NMDA Receptors in Glial Cells: Pending Questions

. 2013 May ; 11 (3) : 250-62.

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené arabské emiráty Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid24179462

Glutamate receptors of the N-methyl-D-aspartate (NMDA) type are involved in many cognitive processes, including behavior, learning and synaptic plasticity. For a long time NMDA receptors were thought to be the privileged domain of neurons; however, discoveries of the last 25 years have demonstrated their active role in glial cells as well. Despite the large number of studies in the field, there are many unresolved questions connected with NMDA receptors in glia that are still a matter of debate. The main objective of this review is to shed light on these controversies by summarizing results from all relevant works concerning astrocytes, oligodendrocytes and polydendrocytes (also known as NG2 glial cells) in experimental animals, further extended by studies performed on human glia. The results are divided according to the study approach to enable a better comparison of how findings obtained at the mRNA level correspond with protein expression or functionality. Furthermore, special attention is focused on the NMDA receptor subunits present in the particular glial cell types, which give them special characteristics different from those of neurons - for example, the absence of Mg(2+) block and decreased Ca(2+) permeability. Since glial cells are implicated in important physiological and pathophysiological roles in the central nervous system (CNS), the last part of this review provides an overview of glial NMDA receptors with respect to ischemic brain injury.

Zobrazit více v PubMed

Petralia RS, Wenthold RJ. NMDA receptors. In: Gereau RW, Swanson GT, editors. Glutamate receptors. Humana press, a part of Springer Science+Business Media, LLC; 2008. pp. 45–98.

Smothers CT, Woodward JJ. Pharmacological characterization of glycine-activated currents in HEK 293 cells expressing N-methyl-D-aspartate NR1 and NR3 subunits. J. Pharmacol. Exp. Ther. 2007;322:739–748. PubMed

Akazawa C, Shigemoto R, Bessho Y, Nakanishi S, Mizuno N. Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J. Comp. Neurol . 1994;347:150–160. PubMed

Cavara NA, Hollmann M. Shuffling the deck anew how NR3 tweaks NMDA receptor function. Mol. Neurobiol . 2008;38:16–26. PubMed

Matute C. Oligodendrocyte NMDA receptors: a novel therapeutic target. Trends Mol. Med . 2006;12:289–292. PubMed

Lipton SA. NMDA receptors, glial cells, and clinical medicine. Neuron . 2006;50:9–11. PubMed

Verkhratsky A, Kirchhoff F. NMDA Receptors in glia. Neuroscientist . 2007;13:28–37. PubMed

Kimelberg HK, Nedergaard M. Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics . 2010;7:338–353. PubMed PMC

Kofuji P, Newman EA. Potassium buffering in the central nervous system. Neuroscience . 2004;129:1045–1056. PubMed PMC

Deitmer JW, Rose CR. Ion changes and signalling in perisynaptic glia. Brain Res. Rev . 2010;63:113–129. PubMed

Anderson CM, Swanson RA. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia. 2000;32:1–14. PubMed

Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat. Neurosci. 2007;10:1369–1376. PubMed

Magistretti PJ. Role of glutamate in neuron-glia metabolic coupling. Am. J. Clin. Nutr . 2009;90:875S–880S. PubMed

Jou MJ. Pathophysiological and pharmacological implications of mitochondria-targeted reactive oxygen species generation in astrocytes. Adv. Drug Deliv. Rev . 2008;60:1512–1526. PubMed

Amiry-Moghaddam M, Williamson A, Palomba M, Eid T, deLanerolle NC, Nagelhus EA, Adams ME, Froehner SC, Agre P, Ottersen OP. Delayed K+ clearance associated with aquaporin-4 mislocalization phenotypic defects in brains of alpha-syntrophin-null mice. Proc. Natl. Acad. Sci. U. S. A . 2003;100:13615–13620. PubMed PMC

Kimelberg HK, O'Connor E. Swelling of astrocytes causes membrane potential depolarization. Glia. 1988;1:219–224. PubMed

Halassa MM, Fellin T, Haydon PG. The tripartite synapse roles for gliotransmission in health and disease. Trends Mol. Med . 2007;13:54–63. PubMed

Platel JC, Dave KA, Gordon V, Lacar B, Rubio ME, Bordey A. NMDA receptors activated by subventricular zone astrocytic glutamate are critical for neuroblast survival prior to entering a synaptic network. Neuron . 2010;65:859–872. PubMed PMC

Pekny M, Nilsson M. Astrocyte activation and reactive gliosis. Glia. 2005;50:427–434. PubMed

Sidoryk-Wegrzynowicz M, Wegrzynowicz M, Lee E, Bowman AB, Aschner M. Role of astrocytes in brain function and disease. Toxicol Pathol. 2011;39:115–123. PubMed PMC

Verkhratsky A. Neurotransmitter receptors in astrocytes. In: Parpura V, Haydon PG, editors. Astrocytes in (Patho)Physiology of the Nervous System. Springer Science and Business Media, LLC; 2009. pp. 49–67.

Dewar D, Underhill SM, Goldberg MP. Oligodendrocytes and ischemic brain injury. J. Cereb. Blood Flow Metab. 2003;23:263–274. PubMed

Matute C. Glutamate and ATP signalling in white matter pathology. J Anat. 2011;219:53–64. PubMed PMC

Wolosker H, Dumin E, Balan L, Foltyn VN. D-amino acids in the brain D-serine in neurotransmission and neurodegeneration. FEBS J. 2008;275:3514–3526. PubMed

Dawson MR, Polito A, Levine JM, Reynolds R. NG2-expressing glial progenitor cells an abundant and widespread population of cycling cells in the adult rat CNS. Mol. Cell Neurosci. 2003;24:476–488. PubMed

Stallcup WB, Beasley L. Bipotential glial precursor cells of the optic nerve express the NG2 proteoglycan. J. Neurosci. 1987;7:2737–2744. PubMed PMC

Kukley M, Kiladze M, Tognatta R, Hans M, Swandulla D, Schramm J, Dietrich D. Glial cells are born with synapses. FASEB J. 2008;22:2957–2969. PubMed

Psachoulia K, Jamen F, Young KM, Richardson WD. Cell cycle dynamics of NG2 cells in the postnatal and ageing brain. Neuron Glia Biol . 2009;5:57–67. PubMed PMC

Simon C, Gotz M, Dimou L. Progenitors in the adult cerebral cortex cell cycle properties and regulation by physiological stimuli and injury. Glia. 2011;59:869–881. PubMed

Ge WP, Zhou W, Luo Q, Jan LY, Jan YN. Dividing glial cells maintain differentiated properties including complex morphology and functional synapses. Proc. Natl. Acad. Sci. U. S. A. 2009;106:328–333. PubMed PMC

Kang SH, Fukaya M, Yang JK, Rothstein JD, Bergles DE. NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron . 2010;68:668–681. PubMed PMC

Rivers LE, Young KM, Rizzi M, Jamen F, Psachoulia K, Wade A, Kessaris N, Richardson WD. PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat. Neurosci. 2008;11:1392–1401. PubMed PMC

Honsa P, Pivonkova H, Dzamba D, Filipova M, Anderova M. Polydendrocytes display large lineage plasticity following focal cerebral ischemia. PLoS One . 2012;7:e36816. PubMed PMC

Komitova M, Serwanski DR, Lu QR, Nishiyama A. NG2 cells are not a major source of reactive astrocytes after neocortical stab wound injury. Glia. 2011;59:800–809. PubMed PMC

Theis M, Giaume C. Connexin-based intercellular communication and astrocyte heterogeneity. Brain Res. 2012 PubMed

Bergles DE, Jabs R, Steinhauser C. Neuron-glia synapses in the brain. Brain Res. Rev . 2010;63:130–137. PubMed PMC

Conti F, Minelli A, Molnar M, Brecha NC. Cellular localization and laminar distribution of NMDAR1 mRNA in the rat cerebral cortex. J. Comp. Neurol. 1994;343:554–565. PubMed

Luque JM, Richards JG. Expression of NMDA 2B receptor subunit mRNA in Bergmann glia. Glia. 1995;13:228–232. PubMed

Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 2008;28:264–278. PubMed PMC

Schipke CG, Ohlemeyer C, Matyash M, Nolte C, Kettenmann H, Kirchhoff F. Astrocytes of the mouse neocortex express functional N-methyl-D-aspartate receptors. FASEB J. 2001;15:1270–1272. PubMed

Zhou Y, Li HL, Zhao R, Yang LT, Dong Y, Yue X, Ma YY, Wang Z, Chen J, Cui CL, Yu AC. Astrocytes express N-methyl-D-aspartate receptor subunits in development, ischemia and post-ischemia. Neurochem. Res. 2010;35:2124–2134. PubMed

Lee MC, Ting KK, Adams S, Brew BJ, Chung R, Guillemin GJ. Characterisation of the expression of NMDA receptors in human astrocytes. PLoS One. 2010;5:e14123. PubMed PMC

Aoki C, Venkatesan C, Go CG, Mong JA, Dawson TM. Cellular and subcellular localization of NMDA-R1 subunit immunoreactivity in the visual cortex of adult and neonatal rats. J. Neurosci. 1994;14:5202–5222. PubMed PMC

Conti F, DeBiasi S, Minelli A, Melone M. Expression of NR1 and NR2A/B subunits of the NMDA receptor in cortical astrocytes. Glia . 1996;17:254–258. PubMed

Gottlieb M, Matute C. Expression of ionotropic glutamate receptor subunits in glial cells of the hippocampal CA1 area following transient forebrain ischemia. J. Cereb. Blood Flow Metab. 1997;17:290–300. PubMed

Krebs C, Fernandes HB, Sheldon C, Raymond LA, Baimbridge KG. Functional NMDA receptor subtype 2B is expressed in astrocytes after ischemia in vivo and anoxia in vitro. J. Neurosci . 2003;23:3364–3372. PubMed PMC

Gracy KN, Pickel VM. Comparative ultrastructural localization of the NMDAR1 glutamate receptor in the rat basolateral amygdala and bed nucleus of the stria terminalis. J. Comp. Neurol . 1995;362:71–85. PubMed

Farb CR, Aoki C, Ledoux JE. Differential localization of NMDA and AMPA receptor subunits in the lateral and basal nuclei of the amygdala a light and electron microscopic study. J. Comp. Neurol. 1995;362:86–108. PubMed

Van Bockstaele EJ, Colago EE. Selective distribution of the NMDA-R1 glutamate receptor in astrocytes and presynaptic axon terminals in the nucleus locus coeruleus of the rat brain: an immunoelectron microscopic study. J. Comp. Neurol . 1996;369:483–496. PubMed

Conti F, Barbaresi P, Melone M, Ducati A. Neuronal and glial localization of NR1 and NR2A/B subunits of the NMDA receptor in the human cerebral cortex. Cereb Cortex. 1999;9:110–120. PubMed

Puro DG, Yuan JP, Sucher NJ. Activation of NMDA receptor-channels in human retinal Muller glial cells inhibits inward-rectifying potassium currents. Vis Neurosci . 1996;13:319–326. PubMed

Backus KH, Kettenmann H, Schachner M. Pharmacological characterization of the glutamate receptor in cultured astrocytes. J. Neurosci. Res. 1989;22:274–282. PubMed

Bowman CL, Kimelberg HK. Excitatory amino acids directly depolarize rat brain astrocytes in primary culture. Nature. 1984;311:656–659. PubMed

Kettenmann H, Schachne M. Pharmacological properties of gamma-aminobutyric acid-, glutamate-, and aspartate-induced depolarizations in cultured astrocytes. J. Neurosci. 1985;5:3295–3301. PubMed PMC

Sontheimer H, Kettenmann H, Backus KH, Schachner M. Glutamate opens Na+/K+ channels in cultured astrocytes. Glia. 1988;1:328–336. PubMed

Holzwarth JA, Gibbons SJ, Brorson JR, Philipson LH, Miller RJ. Glutamate receptor agonists stimulate diverse calcium responses in different types of cultured rat cortical glial cells. J. Neurosci. 1994;14:1879–1891. PubMed PMC

Jensen AM, Chiu SY. Fluorescence measurement of changes in intracellular calcium induced by excitatory amino acids in cultured cortical astrocytes. J. Neurosci . 1990;10:1165–1175. PubMed PMC

Kato H, Narita M, Miyatake M, Yajima Y, Suzuki T. Role of neuronal NR2B subunit-containing NMDA receptor-mediated Ca2+ influx and astrocytic activation in cultured mouse cortical neurons and astrocytes. Synapse. 2006;59:10–17. PubMed

Zhang Q, Hu B, Sun S, Tong E. Induction of increased intracellular calcium in astrocytes by glutamate through activating NMDA and AMPA receptors. J. Huazhong. Uni. Sci. Technolog Med Sci. 2003;23:254–257. PubMed

Lalo U, Pankratov Y, Kirchhoff F, North RA, Verkhratsky A. NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J. Neurosci. 2006;26:2673–2683. PubMed PMC

Palygin O, Lalo U, Pankratov Y. Distinct pharmacological and functional properties of NMDA receptors in mouse cortical astrocytes. Br. J. Pharmacol. 2011;163:1755–1766. PubMed PMC

Lalo U, Palygin O, North RA, Verkhratsky A, Pankratov Y. Age-dependent remodelling of ionotropic signalling in cortical astroglia. Aging Cell. 2011;10:392–402. PubMed

Palygin O, Lalo U, Verkhratsky A, Pankratov Y. Ionotropic NMDA and P2X1/5 receptors mediate synaptically induced Ca2+ signalling in cortical astrocytes. Cell Calcium. 2010;48:225–231. PubMed

Oliveira JF, Riedel T, Leichsenring A, Heine C, Franke H, Krugel U, Norenberg W, Illes P. Rodent cortical astroglia express in situ functional P2X7 receptors sensing pathologically high ATP concentrations. Cereb. Cortex. 2011;21:806–820. PubMed

Pasti L, Volterra A, Pozzan T, Carmignoto G. Intracellular calcium oscillations in astrocytes a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J. Neurosci. 1997;17:7817–7830. PubMed PMC

Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ. Glutamate induces calcium waves in cultured astrocytes long-range glial signaling. Science. 1990;247:470–473. PubMed

Steinhauser C, Jabs R, Kettenmann H. Properties of GABA and glutamate responses in identified glial cells of the mouse hippocampal slice. Hippocampus. 1994;4:19–35. PubMed

Serrano A, Robitaille R, Lacaille JC. Differential NMDA-dependent activation of glial cells in mouse hippocampus. Glia. 2008;56:1648–1663. PubMed

Serrano A, Haddjeri N, Lacaille JC, Robitaille R. GABAergic network activation of glial cells underlies hippocampal heterosynaptic depression. J. Neurosci. 2006;26:5370–5382. PubMed PMC

Latour I, Gee CE, Robitaille R, Lacaille JC. Differential mechanisms of Ca2+ responses in glial cells evoked by exogenous and endogenous glutamate in rat hippocampus. Hippocampus . 2001;11:132–145. PubMed

Shelton MK, McCarthy KD. Mature hippocampal astrocytes exhibit functional metabotropic and ionotropic glutamate receptors in situ. Glia. 1999;26:1–11. PubMed

Seifert G, Steinhauser C. Glial cells in the mouse hippocampus express AMPA receptors with an intermediate Ca2+ permeability. Eur. J. Neurosci. 1995;7:1872–1881. PubMed

Cai Z, Kimelberg HK. Glutamate receptor-mediated calcium responses in acutely isolated hippocampal astrocytes. Glia. 1997;21:380–389. PubMed

Usowicz MM, Gallo V, Cull-Candy SG. Multiple conductance channels in type-2 cerebellar astrocytes activated by excitatory amino acids. Nature. 1989;339:380–383. PubMed

Muller T, Grosche J, Ohlemeyer C, Kettenmann H. NMDA-activated currents in Bergmann glial cells. Neuroreport . 1993;4:671–674. PubMed

Shao Y, McCarthy KD. Responses of Bergmann glia and granule neurons in situ to N-methyl-D-aspartate, norepinephrine, and high potassium. J Neurochem. 1997;68:2405–2411. PubMed

Ahmed Z, Lewis CA, Faber DS. Glutamate stimulates release of Ca2+ from internal stores in astroglia. Brain Res . 1990;516:165–169. PubMed

Ziak D, Chvatal A, Sykova E. Glutamate-, kainate- and NMDA-evoked membrane currents in identified glial cells in rat spinal cord slice. Physiol. Res. 1998;47:365–375. PubMed

Akopian G, Kuprijanova E, Kressin K, Steinhuser C. Analysis of ion channel expression by astrocytes in red nucleus brain stem slices of the rat. Glia. 1997;19:234–246. PubMed

Kondoh T, Nishizaki T, Aihara H, Tamaki N. NMDA-responsible, APV-insensitive receptor in cultured human astrocytes. Life Sci . 2001;68:1761–1767. PubMed

Nishizaki T, Matsuoka T, Nomura T, Kondoh T, Tamaki N, Okada Y. Store Ca2+ depletion enhances NMDA responses in cultured human astrocytes. Biochem. Biophys. Res. Commun. 1999;259:661–664. PubMed

Uchihori Y, Puro DG. Glutamate as a neuron-to-glial signal for mitogenesis role of glial N-methyl-D-aspartate receptors. Brain Res . 1993;613:212–220. PubMed

Cull-Candy SG, Wyllie DJ. Glutamate-receptor channels in mammalian glial cells. Ann. N. Y. Acad. Sci. 1991;633:458–474. PubMed

Yuan X, Eisen AM, McBain CJ, Gallo V. A role for glutamate and its receptors in the regulation of oligodendrocyte development in cerebellar tissue slices. Development. 1998;125:2901–2914. PubMed

Yoshioka A, Ikegaki N, Williams M, Pleasure D. Expression of N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptor genes in neuroblastoma, medulloblastoma, and other cells lines. J. Neurosci. Res. 1996;46:164–178. PubMed

Gallo V, Patneau DK, Mayer ML, Vaccarino FM. Excitatory amino acid receptors in glial progenitor cells molecular and functional properties. Glia. 1994;11:94–101. PubMed

Salter MG, Fern R. NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature . 2005;438:1167–1171. PubMed

Burzomato V, Frugier G, Perez-Otano I, Kittler JT, Attwell D. The receptor subunits generating NMDA receptor mediated currents in oligodendrocytes. J Physiol. 2010;588:3403–3414. PubMed PMC

Micu I, Jiang Q, Coderre E, Ridsdale A, Zhang L, Woulfe J, Yin X, Trapp BD, McRory JE, Rehak R, Zamponi GW, Wang W, Stys PK. NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature. 2006;439:988–992. PubMed

Pina-Crespo JC, Talantova M, Micu I, States B, Chen HS, Tu S, Nakanishi N, Tong G, Zhang D, Heinemann SF, Zamponi GW, Stys PK, Lipton SA. Excitatory glycine responses of CNS myelin mediated by NR1/NR3 "NMDA" receptor subunits. J Neurosci. 2010;30:11501–11505. PubMed PMC

Karadottir R, Cavelier P, Bergersen LH, Attwell D. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature. 2005;438:1162–1166. PubMed PMC

Wong R. NMDA receptors expressed in oligodendrocytes. Bioessays. 2006;28:460–464. PubMed

De Biase LM, Kang SH, Baxi EG, Fukaya M, Pucak ML, Mishina M, Calabresi PA, Bergles DE. NMDA receptor signaling in oligodendrocyte progenitors is not required for oligodendrogenesis and myelination. J. Neurosci. 2011;31:12650–12662. PubMed PMC

Matute C, Miledi R. Neurotransmitter receptors and voltage-dependent Ca2+ channels encoded by mRNA from the adult corpus callosum. Proc. Natl. Acad. Sci. U. S. A . 1993;90:3270–3274. PubMed PMC

Wang C, Pralong WF, Schulz MF, Rougon G, Aubry JM, Pagliusi S, Robert A, Kiss JZ. Functional N-methyl-D-aspartate receptors in O-2A glial precursor cells a critical role in regulating polysialic acid-neural cell adhesion molecule expression and cell migration. J. Cell Biol. 1996;135:1565–1581. PubMed PMC

Kolodziejczyk K, Hamilton NB, Wade A, Karadotti R, Attwell D. The effect of N-acetyl-aspartyl-glutamate and N-acetyl-aspartate on white matter oligodendrocytes. Brain. 2009;132:1496–1508. PubMed PMC

Manning SM, Talos DM, Zhou C, Selip DB, Park HK, Park CJ, Volpe JJ, Jensen FE. NMDA receptor blockade with memantine attenuates white matter injury in a rat model of periventricular leukomalacia. J. Neurosci. 2008;28:6670–6678. PubMed PMC

Hamilton N, Vayro S, Wigley R, Butt AM. Axons and astrocytes release ATP and glutamate to evoke calcium signals in NG2-glia. Glia. 2010;58:66–79. PubMed

Ziskin JL, Nishiyama A, Rubio M, Fukaya M, Bergles DE. Vesicular release of glutamate from unmyelinated axons in white matter. Nat. Neurosci. 2007;10:321–330. PubMed PMC

Karadottir R, Hamilton NB, Bakiri Y, Attwell D. Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter. Nat. Neurosci. 2008;11:450–456. PubMed PMC

Alberdi E, Sanchez-Gomez MV, Marino A, Matute C. Ca(2+) influx through AMPA or kainate receptors alone is sufficient to initiate excitotoxicity in cultured oligodendrocytes. Neurobiol. Dis. 2002;9:234–243. PubMed

Leuchtmann EA, Ratner AE, Vijitruth R, Qu Y, McDonald JW. AMPA receptors are the major mediators of excitotoxic death in mature oligodendrocytes. Neurobiol. Dis. 2003;14:336–348. PubMed

Matute C, Alberdi E, Domercq M, Perez-Cerda F, Perez-Samartin A, Sanchez-Gomez MV. The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends Neurosci. 2001;24:224–230. PubMed

Matute C, Alberdi E, Ibarretxe G, Sanchez-Gomez MV. Excitotoxicity in glial cells. Eur. J. Pharmacol . 2002;447:239–246. PubMed

McDonald JW, Althomsons SP, Hyrc KL, Choi DW, Goldberg MP. Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. Nat. Med. 1998;4:291–297. PubMed

Micu I, Ridsdale A, Zhan L, Woulfe J, McClintock J, Brantner CA, Andrews SB, Stys PK. Real-time measurement of free Ca2+ changes in CNS myelin by two-photon microscopy. Nat. Med . 2007;13:874–879. PubMed

Bakiri Y, Hamilton NB, Karadottir R, Attwell D. Testing NMDA receptor block as a therapeutic strategy for reducing ischaemic damage to CNS white matter. Glia . 2008;56:233–240. PubMed PMC

Manning SM, Boll G, Fitzgerald E, Selip DB, Volpe JJ, Jensen FE. The clinically available NMDA receptor antagonist, memantine, exhibits relative safety in the developing rat brain. Int. J. Dev. Neurosci. 2011;29:767–773. PubMed PMC

Hardingham GE. Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem. Soc. Trans . 2009; 37:1147–1160. PubMed PMC

Hardingham GE, Bading H. The Yin and Yang of NMDA receptor signalling. Trends Neurosci. 2003;26:81–89. PubMed

Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR, Wu Z, Huang F, Xia H, Peters MF, Froehner S.C. Bredt DS. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell . 1996;84:757–767. PubMed

Sheng M, Sala C. PDZ domains and the organization of supramolecular complexes. Annu. Rev. Neurosci . 2001;24:1–29. PubMed

Cui H, Hayashi A, Sun HS, Belmares MP, Cobey C, Phan T, Schweizer J, Salter MW, Wang YT, Tasker RA, Garman D, Rabinowitz J, Lu PS, Tymianski M. PDZ protein interactions underlying NMDA receptor-mediated excitotoxicity and neuroprotection by PSD-95 inhibitors. J. Neurosci . 2007;27:9901–9915. PubMed PMC

Aarts MM, Tymianski M. Molecular mechanisms underlying specificity of excitotoxic signaling in neurons. Curr. Mol. Med . 2004;4:137–147. PubMed

Alberdi E, Sanchez-Gomez MV, Matute C. Calcium and glial cell death. Cell Calcium . 2005;38:417–425. PubMed

Chen HS, Lipton SA. The chemical biology of clinically tolerated NMDA receptor antagonists. J. Neurochem . 2006;97:1611–1626. PubMed

Gogas KR. Glutamate-based therapeutic approaches: NR2B receptor antagonists. Curr. Opin. Pharmacol . 2006;6:68–74. PubMed

Lipton SA. Paradigm shift in neuroprotection by NMDA receptor blockade memantine and beyond. Nat. Rev. Drug Discov . 2006;5:160–170. PubMed

Muir KW. Glutamate-based therapeutic approaches clinical trials with NMDA antagonists. Curr. Opin. Pharmacol . 2006;6:53–60. PubMed

Parsons CG, Gilling K. Memantine as an example of a fast, voltage-dependent, open channel N-methyl-D-aspartate receptor blocker. Methods Mol. Biol . 2007;403:15–36. PubMed

Parsons CG, Stoffler A, Danysz W. Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system--too little activation is bad, too much is even worse. Neuropharmacology . 2007;53:699–723. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Ischemia-Triggered Glutamate Excitotoxicity From the Perspective of Glial Cells

. 2020 ; 14 () : 51. [epub] 20200319

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...