Soil organic carbon stability in forests: Distinct effects of tree species identity and traits
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
DEB 0128958
National Science Foundation
DEB 0128944
National Science Foundation
DEB-0816935
National Science Foundation
OISE IE080018
National Science Foundation
LM2015075
SoWa Research Infrastructure, funded by MEYS CZ
EF16_013/0001782
SoWa Research Infrastructure, funded by MEYS CZ
18-24138S
Czech Science Foundation
PubMed
30554462
DOI
10.1111/gcb.14548
Knihovny.cz E-zdroje
- Klíčová slova
- 14C, 15N, common garden, heterotrophic respiration, mineral associated SOM, physical fractionation, stoichiometry,
- Publikační typ
- časopisecké články MeSH
Rising atmospheric CO2 concentrations have increased interest in the potential for forest ecosystems and soils to act as carbon (C) sinks. While soil organic C contents often vary with tree species identity, little is known about if, and how, tree species influence the stability of C in soil. Using a 40 year old common garden experiment with replicated plots of eleven temperate tree species, we investigated relationships between soil organic matter (SOM) stability in mineral soils and 17 ecological factors (including tree tissue chemistry, magnitude of organic matter inputs to the soil and their turnover, microbial community descriptors, and soil physicochemical properties). We measured five SOM stability indices, including heterotrophic respiration, C in aggregate occluded particulate organic matter (POM) and mineral associated SOM, and bulk SOM δ15 N and ∆14 C. The stability of SOM varied substantially among tree species, and this variability was independent of the amount of organic C in soils. Thus, when considering forest soils as C sinks, the stability of C stocks must be considered in addition to their size. Further, our results suggest tree species regulate soil C stability via the composition of their tissues, especially roots. Stability of SOM appeared to be greater (as indicated by higher δ15 N and reduced respiration) beneath species with higher concentrations of nitrogen and lower amounts of acid insoluble compounds in their roots, while SOM stability appeared to be lower (as indicated by higher respiration and lower proportions of C in aggregate occluded POM) beneath species with higher tissue calcium contents. The proportion of C in mineral associated SOM and bulk soil ∆14 C, though, were negligibly dependent on tree species traits, likely reflecting an insensitivity of some SOM pools to decadal scale shifts in ecological factors. Strategies aiming to increase soil C stocks may thus focus on particulate C pools, which can more easily be manipulated and are most sensitive to climate change.
Biological Geological and Environmental Sciences Cleveland State University Cleveland Ohio
Chair of Soil Science Technical University Munich Freising Germany
Department of Earth System Science University of California Irvine Irvine California
Department of Ecology Evolution and Behavior University of Minnesota St Paul Minnesota
Department of Forest Resources University of Minnesota St Paul Minnesota
Department of Geosciences The Pennsylvania State University University Park Pennsylvania
Department of Soil Water and Environmental Science University of Arizona Tucson Arizona
Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
Institute of Dendrology Polish Academy of Sciences Kórnik Poland
Max Planck Institute for Biogeochemistry Biogeochemical Processes Jena Germany
Zobrazit více v PubMed
Ahmed, I. U., Smith, A. R., Jones, D. L., & Godbold, D. L. (2016). Tree species identity influences the vertical distribution of labile and recalcitrant carbon in a temperate deciduous forest soil. Forest Ecology and Management, 359, 352-360. https://doi.org/10.1016/j.foreco.2015.07.018
Amelung, W., & Zech, W. (1999). Minimisation of organic matter disruption during particle-size fractionation of grassland epipedons. Geoderma, 92(1-2), 73-85. https://doi.org/10.1016/s0016-7061(99)00023-3
Angst, G., Heinrich, L., Kögel-Knabner, I., & Mueller, C. W. (2016). The fate of cutin and suberin of decaying leaves, needles and roots-Inferences from the initial decomposition of bound fatty acids. Organic Geochemistry, 95, 81-92. https://doi.org/10.1016/j.orggeochem.2016.02.006
Angst, G., Kögel-Knabner, I., Kirfel, K., Hertel, D., & Mueller, C. W. (2016). Spatial distribution and chemical composition of soil organic matter fractions in rhizosphere and non-rhizosphere soil under European beech (Fagus sylvatica L.). Geoderma, 264, 179-187. https://doi.org/10.1016/j.geoderma.2015.10.016
Angst, G., Mueller, K. E., Eissenstat, D. M., Trumbore, S., Freeman, K. H., Hobbie, S. E., Chorover, J., Oleksyn, J., Reich, P. B., & Mueller, C. W. (2018). Data from: Soil organic carbon stability in forests: distinct effects of tree species identity and traits. Dryad Digital Repository, https://doi.org/10.5061/dryad.7v87nf5.
Angst, G., Mueller, K. E., Kögel-Knabner, I., Freeman, K. H., & Mueller, C. W. (2017). Aggregation controls the stability of lignin and lipids in clay-sized particulate and mineral associated organic matter. Biogeochemistry, 132(3), 307-324. https://doi.org/10.1007/s10533-017-0304-2
Angst, G., Nierop, K. G. J., Angst, Š., & Frouz, J. (2018). Abundance of lipids in differently sized aggregates depends on their chemical composition. Biogeochemistry, 140(1), 111-125. https://doi.org/10.1007/s10533-018-0481-7
Angst, G., Messinger, J., Greiner, M., Häusler, W., Hertel, D., Kirfel, K., … Mueller, C. W. (2018). Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds. Soil Biology and Biochemistry, 122, 19-30. https://doi.org/10.1016/j.soilbio.2018.03.026
Angst, Š., Mueller, C. W., Cajthaml, T., Angst, G., Lhotáková, Z., Bartuška, M., … Frouz, J. (2017). Stabilization of soil organic matter by earthworms is connected with physical protection rather than with chemical changes of organic matter. Geoderma, 289, 29-35. https://doi.org/10.1016/j.geoderma.2016.11.017
Augusto, L., De Schrijver, A., Vesterdal, L., Smolander, A., Prescott, C., & Ranger, J. (2015). Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biological Reviews, 90(2), 444-466. https://doi.org/10.1111/brv.12119
Aye, N. S., Sale, P. W. G., & Tang, C. (2016). The impact of long-term liming on soil organic carbon and aggregate stability in low-input acid soils. Biology and Fertility of Soils, 52(5), 697-709. https://doi.org/10.1007/s00374-016-1111-y
Baisden, W. T., Amundson, R., Cook, A. C., & Brenner, D. L. (2002). Turnover and storage of C and N in five density fractions from California annual grassland surface soils. Global Biogeochemical Cycles, 16(4), 64-1-64-16. https://doi.org/10.1029/2001GB001822
Berg, B., & McClaugherty, C. (2008). Plant litter decomposition, humus formation, carbon sequestration. Berlin, Heidelberg, Germany: Springer.
Bossuyt, H., Six, J., & Hendrix, P. F. (2005). Protection of soil carbon by microaggregates within earthworm casts. Soil Biology and Biochemistry, 37(2), 251-258. https://doi.org/10.1016/j.soilbio.2004.07.035
Brown, G. G., Barois, I., & Lavelle, P. (2000). Regulation of soil organic matter dynamics and microbial activityin the drilosphere and the role of interactionswith other edaphic functional domains §§Paper presented at the 16th World Congress of Soil Science, 20-26 August 1998, Montpellier, France. European Journal of Soil Biology, 36(3), 177-198. https://doi.org/10.1016/S1164-5563(00)01062-1.
Castellano, M. J., Mueller, K. E., Olk, D. C., Sawyer, J. E., & Six, J. (2015). Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Global Change Biology, 21(9), 3200-3209. https://doi.org/10.1111/gcb.12982
Cepáková, Š., Tošner, Z., & Frouz, J. (2016). The effect of tree species on seasonal fluctuations in water-soluble and hot water-extractable organic matter at post-mining sites. Geoderma, 275, 19-27. https://doi.org/10.1016/j.geoderma.2016.04.006
Cleveland, C. C., & Liptzin, D. (2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85(3), 235-252. https://doi.org/10.1007/s10533-007-9132-0
Conen, F., Zimmermann, M., Leifeld, J., Seth, B., & Alewell, C. (2007). Relative stability of soil carbon revealed by shifts in 15 N and C:N ratio. Biogeosciences Discussions, 4(4), 2915-2928.
Coplen, T. B., Brand, W. A., Gehre, M., Gröning, M., Meijer, H. A. J., Toman, B., & Verkouteren, R. M. (2006). New guidelines for δ13C measurements. Analytical Chemistry, 78(7), 2439-2441. https://doi.org/10.1021/ac052027c
Córdova, S. C., Olk, D. C., Dietzel, R. N., Mueller, K. E., Archontouilis, S. V., & Castellano, M. J. (2018). Plant litter quality affects the accumulation rate, composition, and stability of mineral-associated soil organic matter. Soil Biology and Biochemistry, 125, 115-124. https://doi.org/10.1016/j.soilbio.2018.07.010
Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., & Paul, E. (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 19(4), 988-995. https://doi.org/10.1111/gcb.12113
Craine, J. M., Morrow, C., & Fierer, N. (2007). Microbial nitrogen limitation increases decomposition. Ecology, 88(8), 2105-2113. https://doi.org/10.1890/06-1847.1
Craine, J. M., Elmore, A. J., Aidar, M. P. M., Bustamante, M., Dawson, T. E., Hobbie, E. A., … Wright, I. J. (2009). Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist, 183(4), 980-992. https://doi.org/10.1111/j.1469-8137.2009.02917.x
Craine, J. M., Elmore, A. J., Wang, L., Augusto, L., Baisden, W. T., Brookshire, E. N. J., … Zeller, B. (2015). Convergence of soil nitrogen isotopes across global climate gradients. Scientific Reports, 5, 1-8. https://doi.org/10.1038/srep08280
Cremer, M., Kern, N. V., & Prietzel, J. (2017). Soil organic carbon and nitrogen stocks under pure and mixed stands of European beech, Douglas fir and Norway spruce. Forest Ecology and Management, 367, 30-40. https://doi.org/10.1016/j.foreco.2016.02.020
Crow, S. E., Swanston, C. W., Lajtha, K., Brooks, J. R., & Keirstead, H. (2007). Density fractionation of forest soils: Methodological questions and interpretation of incubation results and turnover time in an ecosystem context. Biogeochemistry, 85(1), 69-90. https://doi.org/10.1007/s10533-007-9100-8
Dawud, S. M., Raulund-Rasmussen, K., Domisch, T., Finér, L., Jaroszewicz, B., & Vesterdal, L. (2016). Is tree species diversity or species identity the more important driver of soil carbon stocks, C/N ratio, and pH? Ecosystems, 19(4), 645-660. https://doi.org/10.1007/s10021-016-9958-1
Dijkstra, P., Laviolette, C. M., Coyle, J. S., Doucett, R. R., Schwartz, E., Hart, S. C., & Hungate, B. A. (2008). 15N enrichment as an integrator of the effects of C and N on microbial metabolism and ecosystem function. Ecology Letters, 11(4), 389-397. https://doi.org/10.1111/j.1461-0248.2008.01154.x
Ellison, A. M., Bank, M. S., Clinton, B. D., Colburn, E. A., Elliott, K., Ford, C. R., … Webster, J. R. (2005). Loss of foundation species: Consequences for the structure and dynamics of forested ecosystems. Frontiers in Ecology and the Environment, 3(9), 479-486.
Fisichelli, N. A., Frelich, L. E., & Reich, P. B. (2014). Temperate tree expansion into adjacent boreal forest patches facilitated by warmer temperatures. Ecography, 37(2), 152-161. https://doi.org/10.1111/j.1600-0587.2013.00197.x
Flessa, H., Amelung, W., Helfrich, M., Wiesenberg, G. L. B., Gleixner, G., Brodowski, S., … Grootes, P. M. (2008). Storage and stability of organic matter and fossil carbon in a Luvisol and Phaeozem with continuous maize cropping: A synthesis. Journal of Plant Nutrition and Soil Science, 171(1), 36-51. https://doi.org/10.1002/jpln.200700050
Frank, D. A., Pontes, A. W., & McFarlane, K. J. (2012). Controls on soil organic carbon stocks and turnover among North American ecosystems. Ecosystems, 15(4), 604-615. https://doi.org/10.1007/s10021-012-9534-2
Gleixner, G. (2013). Soil organic matter dynamics: A biological perspective derived from the use of compound-specific isotopes studies. Ecological Research, 28(5), 683-695. https://doi.org/10.1007/s11284-012-1022-9
Gregorich, E. G., Monreal, C. M., Schnitzer, M., & Schulten, H.-R. (1996). Transformation of plant residues into soil organic matter: Chemical characterization of plant tissue, isolated soil fractions, and whole soils. Soil Science, 161(10), 680-693. https://doi.org/10.1097/00010694-199610000-00005
Hanson, P. J., Edwards, N. T., Garten, C. T., & Andrews, J. A. (2000). Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry, 48(1), 115-146. https://doi.org/10.1023/A:1006244819642
Hassink, J. (1997). The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant and Soil, 191(1), 77-87. https://doi.org/10.1023/A:1004213929699
Hassink, J., Whitmore, A. P., & Kubát, J. (1997). Size and density fractionation of soil organic matter and the physical capacity of soils to protect organic matter. European Journal of Agronomy, 7(1-3), 189-199. https://doi.org/10.1016/S1161-0301(97)00045-2.
Hemery, G. E. (2008). Forest management and silvicultural responses to projected climate change impacts on European broadleaved trees and forests. International Forestry Review, 10(4), 591-607. https://doi.org/10.1505/ifor.10.4.591
Hobbie, E. A., & Ouimette, A. P. (2009). Controls of nitrogen isotope patterns in soil profiles. Biogeochemistry, 95(2), 355-371. https://doi.org/10.1007/s10533-009-9328-6
Hobbie, S. E., Ogdahl, M., Chorover, J., Chadwick, O. A., Oleksyn, J., Zytkowiak, R., & Reich, P. B. (2007). Tree species effects on soil organic matter dynamics: The role of soil cation composition. Ecosystems, 10(6), 999-1018. https://doi.org/10.1007/s10021-007-9073-4
Hobbie, S. E., Oleksyn, J., Eissenstat, D. M., & Reich, P. B. (2010). Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. Oecologia, 162(2), 505-513. https://doi.org/10.1007/s00442-009-1479-6
Hobbie, S. E., Reich, P. B., Oleksyn, J., Ogdahl, M., Zytkowiak, R., Hale, C., & Karolewski, P. (2006). Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology, 87(9), 2288-2297.
Högberg, P. (1997). 15N natural abundance in soil-plant systems. New Phytologist, 137(95), 179-203. https://doi.org/10.1046/j.1469-8137.1997.00808.x
Iverson, L. R., & Prasad, A. M. (2001). Projected effects of climate change on patterns of vertebrate and tree species richness in the conterminous United States. Ecosystems, 4(3), 216-225. https://doi.org/10.1007/s10021
Knight, K. S., Oleksyn, J., Jagodzinski, A. M., Reich, P. B., & Kasprowicz, M. (2008). Overstorey tree species regulate colonization by native and exotic plants: A source of positive relationships between understorey diversity and invasibility. Diversity and Distributions, 14(4), 666-675. https://doi.org/10.1111/j.1472-4642.2008.00468.x
Kramer, M. G., Sollins, P., Sletten, R. S., & Swart, P. K. (2003). N isotope fractionation and measures of organic matter. Ecology, 84(8), 2021-2025. https://doi.org/10.1890/02-3097
Laganière, J., Boča, A., Van Miegroet, H., & Paré, D. (2017). A tree species effect on soil that is consistent across the species’ range: The case of aspen and soil carbon in North America. Forests, 8(4), 1-15. https://doi.org/10.3390/f8040113
Laganière, J., Paré, D., Bergeron, Y., Chen, H. Y. H., Brassard, B. W., & Cavard, X. (2013). Stability of soil carbon stocks varies with forest composition in the Canadian boreal biome. Ecosystems, 16(5), 852-865. https://doi.org/10.1007/s10021-013-9658-z
Leithead, M. D., Anand, M., & Silva, L. C. R. (2010). Northward migrating trees establish in treefall gaps at the northern limit of the temperate-boreal ecotone, Ontario, Canada. Oecologia, 164(4), 1095-1106. https://doi.org/10.1007/s00442-010-1769-z
Liao, J. D., Boutton, T. W., & Jastrow, J. D. (2006). Organic matter turnover in soil physical fractions following woody plant invasion of grassland: Evidence from natural 13C and 15N. Soil Biology and Biochemistry, 38(11), 3197-3210. https://doi.org/10.1016/j.soilbio.2006.04.004
Manzoni, S., Taylor, P., Richter, A., Porporato, A., & Ågren, G. I. (2012). Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytologist, 196(1), 79-91. https://doi.org/10.1111/j.1469-8137.2012.04225.x
Marin-Spiotta, E., Chaopricha, N. T., Plante, A. F., Diefendorf, A. F., Mueller, C. W., Grandy, A. S., & Mason, J. A. (2014). Long-term stabilization of deep soil carbon by fire and burial during early Holocene climate change. Nature Geoscience, 7(6), 428-432. https://doi.org/10.1038/ngeo2169
Marschner, B., Brodowski, S., Dreves, A., Gleixner, G., Gude, A., Grootes, P. M., … Wiesenberg, G. L. B. (2008). How relevant is recalcitrance for the stabilization of organic matter in soils? Journal of Plant Nutrition and Soil Science, 171(1), 91-110. https://doi.org/10.1002/jpln.200700049
Mayor, J. R., Schuur, E. A. G., & Henkel, T. W. (2009). Elucidating the nutritional dynamics of fungi using stable isotopes. Ecology Letters, 12(2), 171-183. https://doi.org/10.1111/j.1461-0248.2008.01265.x
McLauchlan, K. K., & Hobbie, S. E. (2004). Comparison of labile soil organic matter fractionation techniques. Soil Science Society of America Journal, 68(5), 1616. https://doi.org/10.2136/sssaj2004.1616
Mueller, C. W., Bruggemann, N., Pritsch, K., Stoelken, G., Gayler, S., Winkler, J. B., & Kogel-Knabner, I. (2009). Initial differentiation of vertical soil organic matter distribution and composition under juvenile beech (Fagus sylvatica L.) trees. Plant and Soil, 323(1-2), 111-123. https://doi.org/10.1007/s11104-009-9932-1
Mueller, C. W., Gutsch, M., Kothieringer, K., Leifeld, J., Rethemeyer, J., Brueggemann, N., & Kögel-Knabner, I. (2014). Bioavailability and isotopic composition of CO2 released from incubated soil organic matter fractions. Soil Biology & Biochemistry, 69, 168-178. https://doi.org/10.1016/j.soilbio.2013.11.006
Mueller, C. W., Hoeschen, C., Steffens, M., Buddenbaum, H., Hinkel, K., Bockheim, J. G., & Kao-Kniffin, J. (2017). Microscale soil structures foster organic matter stabilization in permafrost soils. Geoderma, 293, 44-53. https://doi.org/10.1016/j.geoderma.2017.01.028
Mueller, C. W., & Koegel-Knabner, I. (2009). Soil organic carbon stocks, distribution, and composition affected by historic land use changes on adjacent sites. Biology and Fertility of Soils, 45(4), 347-359. https://doi.org/10.1007/s00374-008-0336-9
Mueller, C. W., Schlund, S., Prietzel, J., Kogel-Knabner, I., & Gutsch, M. (2012). Soil aggregate destruction by ultrasonication increases soil organic matter mineralization and mobility. Soil Science Society of America Journal, 76(5), 1634-1643. https://doi.org/10.2136/sssaj2011.0186
Mueller, K. E., Eissenstat, D. M., Muller, C. W., Oleksyn, J., Reich, P. B., & Freeman, K. H. (2013). What controls the concentration of various aliphatic lipids in soil? Soil Biology & Biochemistry, 63, 14-17. https://doi.org/10.1016/j.soilbio.2013.03.021
Mueller, K. E., Polissar, P. J., Oleksyn, J., & Freeman, K. H. (2012). Differentiating temperate tree species and their organs using lipid biomarkers in leaves, roots and soil. Organic Geochemistry, 52, 130-141. https://doi.org/10.1016/j.orggeochem.2012.08.014
Mueller, K. E., Eissenstat, D. M., Hobbie, S. E., Oleksyn, J., Jagodzinski, A. M., Reich, P. B., … Chorover, J. (2012). Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment. Biogeochemistry, 111(1-3), 601-614. https://doi.org/10.1007/s10533-011-9695-7
Mueller, K. E., Hobbie, S. E., Chorover, J., Reich, P. B., Eisenhauer, N., Castellano, M. J., … Oleksyn, J. (2015). Effects of litter traits, soil biota, and soil chemistry on soil carbon stocks at a common garden with 14 tree species. Biogeochemistry, 123(3), 313-327. https://doi.org/10.1007/s10533-015-0083-6
Oades, J. M. (1984). Soil organic matter and structural stability: Mechanisms and implications for management. Plant and Soil, 76(1-3), 319-337. https://doi.org/10.1007/bf02205590
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., … Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988-993. https://doi.org/10.1126/science.1201609
Plante, A. F., Conant, R. T., Carlson, J., Greenwood, R., Shulman, J. M., Haddix, M. L., & Paul, E. A. (2010). Decomposition temperature sensitivity of isolated soil organic matter fractions. Soil Biology and Biochemistry, 42(11), 1991-1996. https://doi.org/10.1016/j.soilbio.2010.07.022
R Development Core Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R Development Core Team.
Rasmussen, C., Heckman, K., Wieder, W. R., Keiluweit, M., Lawrence, C. R., Berhe, A. A., … Wagai, R. (2018). Beyond clay: Towards an improved set of variables for predicting soil organic matter content. Biogeochemistry, 137(3), 297-306, https://doi.org/10.1007/s10533-018-0424-3
Rasse, D. P., Rumpel, C., & Dignac, M.-F.-F. (2005). Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant and Soil, 269(1-2), 341-356. https://doi.org/10.1007/s11104-004-0907-y.
Reich, P. B., Sendall, K., Rice, K., Rich, R. L., Stefanski, A., Hobbie, S. E., & Montgomery, R. A. (2015). Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species. Nature Climate Change, 5, 148-152. https://doi.org/10.1038/nclimate2497
Reich, P. B., Oleksyn, J., Modrzynski, J., Mrozinski, P., Hobbie, S. E., Eissenstat, D. M., … Tjoelker, M. G. (2005). Linking litter calcium, earthworms and soil properties: A common garden test with 14 tree species. Ecology Letters, 8(8), 811-818. https://doi.org/10.1111/j.1461-0248.2005.00779.x
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I., & Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49-56. https://doi.org/10.1038/nature10386
Sierra, C. A., Müller, M., & Trumbore, S. E. (2014). Modeling radiocarbon dynamics in soils: SoilR version 1.1. Geoscientific Model Development, 7(5), 1919-1931. https://doi.org/10.5194/gmd-7-1919-2014
Six, J., Bossuyt, H., Degryze, S., & Denef, K. (2004). A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79(1), 7-31. https://doi.org/10.1016/j.still.2004.03.008
Šmilauer, P., & Lepš, P. (2014). Multivariate analysis of ecological data using CANOCO 5 (2nd ed.). New York: Cambridge University Press.
Smucker, A. J. M. (2003). Root carbon contributions to soil aggregate formation and function. In J. Abe (Ed.), Roots: The dynamic interface between plants and the earth: The 6th symposium of the international society of root research, 11-15 November 2001, Nagoya, Japan (pp. 421-426). Dordrecht, the Netherlands: Springer. https://doi.org/10.1007/978-94-017-2923-9_41
Soil Survey Staff. (2004). Soil survey laboratory methods manual. In R. Burt (Ed.), Soil survey investigations report. Lincoln, NE: US Department of Agriculture.
Sollins, P., Homann, P., Caldwell, B. A. (1996). Stabilization and destabilization of soil organic matter1.pdf. Geoderma, 74(1-2), 65-105. https://doi.org/10.1016/S0016-7061(96)00036-5
Sollins, P., Swanston, C., Kleber, M., Filley, T., Kramer, M., Crow, S., … Bowden, R. (2006). Organic C and N stabilization in a forest soil: Evidence from sequential density fractionation. Soil Biology & Biochemistry, 38(11), 3313-3324. https://doi.org/10.1016/j.soilbio.2006.04.014
Spittlehouse, D. L., & Stewart, R. B. (2003). Adaptation to climate change in forest management. BC Journal of Ecosystems and Management, 4(1), 1-11. https://doi.org/10.1109/lsp.2009.2014096
Templer, P. H., Arthur, M. A., Lovett, G. M., & Weathers, K. C. (2007). Plant and soil natural abundance δ15N: Indicators of relative rates of nitrogen cycling in temperate forest ecosystems. Oecologia, 153(2), 399-406. https://doi.org/10.1007/s00442-007-0746-7
Torn, M. S., Swanston, C. W., Castanha, C., & Trumbore, S. E. (2009). Storage and turnover of organic matter in soil.
Trumbore, S. (2009). Radiocarbon and soil carbon dynamics. Annual Review of Earth and Planetary Sciences, 37(1), 47-66. https://doi.org/10.1146/annurev.earth.36.031207.124300
Vesterdal, L., Clarke, N., Sigurdsson, B. D., & Gundersen, P. (2013). Do tree species influence soil carbon stocks in temperate and boreal forests? Forest Ecology and Management, 309, 4-18. https://doi.org/10.1016/j.foreco.2013.01.017
Vesterdal, L., Elberling, B., Christiansen, J. R., Callesen, I., & Schmidt, I. K. (2012). Soil respiration and rates of soil carbon turnover differ among six common European tree species. Forest Ecology and Management, 264, 185-196. https://doi.org/10.1016/j.foreco.2011.10.009
Vesterdal, L., Schmidt, I. K., Callesen, I., Nilsson, L. O., & Gundersen, P. (2008). Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecology and Management, 255(1), 35-48. https://doi.org/10.1016/j.foreco.2007.08.015
Viana, R. M., Ferraz, J. B. S., Neves, A. F., Vieira, G., & Pereira, B. F. F. (2014). Soil quality indicators for different restoration stages on Amazon rainforest. Soil and Tillage Research, 140, 1-7. https://doi.org/10.1016/j.still.2014.01.005
Virto, I., Barré, P., & Chenu, C. (2008). Microaggregation and organic matter storage at the silt-size scale. Geoderma, 146(1-2), 326-335. https://doi.org/10.1016/j.geoderma.2008.05.021
von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., & Flessa, H. (2006). Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions-A review. European Journal of Soil Science, 57(4), 426-445. https://doi.org/10.1111/j.1365-2389.2006.00809.x
Wagai, R., Mayer, L. M., & Kitayama, K. (2009). Nature of the “occluded” low-density fraction in soil organic matter studies: A critical review. Soil Science and Plant Nutrition, 55(1), 13-25. https://doi.org/10.1111/j.1747-0765.2008.00356.x
Wallander, H., Mörth, C. M., & Giesler, R. (2009). Increasing abundance of soil fungi is a driver for 15N enrichment in soil profiles along a chronosequence undergoing isostatic rebound in northern Sweden. Oecologia, 160(1), 87-96. https://doi.org/10.1007/s00442-008-1270-0
Wallander, H., Nilsson, L. O., Hagerberg, D., & Rosengren, U. (2003). Direct estimates of C:N ratios of ectomycorrhizal mycelia collected from Norway spruce forest soils. Soil Biology and Biochemistry, 35(7), 997-999. https://doi.org/10.1016/S0038-0717(03)00121-4
Wang, W. J., Dalal, R. C., Moody, P. W., & Smith, C. J. (2003). Relationship of soil respiration and microboial biomass, substrate availability and clay content. Soil Biology & Biochemistry, 35, 273-284.
Wang, Y., & Amundson, R. (1996). Radiocarbon dating of soil organic matter. Quaternary Research, 45(03), 282-288. https://doi.org/10.1006/qres.1996.0029
Wild, B., Li, J., Pihlblad, J., Bengtson, P., & Rütting, T. (2019). Decoupling of priming and microbial N mining during a short-term soil incubation. Soil Biology and Biochemistry, 129, 71-79. http://doi.org/S0038071718303973
Xu, X., Trumbore, S. E., Zheng, S., Southon, J. R., McDuffee, K. E., Luttgen, M., & Liu, J. C. (2007). Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: Reducing background and attaining high precision. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 259(1), 320-329. https://doi.org/10.1016/j.nimb.2007.01.175
Yavitt, J. B., Fahey, T. J., Sherman, R. E., & Groffman, P. M. (2015). Lumbricid earthworm effects on incorporation of root and leaf litter into aggregates in a forest soil. New York State. Biogeochemistry, 125(2), 261-273. https://doi.org/10.1007/s10533-015-0126-z
Zolkos, S. G., Jantz, P., Cormier, T., Iverson, L. R., McKenney, D. W., & Goetz, S. J. (2015). Projected tree species redistribution under climate change: Implications for ecosystem vulnerability across protected areas in the eastern United States. Ecosystems, 18(2), 202-220. https://doi.org/10.1007/s10021-014-9822-0
Unlocking complex soil systems as carbon sinks: multi-pool management as the key
Earthworms as catalysts in the formation and stabilization of soil microbial necromass