Quantitative Analysis of Glutamate Receptors in Glial Cells from the Cortex of GFAP/EGFP Mice Following Ischemic Injury: Focus on NMDA Receptors
Language English Country Netherlands Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
25994914
PubMed Central
PMC11486180
DOI
10.1007/s10571-015-0212-8
PII: 10.1007/s10571-015-0212-8
Knihovny.cz E-resources
- Keywords
- Astrocytes, Calcium imaging, MCAo, NG2 glia, Single-cell RT-qPCR,
- MeSH
- Glial Fibrillary Acidic Protein analysis biosynthesis MeSH
- Receptors, Glutamate analysis biosynthesis MeSH
- Brain Ischemia metabolism MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Cerebral Cortex chemistry metabolism MeSH
- Mice, Transgenic MeSH
- Mice MeSH
- Neuroglia chemistry metabolism MeSH
- Receptors, N-Methyl-D-Aspartate analysis biosynthesis MeSH
- Green Fluorescent Proteins analysis biosynthesis MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- enhanced green fluorescent protein MeSH Browser
- glial fibrillary astrocytic protein, mouse MeSH Browser
- Glial Fibrillary Acidic Protein MeSH
- Receptors, Glutamate MeSH
- Receptors, N-Methyl-D-Aspartate MeSH
- Green Fluorescent Proteins MeSH
Cortical glial cells contain both ionotropic and metabotropic glutamate receptors. Despite several efforts, a comprehensive analysis of the entire family of glutamate receptors and their subunits present in glial cells is still missing. Here, we provide an overall picture of the gene expression of ionotropic (AMPA, kainate, NMDA) and the main metabotropic glutamate receptors in cortical glial cells isolated from GFAP/EGFP mice before and after focal cerebral ischemia. Employing single-cell RT-qPCR, we detected the expression of genes encoding subunits of glutamate receptors in GFAP/EGFP-positive (GFAP/EGFP(+)) glial cells in the cortex of young adult mice. Most of the analyzed cells expressed mRNA for glutamate receptor subunits, the expression of which, in most cases, even increased after ischemic injury. Data analyses disclosed several classes of GFAP/EGFP(+) glial cells with respect to glutamate receptors and revealed in what manner their expression correlates with the expression of glial markers prior to and after ischemia. Furthermore, we also examined the protein expression and functional significance of NMDA receptors in glial cells. Immunohistochemical analyses of all seven NMDA receptor subunits provided direct evidence that the GluN3A subunit is present in GFAP/EGFP(+) glial cells and that its expression is increased after ischemia. In situ and in vitro Ca(2+) imaging revealed that Ca(2+) elevations evoked by the application of NMDA were diminished in GFAP/EGFP(+) glial cells following ischemia. Our results provide a comprehensive description of glutamate receptors in cortical GFAP/EGFP(+) glial cells and may serve as a basis for further research on glial cell physiology and pathophysiology.
See more in PubMed
Aronica E, van Vliet EA, Mayboroda OA et al (2000) Upregulation of metabotropic glutamate receptor subtype mGluR3 and mGluR5 in reactive astrocytes in a rat model of mesial temporal lobe epilepsy. Eur J Neurosci 12:2333–2344 PubMed
Aronica E, Leenstra S, Jansen GH et al (2001) Expression of brain-derived neurotrophic factor and tyrosine kinase B receptor proteins in glioneuronal tumors from patients with intractable epilepsy: colocalization with N-methyl-D-aspartic acid receptor. Acta Neuropathol 101:383–392 PubMed
Aronica E, Gorter JA, Ijlst-Keizers H et al (2003) Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: opposite regulation of glutamate transporter proteins. Eur J Neurosci 17:2106–2118. doi:10.1046/j.1460-9568.2003.02657.x PubMed
Atlason PT, Garside ML, Meddows E et al (2007) N-Methyl-D-aspartate (NMDA) receptor subunit NR1 forms the substrate for oligomeric assembly of the NMDA receptor. J Biol Chem 282:25299–25307. doi:10.1074/jbc.M702778200 PubMed
Benesova J, Rusnakova V, Honsa P et al (2012) Distinct expression/function of potassium and chloride channels contributes to the diverse volume regulation in cortical astrocytes of GFAP/EGFP mice. PLoS One 7:e29725. doi:10.1371/journal.pone.0029725 PubMed PMC
Brand-Schieber E, Lowery SL, Werner P (2004) Select ionotropic glutamate AMPA/kainate receptors are expressed at the astrocyte-vessel interface. Brain Res 1007:178–182. doi:10.1016/j.brainres.2003.12.051 PubMed
Burnashev N, Khodorova A, Jonas P et al (1992) Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells. Science 256:1566–1570 PubMed
Burnashev N, Zhou Z, Neher E, Sakmann B (1995) Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J Physiol 485(Pt 2):403–418 PubMed PMC
Cahoy JD, Emery B, Kaushal A et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278. doi:10.1523/JNEUROSCI.4178-07.2008 PubMed PMC
Castillo C, Norcini M, Martin Hernandez LA et al (2013) Satellite glia cells in dorsal root ganglia express functional NMDA receptors. Neuroscience 240:135–146. doi:10.1016/j.neuroscience.2013.02.031 PubMed
Cavara NA, Hollmann M (2008) Shuffling the deck anew: how NR3 tweaks NMDA receptor function. Mol Neurobiol 38:16–26. doi:10.1007/s12035-008-8029-9 PubMed
Chowdhury D, Marco S, Brooks IM et al (2013) Tyrosine phosphorylation regulates the endocytosis and surface expression of GluN3A-containing NMDA receptors. J Neurosci 33(9):4151–4164 PubMed PMC
Conti F, DeBiasi S, Minelli A, Melone M (1996) Expression of NR1 and NR2A/B subunits of the NMDA receptor in cortical astrocytes. Glia 17:254–258. doi:10.1002/(SICI)1098-1136(199607)17:3%3c254:AID-GLIA7%3e3.0.CO;2-0 PubMed
D’Antoni S, Berretta A, Bonaccorso CM et al (2008) Metabotropic glutamate receptors in glial cells. Neurochem Res 33:2436–2443. doi:10.1007/s11064-008-9694-9 PubMed
Dzamba D, Honsa P, Anderova M (2013) NMDA receptors in glial cells: pending questions. Curr Neuropharmacol 11:250–262. doi:10.2174/1570159X11311030002 PubMed PMC
Ehlers MD, Zhang S, Bernhadt JP, Huganir RL (1996) Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell 84:745–755 PubMed
Evans RC, Morera-Herreras T, Cui Y et al (2012) The effects of NMDA subunit composition on calcium influx and spike timing-dependent plasticity in striatal medium spiny neurons. PLoS Comput Biol 8:e1002493. doi:10.1371/journal.pcbi.1002493 PubMed PMC
Gottlieb M, Matute C (1997) Expression of ionotropic glutamate receptor subunits in glial cells of the hippocampal CA1 area following transient forebrain ischemia. J Cereb Blood Flow Metab 17:290–300. doi:10.1097/00004647-199703000-00006 PubMed
Haberlandt C, Derouiche A, Wyczynski A et al (2011) Gray matter NG2 cells display multiple Ca2+-signaling pathways and highly motile processes. PLoS One 6:e17575. doi:10.1371/journal.pone.0017575 PubMed PMC
Haydon P, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev. doi:10.1152/physrev.00049.2005 PubMed
Hetman M, Kharebava G (2006) Survival signaling pathways activated by NMDA receptors. Curr Top Med Chem 6:787–799 PubMed
Hollmann M, Hartley M, Heinemann S (1991) Ca2+ permeability of KA-AMPA–gated glutamate receptor channels depends on subunit composition. Science 252:851–853 PubMed
Honsa P, Pivonkova H, Dzamba D et al (2012) Polydendrocytes display large lineage plasticity following focal cerebral ischemia. PLoS One 7:e36816. doi:10.1371/journal.pone.0036816 PubMed PMC
Káradóttir R, Cavelier P, Bergersen L, Attwell D (2005) NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438:1162–1166. doi:10.1038/nature04302.NMDA PubMed PMC
Kehoe LA, Bernardinelli Y, Muller D (2013) GluN3A: an NMDA receptor subunit with exquisite properties and functions. Neural Plast 2013:145387. doi:10.1155/2013/145387 PubMed PMC
Kotermanski SE, Johnson JW (2009) Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer’s drug memantine. J Neurosci 29:2774–2779. doi:10.1523/JNEUROSCI.3703-08.2009 PubMed PMC
Krebs C, Fernandes HB, Sheldon C et al (2003) Functional NMDA receptor subtype 2B is expressed in astrocytes after ischemia in vivo and anoxia in vitro. J Neurosci 23:3364–3372 PubMed PMC
Kukley M, Dietrich D (2009) Kainate receptors and signal integration by NG2 glial cells. Neuron Glia Biol 5:13–20 PubMed
Lalo U, Pankratov Y, Kirchhoff F et al (2006) NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J Neurosci 26:2673–2683. doi:10.1523/JNEUROSCI.4689-05.2006 PubMed PMC
Lalo U, Palygin O, Rasooli-Nejad S et al (2014) Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol 12:e1001747. doi:10.1371/journal.pbio.1001747 PubMed PMC
Lavezzari G, McCallum J, Dewey CM et al (2004) Subunit-specific regulation of NMDA receptor endocytosis. J Neurosci 24(28):6383–6391 PubMed PMC
Loane DJ, Stoica BA, Faden AI (2012) Metabotropic glutamate receptor-mediated signaling in neuroglia. Wiley Interdiscip Rev Membr Transp Signal 1:136–150. doi:10.1002/wmts.30 PubMed PMC
Matsuda K, Fletcher M, Kamiya Y, Yuzaki M (2003) Specific assembly with the NMDA receptor 3B subunit controls surface expression and calcium permeability of NMDA receptors. J Neurosci 23:10064–10073 PubMed PMC
Matthias K, Kirchhoff F, Seifert G et al (2003) Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J Neurosci 23:1750–1758 PubMed PMC
Nakahara K, Okada M, Nakanishi S (1997) The metabotropic glutamate receptor mGluR5 induces calcium oscillations in cultured astrocytes via protein kinase C phosphorylation. J Neurochem 69:1467–1475 PubMed
Nolte C, Matyash M, Pivneva T et al (2001) GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33:72–86 PubMed
Palygin O, Lalo U, Pankratov Y (2011) Distinct pharmacological and functional properties of NMDA receptors in mouse cortical astrocytes. Br J Pharmacol 163:1755–1766. doi:10.1111/j.1476-5381.2011.01374.x PubMed PMC
Paoletti P (2011) Molecular basis of NMDA receptor functional diversity. Eur J Neurosci 33:1351–1365. doi:10.1111/j.1460-9568.2011.07628.x PubMed
Perez-Otano I, Schulteis CT, Contractor A et al (2001) Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors. J Neurosci 21:1228–1237 PubMed PMC
Porter JT, McCarthy KD (1995) GFAP-positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+]i. Glia 13:101–112 PubMed
Rusnakova V, Honsa P, Dzamba D et al (2013) Heterogeneity of astrocytes: from development to injury—single cell gene expression. PLoS One 8:e69734. doi:10.1371/journal.pone.0069734 PubMed PMC
Sasaki YF, Rothe T, Premkumar LS et al (2002) Characterization and comparison of the NR3A subunit of the NMDA receptor in recombinant systems and primary cortical neurons. J Neurophysiol 87:2052–2063. doi:10.1152/jn.00531.2001 PubMed
Schipke CG, Ohlemeyer C, Matyash M et al (2001) Astrocytes of the mouse neocortex express functional N-methyl-D-aspartate receptors. FASEB J 15:1270–1272 PubMed
Seifert G, Steinhäuser C (2001) Ionotropic glutamate receptors in astrocytes. Prog Brain Res 132:287–299. doi:10.1016/S0079-6123(01)32083-6 PubMed
Serrano A, Haddjeri N, Lacaille J-C, Robitaille R (2006) GABAergic network activation of glial cells underlies hippocampal heterosynaptic depression. J Neurosci 26:5370–5382. doi:10.1523/JNEUROSCI.5255-05.2006 PubMed PMC
Serrano A, Robitaille R, Lacaille J-C (2008) Differential NMDA-dependent activation of glial cells in mouse hippocampus. Glia 56:1648–1663. doi:10.1002/glia.20717 PubMed
Shigetomi E, Bushong EA, Haustein MD et al (2013) Imaging calcium microdomains within entire astrocyte territories and endfeet with GCaMPs expressed using adeno-associated viruses. J Gen Physiol 141:633–647. doi:10.1085/jgp.201210949 PubMed PMC
Ståhlberg A, Bengtsson M (2010) Single-cell gene expression profiling using reverse transcription quantitative real-time PCR. Methods 50:282–288. doi:10.1016/j.ymeth.2010.01.002 PubMed
Ståhlberg A, Andersson D, Aurelius J et al (2011) Defining cell populations with single-cell gene expression profiling: correlations and identification of astrocyte subpopulations. Nucleic Acids Res 39:e24. doi:10.1093/nar/gkq1182 PubMed PMC
Sun W, McConnell E, Pare J-F et al (2013) Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science 339:197–200. doi:10.1126/science.1226740 PubMed PMC
Ulas J, Satou T, Ivins KJ et al (2000) Expression of metabotropic glutamate receptor 5 is increased in astrocytes after kainate-induced epileptic seizures. Glia 30:352–361 PubMed
Verkhratsky A (2009) Neuronismo y reticulismo: neuronal-glial circuits unify the reticular and neuronal theories of brain organization. Acta Physiol (Oxf) 195:111–122. doi:10.1111/j.1748-1716.2008.01926.x PubMed
Verkhratsky A, Kirchhoff F (2007) NMDA receptors in glia. Neuroscientist 13:28–37. doi:10.1177/1073858406294270 PubMed
Vermeiren C, Najimi M, Vanhoutte N et al (2005) Acute up-regulation of glutamate uptake mediated by mGluR5a in reactive astrocytes. J Neurochem 94:405–416. doi:10.1111/j.1471-4159.2005.03216.x PubMed