.G., Garkun Y., Felong S., Maffei A., Aguirre A. Non-canonical Wnt signaling regulates neural stem cell quiescence during homeostasis and after demyelination. Nat. Commun. 2018;9 doi: 10.1038/s41467-017-02440-0. PubMed DOI PMC

Clevers H., Loh K.M., Nusse R. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science. 2014;346:1248012. doi: 10.1126/science.1248012. PubMed DOI

Herculano-Houzel S. The glia/neuron ratio: How it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia. 2014;62:1377–1391. doi: 10.1002/glia.22683. PubMed DOI

Jäkel S., Dimou L. Glial cells and their function in the adult brain: A journey through the history of their ablation. Front. Cell. Neurosci. 2017;11:1–17. doi: 10.3389/fncel.2017.00024. PubMed DOI PMC

Cui W., Allen N.D., Skynner M., Gusterson B., Clark A.J. Inducible ablation of astrocytes shows that these cells are required for neuronal survival in the adult brain. Glia. 2001;34:272–282. doi: 10.1002/glia.1061. PubMed DOI

Schreiner B., Romanelli E., Liberski P., Ingold-Heppner B., Sobottka-Brillout B., Hartwig T., Chandrasekar V., Johannssen H., Zeilhofer H.U., Aguzzi A., et al. Astrocyte depletion impairs redox homeostasis and triggers neuronal loss in the adult CNS. Cell Rep. 2015;12:1377–1384. doi: 10.1016/j.celrep.2015.07.051. PubMed DOI

Liu X., Bolteus A.J., Balkin D.M., Henschel O., Bordey A. GFAP-expressing cells in the postnatal subventricular zone display a unique glial phenotype intermediate between radial glia and astrocytes. Glia. 2006;54:394–410. doi: 10.1002/glia.20392. PubMed DOI

Armenteros T., Andreu Z., Hortigüela R., Lie D.C., Mira H. BMP and WNT signalling cooperate through LEF1 in the neuronal specification of adult hippocampal neural stem and progenitor cells. Sci. Rep. 2018;8:9241. doi: 10.1038/s41598-018-27581-0. PubMed DOI PMC

Moreno-Estellés M., González-Gómez P., Hortigüela R., Díaz-Moreno M., San Emeterio J., Carvalho A.L., Fariñas I., Mira H. Symmetric expansion of neural stem cells from the adult olfactory bulb is driven by astrocytes via WNT7A. Stem Cells. 2012;30:2796–2809. doi: 10.1002/stem.1243. PubMed DOI

Falk S., Götz M. Glial control of neurogenesis. Curr. Opin. Neurobiol. 2017;47:188–195. doi: 10.1016/j.conb.2017.10.025. PubMed DOI

ffrench-Constant C., Raff M.C. Proliferating bipotential glial progenitor cells in adult rat optic nerve. Nature. 1986;319:499–502. doi: 10.1038/319499a0. PubMed DOI

Hughes E.G., Kang S.H., Fukaya M., Bergles D.E. Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat. Neurosci. 2013;16:668–676. doi: 10.1038/nn.3390. PubMed DOI PMC

Robins S.C., Villemain A., Liu X., Djogo T., Kryzskaya D., Storch K.F., Kokoeva M.V. Extensive regenerative plasticity among adult NG2-glia populations is exclusively based on self-renewal. Glia. 2013;61:1735–1747. doi: 10.1002/glia.22554. PubMed DOI

Birey F., Aguirre A. Age-dependent netrin-1 signaling regulates NG2+ glial cell spatial homeostasis in normal adult gray matter. J. Neurosci. 2015;35:6946–6951. doi: 10.1523/JNEUROSCI.0356-15.2015. PubMed DOI PMC

Chari D.M., Crang A.J., Blakemore W.F. Decline in rate of colonization of oligodendrocyte progenitor cell (OPC)-depleted tissue by adult OPCs with age. J. Neuropathol. Exp. Neurol. 2003;62:908–916. doi: 10.1093/jnen/62.9.908. PubMed DOI

Schneider S., Gruart A., Grade S., Zhang Y., Kröger S., Kirchhoff F., Eichele G., Delgado García J.M., Dimou L. Decrease in newly generated oligodendrocytes leads to motor dysfunctions and changed myelin structures that can be rescued by transplanted cells. Glia. 2016;64:2201–2218. doi: 10.1002/glia.23055. PubMed DOI

Birey F., Kloc M., Chavali M., Hussein I., Wilson M., Christoffel D.J., Chen T., Frohman M.A., Robinson J.K., Russo S.J., et al. Genetic and stress-induced loss of NG2 glia triggers emergence of depressive-like behaviors through reduced secretion of FGF2. Neuron. 2015;88:941–956. doi: 10.1016/j.neuron.2015.10.046. PubMed DOI PMC

Belachew S., Chittajallu R., Aguirre A.A., Yuan X., Kirby M., Anderson S., Gallo V. Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J. Cell Biol. 2003;161:169–186. doi: 10.1083/jcb.200210110. PubMed DOI PMC

Kondo T., Raff M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science. 2000;289:1754–1757. doi: 10.1126/science.289.5485.1754. PubMed DOI

Kang S.H., Fukaya M., Yang J.K., Rothstein J.D., Bergles D.E. NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron. 2010;68:668–681. doi: 10.1016/j.neuron.2010.09.009. PubMed DOI PMC

Rivers L.E., Young K.M., Rizzi M., Jamen F., Psachoulia K., Wade A., Kessaris N., Richardson W.D. PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat. Neurosci. 2008;11:1392–1401. doi: 10.1038/nn.2220. PubMed DOI PMC

Zhu X., Hill R.A., Dietrich D., Komitova M., Suzuki R., Nishiyama A. Age-dependent fate and lineage restriction of single NG2 cells. Development. 2011;138:745–753. doi: 10.1242/dev.047951. PubMed DOI PMC

Heinrich C., Bergami M., Gascón S., Lepier A., Viganò F., Dimou L., Sutor B., Berninger B., Götz M. Sox2-mediated conversion of NG2 glia into induced neurons in the injured adult cerebral cortex. Stem Cell Rep. 2014;3:1000–1014. doi: 10.1016/j.stemcr.2014.10.007. PubMed DOI PMC

Honsa P., Pivonkova H., Dzamba D., Filipova M., Anderova M. Polydendrocytes display large lineage plasticity following focal cerebral ischemia. PLoS ONE. 2012;7:e36816. doi: 10.1371/journal.pone.0036816. PubMed DOI PMC

Honsa P., Valny M., Kriska J., Matuskova H., Harantova L., Kirdajova D., Valihrach L., Androvic P., Kubista M., Anderova M. Generation of reactive astrocytes from NG2 cells is regulated by sonic hedgehog. Glia. 2016;64:1518–1531. doi: 10.1002/glia.23019. PubMed DOI

Tatsumi K., Takebayashi H., Manabe T., Tanaka K.F., Makinodan M., Yamauchi T., Makinodan E., Matsuyoshi H., Okuda H., Ikenaka K., et al. Genetic fate mapping of Olig2 progenitors in the injured adult cerebral cortex reveals preferential differentiation into astrocytes. J. Neurosci. Res. 2008;86:3494–3502. doi: 10.1002/jnr.21862. PubMed DOI

Xiao L., Ohayon D., Mckenzie I.A., Sinclair-Wilson A., Wright J.L., Fudge A.D., Emery B., Li H., Richardson W.D. Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning. Nat. Neurosci. 2016;19:1210–1217. doi: 10.1038/nn.4351. PubMed DOI PMC

Chew L.J., Shen W., Ming X., Senatorov V.V., Chen H.L., Cheng Y., Hong E., Knoblach S., Gallo V. SRY-Box containing gene 17 regulates the Wnt/β-catenin signaling pathway in oligodendrocyte progenitor cells. J. Neurosci. 2011;31:13921–13935. doi: 10.1523/JNEUROSCI.3343-11.2011. PubMed DOI PMC

Hill R.A., Patel K.D., Medved J., Reiss A.M., Nishiyama A. NG2 cells in white matter but not gray matter proliferate in response to PDGF. J. Neurosci. 2013;33:14558–14566. doi: 10.1523/JNEUROSCI.2001-12.2013. PubMed DOI PMC

Dai Z.-M., Sun S., Wang C., Huang H., Hu X., Zhang Z., Lu Q.R., Qiu M. Stage-specific regulation of oligodendrocyte development by Wnt/β-catenin signaling. J. Neurosci. 2014;34:8467–8473. doi: 10.1523/JNEUROSCI.0311-14.2014. PubMed DOI PMC

Ye F., Chen Y., Hoang T., Montgomery R.L., Zhao X., Bu H., Hu T., Taketo M.M., Van Es J.H., Clevers H., et al. HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction. Nat. Neurosci. 2009;12:829–838. doi: 10.1038/nn.2333. PubMed DOI PMC

Feigenson K., Reid M., See J., Crenshaw E.B., Grinspan J.B. Wnt signaling is sufficient to perturb oligodendrocyte maturation. Mol. Cell. Neurosci. 2009;42:255–265. doi: 10.1016/j.mcn.2009.07.010. PubMed DOI

Feigenson K., Reid M., See J., Crenshaw E.B., III, Grinspan J.B. Canonical Wnt signalling requires the BMP pathway to inhibit oligodendrocyte maturation. ASN Neuro. 2011;3:e00061. doi: 10.1042/AN20110004. PubMed DOI PMC

Lang J., Maeda Y., Bannerman P., Xu J., Horiuchi M., Pleasure D., Guo F. Adenomatous polyposis coli regulates oligodendroglial development. J. Neurosci. 2013;33:3113–3130. doi: 10.1523/JNEUROSCI.3467-12.2013. PubMed DOI PMC

Ortega F., Gascón S., Masserdotti G., Deshpande A., Simon C., Fischer J., Dimou L., Lie D.C., Schroeder T., Berninger B. Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling. Nat. Cell Biol. 2013;15:602–613. doi: 10.1038/ncb2736. PubMed DOI

Azim K., Butt A.M. GSK3β negatively regulates oligodendrocyte differentiation and myelination in vivo. Glia. 2011;59:540–553. doi: 10.1002/glia.21122. PubMed DOI

Meffre D., Massaad C., Grenier J. Lithium chloride stimulates plp and mbp expression in oligodendrocytes via wnt/β-catenin and akt/creb pathways. Neuroscience. 2015;284:962–971. doi: 10.1016/j.neuroscience.2014.10.064. PubMed DOI

Bowman A.N., Van Amerongen R., Palmer T.D., Nusse R. Lineage tracing with Axin2 reveals distinct developmental and adult populations of Wnt/β-catenin-responsive neural stem cells. Proc. Natl. Acad. Sci. USA. 2013;110:7324–7329. doi: 10.1073/pnas.1305411110. PubMed DOI PMC

Lie D.C., Dziewczapolski G., Willhoite A.R., Kaspar B.K., Shults C.W., Gage F.H. The adult substantia nigra contains progenitor cells with neurogenic potential. J. Neurosci. 2002;22:6639–6649. doi: 10.1523/JNEUROSCI.22-15-06639.2002. PubMed DOI PMC

Shihabuddin L.S., Horner P.J., Ray J., Gage F.H. Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J. Neurosci. 2000;20:8727–8735. doi: 10.1523/JNEUROSCI.20-23-08727.2000. PubMed DOI PMC

Suhonen J.O., Peterson D.A., Ray J., Gage F.H. Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature. 1996;383:624–627. doi: 10.1038/383624a0. PubMed DOI

Llorens-Bobadilla E., Martin-Villalba A. Adult NSC diversity and plasticity: The role of the niche. Curr. Opin. Neurobiol. 2017;42:68–74. doi: 10.1016/j.conb.2016.11.008. PubMed DOI

Kriska J., Honsa P., Dzamba D., Butenko O., Kolenicova D., Janeckova L., Nahacka Z., Andera L., Kozmik Z., Taketo M.M., et al. Manipulating Wnt signaling at different subcellular levels affects the fate of neonatal neural stem/progenitor cells. Brain Res. 2016;1651:73–87. doi: 10.1016/j.brainres.2016.09.026. PubMed DOI

Sun S., Zhu X.J., Huang H., Guo W., Tang T., Xie B., Xu X., Zhang Z., Shen Y., Dai Z.M., et al. Wnt signaling represses astrogliogenesis via Ngn2-dependent direct suppression of astrocyte gene expression. Glia. 2019;67:1333–1343. doi: 10.1002/glia.23608. PubMed DOI

Azim K., Akkermann R., Cantone M., Vera J., Jadasz J.J., Küry P. Transcriptional profiling of ligand expression in cell specific populations of the adult mouse forebrain that regulates neurogenesis. Front. Neurosci. 2018;12 doi: 10.3389/fnins.2018.00220. PubMed DOI PMC

Corada M., Orsenigo F., Bhat G.P., Conze L.L., Breviario F., Cunha S.I., Claesson-Welsh L., Beznoussenko G.V., Mironov A.A., Bacigaluppi M., et al. Fine-tuning of Sox17 and canonical Wnt coordinates the permeability properties of the blood-brain barrier. Circ. Res. 2019;124:511–525. doi: 10.1161/CIRCRESAHA.118.313316. PubMed DOI PMC

Laksitorini M.D., Yathindranath V., Xiong W., Hombach-Klonisch S., Miller D.W. Modulation of Wnt/β-catenin signaling promotes blood-brain barrier phenotype in cultured brain endothelial cells. Sci. Rep. 2019;9 doi: 10.1038/s41598-019-56075-w. PubMed DOI PMC

Mirzadeh Z., Merkle F.T., Soriano-Navarro M., Garcia-Verdugo J.M., Alvarez-Buylla A. Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell. 2008;3:265–278. doi: 10.1016/j.stem.2008.07.004. PubMed DOI PMC

Paez-Gonzalez P., Abdi K., Luciano D., Liu Y., Soriano-Navarro M., Rawlins E., Bennett V., Garcia-Verdugo J.M., Kuo C.T. Ank3-dependent SVZ niche assembly is required for the continued production of new neurons. Neuron. 2011;71:61–75. doi: 10.1016/j.neuron.2011.05.029. PubMed DOI PMC

Gonzalez-Fernandez C., Arevalo-Martin A., Paniagua-Torija B., Ferrer I., Rodriguez F.J., Garcia-Ovejero D. Wnts are expressed in the ependymal region of the adult spinal cord. Mol. Neurobiol. 2017;54:6342–6355. doi: 10.1007/s12035-016-0132-8. PubMed DOI

Xing L., Anbarchian T., Tsai J.M., Plant G.W., Nusse R. Wnt/β-catenin signaling regulates ependymal cell development and adult homeostasis. Proc. Natl. Acad. Sci. USA. 2018;115:E5954–E5962. doi: 10.1073/pnas.1803297115. PubMed DOI PMC

Ohata S., Nakatani J., Herranz-Pérez V., Cheng J.G., Belinson H., Inubushi T., Snider W.D., García-Verdugo J.M., Wynshaw-Boris A., Álvarez-Buylla A. Loss of dishevelleds disrupts planar polarity in ependymal motile cilia and results in hydrocephalus. Neuron. 2014;83:558–571. doi: 10.1016/j.neuron.2014.06.022. PubMed DOI PMC

Sawamoto K., Wichterle H., Gonzalez-Perez O., Cholfin J.A., Yamada M., Spassky N., Murcia N.S., Garcia-Verdugo J.M., Marin O., Rubenstein J.L.R., et al. New neurons follow the flow of cerebrospinal fluid in the adult brain. Science. 2006;311:629–632. doi: 10.1126/science.1119133. PubMed DOI

Donnan G.A., Fisher M., Macleod M., Davis S.M. Stroke. Lancet. 2008;371:1612–1623. doi: 10.1016/S0140-6736(08)60694-7. PubMed DOI

Woodruff T.M., Thundyil J., Tang S.-C., Sobey C.G., Taylor S.M., Arumugam T.V. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol. Neurodegener. 2011;6:11. doi: 10.1186/1750-1326-6-11. PubMed DOI PMC

Koh S.H., Park H.H. Neurogenesis in stroke recovery. Transl. Stroke Res. 2017;8:3–13. doi: 10.1007/s12975-016-0460-z. PubMed DOI

Rossi D.J., Brady J.D., Mohr C. Astrocyte metabolism and signaling during brain ischemia. Nat. Neurosci. 2007;10:1377–1386. doi: 10.1038/nn2004. PubMed DOI PMC

Dirnagl U., Iadecola C., Moskowitz M.A. Pathobiology of ischaemic stroke: An integrated view. Trends Neurosci. 1999;22:391–397. doi: 10.1016/S0166-2236(99)01401-0. PubMed DOI

Rebai O., Amri M. Chlorogenic acid prevents AMPA-mediated excitotoxicity in optic nerve oligodendrocytes through a PKC and caspase-dependent pathways. Neurotox. Res. 2018;34:559–573. doi: 10.1007/s12640-018-9911-5. PubMed DOI

Andrabi S.S., Parvez S., Tabassum H. Ischemic stroke and mitochondria: Mechanisms and targets. Protoplasma. 2020;257:335–343. doi: 10.1007/s00709-019-01439-2. PubMed DOI

Gelderblom M., Leypoldt F., Steinbach K., Behrens D., Choe C.-U., Siler D.A., Arumugam T.V., Orthey E., Gerloff C., Tolosa E., et al. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke. 2009;40:1849–1857. doi: 10.1161/STROKEAHA.108.534503. PubMed DOI

Del Zoppo G.J., Hallenbeck J.M. Advances in the vascular pathophysiology of ischemic stroke. Thromb. Res. 2000;98:73–81. doi: 10.1016/S0049-3848(00)00218-8. PubMed DOI

Adams K.L., Gallo V. The diversity and disparity of the glial scar. Nat. Neurosci. 2018;21:9–15. doi: 10.1038/s41593-017-0033-9. PubMed DOI PMC

Huang L., Wu Z.-B., Zhuge Q., Zheng W., Shao B., Wang B., Sun F., Jin K. Glial scar formation occurs in the human brain after ischemic stroke. Int. J. Med. Sci. 2014;11:344–348. doi: 10.7150/ijms.8140. PubMed DOI PMC

Jansen O., Rohr A. Neurothrombectomy in the treatment of acute ischaemic stroke. Nat. Rev. Neurol. 2013;9:645–652. doi: 10.1038/nrneurol.2013.204. PubMed DOI

Stenman J.M., Rajagopal J., Carroll T.J., Ishibashi M., McMahon J., McMahon A.P. Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science. 2008;322:1247–1250. doi: 10.1126/science.1164594. PubMed DOI

Liebner S., Corada M., Bangsow T., Babbage J., Taddei A., Czupalla C.J., Reis M., Felici A., Wolburg H., Fruttiger M., et al. Wnt/β-catenin signaling controls development of the blood–brain barrier. J. Cell Biol. 2008;183:409–417. doi: 10.1083/jcb.200806024. PubMed DOI PMC

Miao Y., Wang R., Wu H., Yang S., Qiu Y. CPCGI confers neuroprotection by enhancing blood circulation and neurological function in cerebral ischemia/reperfusion rats. Mol. Med. Rep. 2019;20:2365–2372. doi: 10.3892/mmr.2019.10472. PubMed DOI

Cappuccio I. Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is required for the development of ischemic neuronal death. J. Neurosci. 2005;25:2647–2657. doi: 10.1523/JNEUROSCI.5230-04.2005. PubMed DOI PMC

Mastroiacovo F., Busceti C.L., Biagioni F., Moyanova S.G., Meisler M.H., Battaglia G., Caricasole A., Bruno V., Nicoletti F. Induction of the Wnt antagonist, Dickkopf-1, contributes to the development of neuronal death in models of brain focal ischemia. J. Cereb. Blood Flow Metab. 2009;29:264–276. doi: 10.1038/jcbfm.2008.111. PubMed DOI

Li Q., Dashwood W.M., Zhong X., Nakagama H., Dashwood R.H. Bcl-2 overexpression in PhIP-induced colon tumors: Cloning of the rat Bcl-2 promoter and characterization of a pathway involving β-catenin, c-Myc and E2F1. Oncogene. 2007;26:6194–6202. doi: 10.1038/sj.onc.1210438. PubMed DOI PMC

Zhang G., Ge M., Han Z., Wang S., Yin J., Peng L., Xu F., Zhang Q., Dai Z., Xie L., et al. Wnt/β-catenin signaling pathway contributes to isoflurane postconditioning against cerebral ischemia-reperfusion injury and is possibly related to the transforming growth factorβ1/Smad3 signaling pathway. Biomed. Pharmacother. 2019;110:420–430. doi: 10.1016/j.biopha.2018.11.143. PubMed DOI

Seifert-Held T., Pekar T., Gattringer T., Simmet N.E., Scharnagl H., Stojakovic T., Fazekas F., Storch M.K. Circulating Dickkopf-1 in acute ischemic stroke and clinically stable cerebrovascular disease. Atherosclerosis. 2011;218:233–237. doi: 10.1016/j.atherosclerosis.2011.05.015. PubMed DOI

Picard-Riera N., Nait-Oumesmar B., Baron-Van Evercooren A. Endogenous adult neural stem cells: Limits and potential to repair the injured central nervous system. J. Neurosci. Res. 2004;76:223–231. doi: 10.1002/jnr.20040. PubMed DOI

Piccin D., Morshead C.M. Wnt signaling regulates symmetry of division of neural stem cells in the adult brain and in response to injury. Stem Cells. 2011;29:528–538. doi: 10.1002/stem.589. PubMed DOI

Wei Z.Z., Zhang J.Y., Taylor T.M., Gu X., Zhao Y., Wei L. Neuroprotective and regenerative roles of intranasal Wnt-3a administration after focal ischemic stroke in mice. J. Cereb. Blood Flow Metab. 2018;38:404–421. doi: 10.1177/0271678X17702669. PubMed DOI PMC

Shruster A., Ben-Zur T., Melamed E., Offen D. Wnt signaling enhances neurogenesis and improves neurological function after focal ischemic injury. PLoS ONE. 2012;7:e40843. doi: 10.1371/journal.pone.0040843. PubMed DOI PMC

Lei Z.N., Zhang L.M., Sun F.Y. β-Catenin siRNA inhibits ischemia-induced striatal neurogenesis in adult rat brain following a transient middle cerebral artery occlusion. Neurosci. Lett. 2008;435:108–112. doi: 10.1016/j.neulet.2008.02.031. PubMed DOI

Lei Z.-N., Liu F., Zhang L.-M., Huang Y.-L., Sun F.-Y. Bcl-2 increases stroke-induced striatal neurogenesis in adult brains by inhibiting BMP-4 function via activation of β-catenin signaling. Neurochem. Int. 2012;61:34–42. doi: 10.1016/j.neuint.2012.04.004. PubMed DOI

Zhao Y., Wei Z.Z., Zhang J.Y., Zhang Y., Won S., Sun J., Yu S.P., Li J., Wei L. GSK-3β inhibition induced neuroprotection, regeneration, and functional recovery after intracerebral hemorrhagic stroke. Cell Transplant. 2017;26:395–407. doi: 10.3727/096368916X694364. PubMed DOI PMC

Wang L.H., Zhang G.L., Liu X.Y., Peng A., Ren H.Y., Huang S.H., Liu T., Wang X.J. CELSR1 promotes neuroprotection in cerebral ischemic injury mainly through the Wnt/PKC signaling pathway. Int. J. Mol. Sci. 2020;21:1267. doi: 10.3390/ijms21041267. PubMed DOI PMC

Yu Z., Cheng C., Liu Y., Liu N., Lo E.H., Wang X. Neuroglobin promotes neurogenesis through Wnt signaling pathway. Cell Death Dis. 2018;9:945. doi: 10.1038/s41419-018-1007-x. PubMed DOI PMC

Qi C., Zhang J., Chen X., Wan J., Wang J., Zhang P., Liu Y. Hypoxia stimulates neural stem cell proliferation by increasing HIF-1α expression and activating Wnt/β-catenin signaling. Cell. Mol. Biol. (Noisy-le-grand) 2017;63:12–19. doi: 10.14715/cmb/2017.63.7.2. PubMed DOI PMC

Chen X., Zhou B., Yan T., Wu H., Feng J., Chen H., Gao C., Peng T., Yang D., Shen J. Peroxynitrite enhances self-renewal, proliferation and neuronal differentiation of neural stem/progenitor cells through activating HIF-1α and Wnt/β-catenin signaling pathway. Free Radic. Biol. Med. 2018;117:158–167. doi: 10.1016/j.freeradbiomed.2018.02.011. PubMed DOI

Wang J., Chen T., Shan G. MiR-148b regulates proliferation and differentiation of neural stem cells via Wnt/β-catenin signaling in rat ischemic stroke model. Front. Cell. Neurosci. 2017;11:329. doi: 10.3389/fncel.2017.00329. PubMed DOI PMC

Qiu C.W., Liu Z.Y., Hou K., Liu S.Y., Hu Y.X., Zhang L., Zhang F.L., Lv K.Y., Kang Q., Hu W.Y., et al. Wip1 knockout inhibits neurogenesis by affecting the Wnt/β-catenin signaling pathway in focal cerebral ischemia in mice. Exp. Neurol. 2018;309:44–53. doi: 10.1016/j.expneurol.2018.07.011. PubMed DOI

Yu G., Liang Y., Zheng S., Zhang H. Inhibition of myeloperoxidase by N-Acetyl lysyltyrosylcysteine amide reduces oxidative stress-mediated inflammation, neuronal damage, and neural stem cell injury in a murine model of stroke. J. Pharmacol. Exp. Ther. 2018;364:311–322. doi: 10.1124/jpet.117.245688. PubMed DOI

You D., You H. Repression of long non-coding RNA MEG3 restores nerve growth and alleviates neurological impairment after cerebral ischemia-reperfusion injury in a rat model. Biomed. Pharmacother. 2019;111:1447–1457. doi: 10.1016/j.biopha.2018.12.067. PubMed DOI

Lee S.H., Ko H.M., Kwon K.J., Lee J., Han S.-H., Han D.W., Cheong J.H., Ryu J.H., Shin C.Y. tPA regulates neurite outgrowth by phosphorylation of LRP5/6 in neural progenitor cells. Mol. Neurobiol. 2014;49:199–215. doi: 10.1007/s12035-013-8511-x. PubMed DOI

Morris D.C., Zhang Z.G., Wang Y., Zhang R.L., Gregg S., Liu X.S., Chopp M. Wnt expression in the adult rat subventricular zone after stroke. Neurosci. Lett. 2007;418:170–174. doi: 10.1016/j.neulet.2007.03.039. PubMed DOI PMC

Yang J., Zhang X., Wu Y., Zhao B., Liu X., Pan Y., Liu Y., Ding Y., Qiu M., Wang Y.Z., et al. Wnt/β-catenin signaling mediates the seizure-facilitating effect of postischemic reactive astrocytes after pentylenetetrazole-kindling. Glia. 2016;64:1083–1091. doi: 10.1002/glia.22984. PubMed DOI

Busceti C.L., Di Menna L., Bianchi F., Mastroiacovo F., Di Pietro P., Traficante A., Bozza G., Niehrs C., Battaglia G., Bruno V., et al. Dickkopf-3 causes neuroprotection by inducing vascular endothelial growth factor. Front. Cell. Neurosci. 2018;12 doi: 10.3389/fncel.2018.00292. PubMed DOI PMC

Zhang D., Lu Z., Man J., Cui K., Fu X., Yu L., Gao Y., Liao L., Xiao Q., Guo R., et al. Wnt-3a alleviates neuroinflammation after ischemic stroke by modulating the responses of microglia/macrophages and astrocytes. Int. Immunopharmacol. 2019;75 doi: 10.1016/j.intimp.2019.105760. PubMed DOI

Shang Y.C., Chong Z.Z., Hou J., Maiese K. Wnt1, FoxO3a, and NF-κB oversee microglial integrity and activation during oxidant stress. Cell. Signal. 2010;22:1317–1329. doi: 10.1016/j.cellsig.2010.04.009. PubMed DOI PMC

Song D., Zhang X., Chen J., Liu X., Xue J., Zhang L., Lan X. Wnt canonical pathway activator TWS119 drives microglial anti-inflammatory activation and facilitates neurological recovery following experimental stroke. J. Neuroinflammation. 2019;16 doi: 10.1186/s12974-019-1660-8. PubMed DOI PMC

Halleskog C., Dijksterhuis J.P., Kilander M.B.C., Becerril-Ortega J., Villaescusa J.C., Lindgren E., Arenas E., Schulte G. Heterotrimeric G protein-dependent WNT-5A signaling to ERK1/2 mediates distinct aspects of microglia proinflammatory transformation. J. Neuroinflammation. 2012;9 doi: 10.1186/1742-2094-9-111. PubMed DOI PMC

Cheng J., Shen W., Jin L., Pan J., Zhou Y., Pan G., Xie Q., Hu Q., Wu S., Zhang H., et al. Treadmill exercise promotes neurogenesis and myelin repair via upregulating Wnt/β–catenin signaling pathways in the juvenile brain following focal cerebral ischemia/reperfusion. Int. J. Mol. Med. 2020;45:1447–1463. doi: 10.3892/ijmm.2020.4515. PubMed DOI PMC

Nicaise A.M., Johnson K.M., Willis C.M., Guzzo R.M., Crocker S.J. TIMP-1 promotes oligodendrocyte differentiation through receptor-mediated signaling. Mol. Neurobiol. 2019;56:3380–3392. doi: 10.1007/s12035-018-1310-7. PubMed DOI PMC

Wang L., Geng J., Qu M., Yuan F., Wang Y., Pan J., Li Y., Ma Y., Zhou P., Zhang Z., et al. Oligodendrocyte precursor cells transplantation protects blood–brain barrier in a mouse model of brain ischemia via Wnt/β-catenin signaling. Cell Death Dis. 2020;11:9. doi: 10.1038/s41419-019-2206-9. PubMed DOI PMC

ClinicalTrials.gov. [(accessed on 26 June 2020)]; Available online: https://clinicaltrials.gov/

Marei H.E., Hasan A., Rizzi R., Althani A., Afifi N., Cenciarelli C., Caceci T., Shuaib A. Potential of stem cell-based therapy for ischemic stroke. Front. Neurol. 2018;9 doi: 10.3389/fneur.2018.00034. PubMed DOI PMC

Giuliani D., Ottani A., Neri L., Zaffe D., Grieco P., Jochem J., Cavallini G.M., Catania A., Guarini S. Multiple beneficial effects of melanocortin MC4 receptor agonists in experimental neurodegenerative disorders: Therapeutic perspectives. Prog. Neurobiol. 2017;148:40–56. doi: 10.1016/j.pneurobio.2016.11.004. PubMed DOI

Spaccapelo L., Galantucci M., Neri L., Contri M., Pizzala R., D’Amico R., Ottani A., Sandrini M., Zaffe D., Giuliani D., et al. Up-regulation of the canonical Wnt-3A and Sonic hedgehog signaling underlies melanocortin-induced neurogenesis after cerebral ischemia. Eur. J. Pharmacol. 2013;707:78–86. doi: 10.1016/j.ejphar.2013.03.030. PubMed DOI

Xing Y., Zhang X., Zhao K., Cui L., Wang L., Dong L., Li Y., Liu Z., Wang C., Zhang X., et al. Beneficial effects of sulindac in focal cerebral ischemia: A positive role in Wnt/β-catenin pathway. Brain Res. 2012;1482:71–80. doi: 10.1016/j.brainres.2012.08.057. PubMed DOI

He W., Tian X., Lv M., Wang H. Liraglutide protects neurite outgrowth of cortical neurons under oxidative stress though activating the Wnt pathway. J. Stroke Cerebrovasc. Dis. 2018;27:2696–2702. doi: 10.1016/j.jstrokecerebrovasdis.2018.05.039. PubMed DOI

Hu Q., Liang X., Chen D., Chen Y., Doycheva D., Tang J., Tang J., Zhang J.H. Delayed hyperbaric oxygen therapy promotes neurogenesis through reactive oxygen species/hypoxia-inducible factor-1α/β-catenin pathway in middle cerebral artery occlusion rats. Stroke. 2014;45:1807–1814. doi: 10.1161/STROKEAHA.114.005116. PubMed DOI PMC

Chen C., Yang Y., Yao Y. HBO promotes the differentiation of neural stem cells via interactions between the Wnt3/β-catenin and BMP2 signaling pathways. Cell Transplant. 2019;28:1686–1699. doi: 10.1177/0963689719883578. PubMed DOI PMC

Wu C., Chen J., Chen C., Wang W., Wen L., Gao K., Chen X., Xiong S., Zhao H., Li S. Wnt/β-catenin coupled with HIF-1α/VEGF signaling pathways involved in galangin neurovascular unit protection from focal cerebral ischemia. Sci. Rep. 2015;5:16151. doi: 10.1038/srep16151. PubMed DOI PMC

Qiu C.W., Liu Z.Y., Zhang F.L., Zhang L., Li F., Liu S.Y., He J.Y., Xiao Z.C. Post-stroke gastrodin treatment ameliorates ischemic injury and increases neurogenesis and restores the Wnt/β-Catenin signaling in focal cerebral ischemia in mice. Brain Res. 2019;1712:7–15. doi: 10.1016/j.brainres.2019.01.043. PubMed DOI

Xu Y., Zhang G., Kang Z., Xu Y., Jiang W., Zhang S. Cornin increases angiogenesis and improves functional recovery after stroke via the Ang1/Tie2 axis and the Wnt/β-catenin pathway. Arch. Pharm. Res. 2016;39:133–142. doi: 10.1007/s12272-015-0652-1. PubMed DOI

Chen B., Tao J., Lin Y., Lin R., Liu W., Chen L. Electro-acupuncture exerts beneficial effects against cerebral ischemia and promotes the proliferation of neural progenitor cells in the cortical peri-infarct area through the Wnt/β-catenin signaling pathway. Int. J. Mol. Med. 2015;36:1215–1222. doi: 10.3892/ijmm.2015.2334. PubMed DOI PMC

Lambert C., Cisternas P., Inestrosa N.C. Role of Wnt signaling in central nervous system injury. Mol. Neurobiol. 2016;53:2297–2311. doi: 10.1007/s12035-015-9138-x. PubMed DOI

Scott E.L., Brann D.W. Estrogen regulation of Dkk1 and Wnt/β-Catenin signaling in neurodegenerative disease. Brain Res. 2013;1514:63–74. doi: 10.1016/j.brainres.2012.12.015. PubMed DOI PMC

Wang W., Li M., Wang Y., Li Q., Deng G., Wan J., Yang Q., Chen Q., Wang J. GSK-3β inhibitor TWS119 attenuates rtPA-induced hemorrhagic transformation and activates the Wnt/β-catenin signaling pathway after acute ischemic stroke in rats. Mol. Neurobiol. 2016;53:7028–7036. doi: 10.1007/s12035-015-9607-2. PubMed DOI PMC

Libro R., Bramanti P., Mazzon E. The role of the Wnt canonical signaling in neurodegenerative diseases. Life Sci. 2016;158:78–88. doi: 10.1016/j.lfs.2016.06.024. PubMed DOI

Tran F.H., Zheng J.J. Modulating the wnt signaling pathway with small molecules. Protein Sci. 2017;26:650–661. doi: 10.1002/pro.3122. PubMed DOI PMC

Zhan T., Rindtorff N., Boutros M. Wnt signaling in cancer. Oncogene. 2017;36:1461–1473. doi: 10.1038/onc.2016.304. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace