Cortical glial cells contain both ionotropic and metabotropic glutamate receptors. Despite several efforts, a comprehensive analysis of the entire family of glutamate receptors and their subunits present in glial cells is still missing. Here, we provide an overall picture of the gene expression of ionotropic (AMPA, kainate, NMDA) and the main metabotropic glutamate receptors in cortical glial cells isolated from GFAP/EGFP mice before and after focal cerebral ischemia. Employing single-cell RT-qPCR, we detected the expression of genes encoding subunits of glutamate receptors in GFAP/EGFP-positive (GFAP/EGFP(+)) glial cells in the cortex of young adult mice. Most of the analyzed cells expressed mRNA for glutamate receptor subunits, the expression of which, in most cases, even increased after ischemic injury. Data analyses disclosed several classes of GFAP/EGFP(+) glial cells with respect to glutamate receptors and revealed in what manner their expression correlates with the expression of glial markers prior to and after ischemia. Furthermore, we also examined the protein expression and functional significance of NMDA receptors in glial cells. Immunohistochemical analyses of all seven NMDA receptor subunits provided direct evidence that the GluN3A subunit is present in GFAP/EGFP(+) glial cells and that its expression is increased after ischemia. In situ and in vitro Ca(2+) imaging revealed that Ca(2+) elevations evoked by the application of NMDA were diminished in GFAP/EGFP(+) glial cells following ischemia. Our results provide a comprehensive description of glutamate receptors in cortical GFAP/EGFP(+) glial cells and may serve as a basis for further research on glial cell physiology and pathophysiology.
- MeSH
- gliový fibrilární kyselý protein analýza biosyntéza MeSH
- glutamátové receptory analýza biosyntéza MeSH
- ischemie mozku metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- mozková kůra chemie metabolismus MeSH
- myši transgenní MeSH
- myši MeSH
- neuroglie chemie metabolismus MeSH
- receptory N-methyl-D-aspartátu analýza biosyntéza MeSH
- zelené fluorescenční proteiny analýza biosyntéza MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Tick-borne encephalitis (TBE), a disease caused by tick-borne encephalitis virus (TBEV), represents the most important flaviviral neural infection in Europe and north-eastern Asia. In the central nervous system (CNS), neurons are the primary target for TBEV infection; however, infection of non-neuronal CNS cells, such as astrocytes, is not well understood. In this study, we investigated the interaction between TBEV and primary human astrocytes. We report for the first time, to the best of our knowledge, that primary human astrocytes are sensitive to TBEV infection, although the infection did not affect their viability. The infection induced a marked increase in the expression of glial fibrillary acidic protein, a marker of astrocyte activation. In addition, expression of matrix metalloproteinase 9 and several key pro-inflammatory cytokines/chemokines (e.g. tumour necrosis factor α, interferon α, interleukin (IL)-1β, IL-6, IL-8, interferon γ-induced protein 10, macrophage inflammatory protein, but not monocyte chemotactic protein 1) was upregulated. Moreover, we present a detailed description of morphological changes in TBEV-infected cells, as investigated using three-dimensional electron tomography. Several novel ultrastructural changes were observed, including the formation of unique tubule-like structures of 17.9 ±0.15 nm diameter with associated viral particles and/or virus-induced vesicles and located in the rough endoplasmic reticulum of the TBEV-infected cells. This is the first demonstration that TBEV infection activates primary human astrocytes. The infected astrocytes might be a potential source of pro-inflammatory cytokines in the TBEV-infected brain, and might contribute to the TBEV-induced neurotoxicity and blood-brain barrier breakdown that occurs during TBE. The neuropathological significance of our observations is also discussed.
- MeSH
- astrocyty patologie fyziologie virologie MeSH
- cytokiny genetika metabolismus MeSH
- drsné endoplazmatické retikulum patologie MeSH
- gliový fibrilární kyselý protein biosyntéza MeSH
- interakce hostitele a patogenu MeSH
- klíšťová encefalitida etiologie patologie patofyziologie MeSH
- kultivované buňky MeSH
- lidé MeSH
- matrixová metaloproteinasa 9 biosyntéza MeSH
- replikace viru MeSH
- transmisní elektronová mikroskopie MeSH
- upregulace MeSH
- viry klíšťové encefalitidy patogenita fyziologie MeSH
- zobrazování trojrozměrné MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- astrocyty fyziologie MeSH
- extracelulární prostor MeSH
- gliový fibrilární kyselý protein biosyntéza genetika nedostatek MeSH
- hematoencefalická bariéra fyziologie MeSH
- mutageneze cílená MeSH
- myši MeSH
- poranění mozku MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- srovnávací studie MeSH