Unlocking complex soil systems as carbon sinks: multi-pool management as the key
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
AN 1706/2-1
Deutsche Forschungsgemeinschaft (German Research Foundation)
VO738 2111/4-1
Deutsche Forschungsgemeinschaft (German Research Foundation)
0217-00322B
Det Frie Forskningsråd (Danish Council for Independent Research)
PubMed
37322013
PubMed Central
PMC10272151
DOI
10.1038/s41467-023-38700-5
PII: 10.1038/s41467-023-38700-5
Knihovny.cz E-zdroje
- MeSH
- minerály MeSH
- pevné částice MeSH
- půda * MeSH
- sekvestrace uhlíku * MeSH
- uhlík MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- minerály MeSH
- pevné částice MeSH
- půda * MeSH
- uhlík MeSH
Much research focuses on increasing carbon storage in mineral-associated organic matter (MAOM), in which carbon may persist for centuries to millennia. However, MAOM-targeted management is insufficient because the formation pathways of persistent soil organic matter are diverse and vary with environmental conditions. Effective management must also consider particulate organic matter (POM). In many soils, there is potential for enlarging POM pools, POM can persist over long time scales, and POM can be a direct precursor of MAOM. We present a framework for context-dependent management strategies that recognizes soils as complex systems in which environmental conditions constrain POM and MAOM formation.
Department of Agronomy Iowa State University Ames IA USA
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Institute of Biology Leipzig University Leipzig Germany
Soil Resources and Land Use Institute of Soil Science and Site Ecology TU Dresden Dresden Germany
Zobrazit více v PubMed
Golchin A, Oades JM, Skjemstad JO, Clarke P. Soil structure and carbon cycling. Aust. J. Soil Res. 1994;32:1043. doi: 10.1071/SR9941043. DOI
Elliott ET, Cambardella CA. Physical separation of soil organic matter. Agric. Ecosyst. Environ. 1991;34:407–419. doi: 10.1016/0167-8809(91)90124-G. DOI
Beudert G, Kögel-Knabner I, Zech W. Micromorphological, wet-chemical and 13C NMR spectroscopic characterization of density fractionated forest soils. Sci. Total Environ. 1989;81–82:401–408. doi: 10.1016/0048-9697(89)90148-4. DOI
Lavallee JM, Soong JL, Cotrufo MF. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Chang. Biol. 2020;26:261–273. doi: 10.1111/gcb.14859. PubMed DOI
Lehmann J, Kleber M. The contentious nature of soil organic matter. Nature. 2015;528:60–68. doi: 10.1038/nature16069. PubMed DOI
von Lützow M, et al. SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol. Biochem. 2007;39:2183–2207. doi: 10.1016/j.soilbio.2007.03.007. DOI
Mueller CW, et al. Initial differentiation of vertical soil organic matter distribution and composition under juvenile beech (Fagus sylvatica L.) trees. Plant Soil. 2009;323:111–123. doi: 10.1007/s11104-009-9932-1. DOI
Bol R, Poirier N, Balesdent J, Gleixner G. Molecular turnover time of soil organic matter in particle-size fractions of an arable soil. Rapid Commun. Mass Spectrom. 2009;23:2551–2558. doi: 10.1002/rcm.4124. PubMed DOI
Totsche, K. U. et al. Microaggregates in soils. J. Plant Nutr. Soil Sci. 1–33. 10.1002/jpln.201600451 (2018).
Lehmann J, et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 2020;13:529–534. doi: 10.1038/s41561-020-0612-3. DOI
Kleber, M. et al. Dynamic interactions at the mineral–organic matter interface. Nat. Rev. Earth Environ. 10.1038/s43017-021-00162-y (2021).
Jilling A, et al. Minerals in the rhizosphere: overlooked mediators of soil nitrogen availability to plants and microbes. Biogeochemistry. 2018;139:103–122. doi: 10.1007/s10533-018-0459-5. DOI
Castellano MJ, Mueller KE, Olk DC, Sawyer JE, Six J. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Glob. Chang. Biol. 2015;21:3200–3209. doi: 10.1111/gcb.12982. PubMed DOI
Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob. Chang. Biol. 2013;19:988–995. doi: 10.1111/gcb.12113. PubMed DOI
Miltner A, Kindler R, Knicker H, Richnow HH, Kästner M. Fate of microbial biomass-derived amino acids in soil and their contribution to soil organic matter. Org. Geochem. 2009;40:978–985. doi: 10.1016/j.orggeochem.2009.06.008. DOI
Angst G, Mueller KE, Nierop KGJ, Simpson MJ. Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biol. Biochem. 2021;156:108189. doi: 10.1016/j.soilbio.2021.108189. DOI
Kallenbach CM, Grandy AS, Frey SD, Diefendorf AF. Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biol. Biochem. 2015;91:279–290. doi: 10.1016/j.soilbio.2015.09.005. DOI
Cotrufo MF, Haddix ML, Kroeger ME, Stewart CE. The role of plant input physical-chemical properties, and microbial and soil chemical diversity on the formation of particulate and mineral-associated organic matter. Soil Biol. Biochem. 2022;168:108648. doi: 10.1016/j.soilbio.2022.108648. DOI
Haddix ML, et al. Climate, carbon content, and soil texture control the independent formation and persistence of particulate and mineral-associated organic matter in soil. Geoderma. 2020;363:114160. doi: 10.1016/j.geoderma.2019.114160. DOI
Witzgall K, et al. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nat. Commun. 2021;12:4115. doi: 10.1038/s41467-021-24192-8. PubMed DOI PMC
Yu W, Huang W, Weintraub-Leff SR, Hall SJ. Where and why do particulate organic matter (POM) and mineral-associated organic matter (MAOM) differ among diverse soils? Soil Biol. Biochem. 2022;172:108756. doi: 10.1016/j.soilbio.2022.108756. DOI
Schlüter S, et al. Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime. Nat. Commun. 2022;13:2098. doi: 10.1038/s41467-022-29605-w. PubMed DOI PMC
Vidal A, et al. Visualizing the transfer of organic matter from decaying plant residues to soil mineral surfaces controlled by microorganisms. Soil Biol. Biochem. 2021;160:108347. doi: 10.1016/j.soilbio.2021.108347. DOI
Derrien D, et al. Current controversies on mechanisms controlling soil carbon storage: implications for interactions with practitioners and policy-makers. A review. Agron. Sustain. Dev. 2023;43:21. doi: 10.1007/s13593-023-00876-x. PubMed DOI PMC
Tong H, Simpson AJ, Paul EA, Simpson MJ. Land-use change and environmental properties alter the quantity and molecular composition of soil-derived dissolved organic matter. ACS Earth Sp. Chem. 2021;5:1395–1406. doi: 10.1021/acsearthspacechem.1c00033. DOI
Guo Z, et al. Soil dissolved organic carbon in terrestrial ecosystems: global budget, spatial distribution and controls. Glob. Ecol. Biogeogr. 2020;29:2159–2175. doi: 10.1111/geb.13186. DOI
Filep T, Zacháry D, Jakab G, Szalai Z. Chemical composition of labile carbon fractions in Hungarian forest soils: Insight into biogeochemical coupling between DOM and POM. Geoderma. 2022;419:115867. doi: 10.1016/j.geoderma.2022.115867. DOI
Córdova SC, et al. Plant litter quality affects the accumulation rate, composition, and stability of mineral-associated soil organic matter. Soil Biol. Biochem. 2018;125:115–124. doi: 10.1016/j.soilbio.2018.07.010. DOI
Mueller CW, Koegel-Knabner I. Soil organic carbon stocks, distribution, and composition affected by historic land use changes on adjacent sites. Biol. Fertil. Soils. 2009;45:347–359. doi: 10.1007/s00374-008-0336-9. DOI
Angst G, et al. Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds. Soil Biol. Biochem. 2018;122:19–30. doi: 10.1016/j.soilbio.2018.03.026. DOI
Filley TR, Boutton TW, Liao JD, Jastrow JD, Gamblin DE. Chemical changes to nonaggregated particulate soil organic matter following grassland-to-woodland transition in a subtropical savanna. J. Geophys. Res. Biogeosciences. 2008;113:G03009. doi: 10.1029/2007JG000564. DOI
Cotrufo, M. F. & Lavallee, J. M. Chapter One - Soil organic matter formation, persistence, and functioning: a synthesis of current understanding to inform its conservation and regeneration. in (ed. Sparks, D. L.) vol. 172 1–66 (Academic Press, 2022).
Robertson, A. D. et al. Unifying soil organic matter formation and persistence frameworks: the MEMS model. Biogeosciences Discuss. 1–36. 10.5194/bg-2018-430 (2018).
Man, M. et al. Twenty years of litter manipulation reveals that above-ground litter quantity and quality controls soil organic matter molecular composition. Biogeochemistry10.1007/s10533-022-00934-8 (2022).
Hassink J. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil. 1997;191:77–87. doi: 10.1023/A:1004213929699. DOI
Hassink J, Whitmore AP. A model of the physical protection of organic matter in soils. Soil Sci. Soc. Am. J. 1997;61:131–139. doi: 10.2136/sssaj1997.03615995006100010020x. DOI
Six J, Conant RT, Paul EA, Paustian K. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil. 2002;241:155–176. doi: 10.1023/A:1016125726789. DOI
Samson M-É, Chantigny MH, Vanasse A, Menasseri-Aubry S, Angers DA. Coarse mineral-associated organic matter is a pivotal fraction for SOM formation and is sensitive to the quality of organic inputs. Soil Biol. Biochem. 2020;149:107935. doi: 10.1016/j.soilbio.2020.107935. DOI
Li M, Meador T, Sauheitl L, Guggenberger G, Angst G. Geoderma Substrate quality effects on stabilized soil carbon reverse with depth. Geoderma. 2022;406:115511. doi: 10.1016/j.geoderma.2021.115511. DOI
Vogel C, et al. Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils. Nat. Commun. 2014;5:2947. doi: 10.1038/ncomms3947. PubMed DOI PMC
Stewart C, Paustian K, Conant R, Plante A, Six J. Soil carbon saturation: concept, evidence and evaluation. Biogeochemistry. 2007;86:19–31. doi: 10.1007/s10533-007-9140-0. DOI
Rodrigues LAT, et al. Carbon sequestration capacity in no-till soil decreases in the long-term due to saturation of fine silt plus clay-size fraction. Geoderma. 2022;412:115711. doi: 10.1016/j.geoderma.2022.115711. DOI
Schweizer SA, Mueller CW, Höschen C, Ivanov P, Kögel-Knabner I. The role of clay content and mineral surface area for soil organic carbon storage in an arable toposequence. Biogeochemistry. 2021;156:401–420. doi: 10.1007/s10533-021-00850-3. DOI
Mazzilli SR, Kemanian AR, Ernst OR, Jackson RB, Piñeiro G. Priming of soil organic carbon decomposition induced by corn compared to soybean crops. Soil Biol. Biochem. 2014;75:273–281. doi: 10.1016/j.soilbio.2014.04.005. DOI
Vos C, Jaconi A, Jacobs A, Don A. Hot regions of labile and stable soil organic carbon in Germany–Spatial variability and driving factors. Soil. 2018;4:153–167. doi: 10.5194/soil-4-153-2018. DOI
Steffens M, Kölbl A, Kögel-Knabner I. Alteration of soil organic matter pools and aggregation in semi-arid steppe topsoils as driven by organic matter input. Eur. J. Soil Sci. 2009;60:198–212. doi: 10.1111/j.1365-2389.2008.01104.x. DOI
Stewart CE, Plante AF, Paustian K, Conant RT, Six J. Soil carbon saturation: linking concept and measurable carbon pools. Soil Sci. Soc. Am. J. 2008;72:379–392. doi: 10.2136/sssaj2007.0104. DOI
Georgiou K, et al. Global stocks and capacity of mineral-associated soil organic carbon. Nat. Commun. 2022;13:3797. doi: 10.1038/s41467-022-31540-9. PubMed DOI PMC
Chen S, et al. Fine resolution map of top- and subsoil carbon sequestration potential in France. Sci. Total Environ. 2018;630:389–400. doi: 10.1016/j.scitotenv.2018.02.209. PubMed DOI
Keiluweit M, et al. Mineral protection of soil carbon counteracted by root exudates. Nat. Clim. Chang. 2015;5:588–595. doi: 10.1038/nclimate2580. DOI
Chari NR, Taylor BN. Soil organic matter formation and loss are mediated by root exudates in a temperate forest. Nat. Geosci. 2022;15:1011–1016. doi: 10.1038/s41561-022-01079-x. DOI
Mayer M, et al. Influence of forest management activities on soil organic carbon stocks: a knowledge synthesis. Ecol. Manag. 2020;466:118127. doi: 10.1016/j.foreco.2020.118127. DOI
Ortiz CA, Lundblad M, Lundström A, Stendahl J. The effect of increased extraction of forest harvest residues on soil organic carbon accumulation in Sweden. Biomass-. Bioenergy. 2014;70:230–238. doi: 10.1016/j.biombioe.2014.08.030. DOI
Singh S, et al. Soil organic carbon and aggregation in response to thirty-nine years of tillage management in the southeastern US. Soil Tillage Res. 2020;197:104523. doi: 10.1016/j.still.2019.104523. DOI
Almagro M, Garcia-Franco N, Martínez-Mena M. The potential of reducing tillage frequency and incorporating plant residues as a strategy for climate change mitigation in semiarid Mediterranean agroecosystems. Agric. Ecosyst. Environ. 2017;246:210–220. doi: 10.1016/j.agee.2017.05.016. DOI
Cates AM, Ruark MD, Hedtcke JL, Posner JL. Long-term tillage, rotation and perennialization effects on particulate and aggregate soil organic matter. Soil Tillage Res. 2016;155:371–380. doi: 10.1016/j.still.2015.09.008. DOI
Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2017;2:1–6. doi: 10.1038/nmicrobiol.2017.105. PubMed DOI
Angst G, et al. Earthworms as catalysts in the formation and stabilization of soil microbial necromass. Glob. Chang. Biol. 2022;28:4775–4782. doi: 10.1111/gcb.16208. PubMed DOI PMC
Prescott CE, Rui Y, Cotrufo MF, Grayston SJ. Managing plant surplus carbon to generate soil organic matter in regenerative agriculture. J. Soil Water Conserv. 2021;76:99A–104A. doi: 10.2489/jswc.2021.0920A. DOI
Lange M, et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 2015;6:6707. doi: 10.1038/ncomms7707. PubMed DOI
Smith J, et al. Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080. Glob. Chang. Biol. 2005;11:2141–2152. doi: 10.1111/j.1365-2486.2005.001075.x. PubMed DOI
Thoms C, Gleixner G. Seasonal differences in tree species’ influence on soil microbial communities. Soil Biol. Biochem. 2013;66:239–248. doi: 10.1016/j.soilbio.2013.05.018. DOI
Schimel DS, et al. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Glob. Biogeochem. Cycles. 1994;8:279. doi: 10.1029/94GB00993. DOI
Kaiser K, et al. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Sci. Rep. 2016;6:1–12. doi: 10.1038/srep33696. PubMed DOI PMC
Mosier S, et al. Adaptive multi-paddock grazing enhances soil carbon and nitrogen stocks and stabilization through mineral association in southeastern U.S. grazing lands. J. Environ. Manag. 2021;288:112409. doi: 10.1016/j.jenvman.2021.112409. PubMed DOI
Kristensen JA, Svenning J-C, Georgiou K, Malhi Y. Can large herbivores enhance ecosystem carbon persistence? Trends Ecol. Evol. 2022;37:117–128. doi: 10.1016/j.tree.2021.09.006. PubMed DOI
Eisenhauer, N. et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass OPEN. Nat. Publ. Gr. 10.1038/srep44641 (2017). PubMed PMC
Rui Y, et al. Persistent soil carbon enhanced in Mollisols by well-managed grasslands but not annual grain or dairy forage cropping systems. Proc. Natl Acad. Sci. 2022;119:e2118931119. doi: 10.1073/pnas.2118931119. PubMed DOI PMC
Kögel-Knabner I, Amelung W. Soil organic matter in major pedogenic soil groups. Geoderma. 2021;384:114785. doi: 10.1016/j.geoderma.2020.114785. DOI
Liang C, Amelung W, Lehmann J, Kästner M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Chang. Biol. 2019;25:3578–3590. doi: 10.1111/gcb.14781. PubMed DOI
Lugato E, Lavallee JM, Haddix ML, Panagos P, Cotrufo MF. Different climate sensitivity of particulate and mineral-associated soil organic matter. Nat. Geo. 2021;14:295–300. doi: 10.1038/s41561-021-00744-x. DOI
Sokol NW, et al. Global distribution, formation and fate of mineral-associated soil organic matter under a changing climate: a trait-based perspective. Funct. Ecol. 2022;36:1411–1429. doi: 10.1111/1365-2435.14040. DOI
van der Pol LK, et al. Addressing the soil carbon dilemma: Legumes in intensified rotations regenerate soil carbon while maintaining yields in semi-arid dryland wheat farms. Agric. Ecosyst. Environ. 2022;330:107906. doi: 10.1016/j.agee.2022.107906. DOI
Aulakh R, Bueno C, Kreuzwieser J, Rennenberg, H MW. Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biol. 2001;3:139–148. doi: 10.1055/s-2001-12905. DOI
Whitbread A, Blair G, Konboon Y, Lefroy R, Naklang K. Managing crop residues, fertilizers and leaf litters to improve soil C, nutrient balances, and the grain yield of rice and wheat cropping systems in Thailand and Australia. Agric. Ecosyst. Environ. 2003;100:251–263. doi: 10.1016/S0167-8809(03)00189-0. DOI
Schlesinger, W. H. Biogeochemical constraints on climate change mitigation through regenerative farming. Biogeochemistry10.1007/s10533-022-00942-8 (2022).
Romero CM, et al. Tillage-residues affect mineral-associated organic matter on Vertisols in northern Mexico. Geoderma Reg. 2021;27:e00430. doi: 10.1016/j.geodrs.2021.e00430. DOI
Grüneberg E, Ziche D, Wellbrock N. Organic carbon stocks and sequestration rates of forest soils in Germany. Glob. Chang. Biol. 2014;20:2644–2662. doi: 10.1111/gcb.12558. PubMed DOI PMC
Frey SD. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu. Rev. Ecol. Evol. Syst. 2019;50:237–259. doi: 10.1146/annurev-ecolsys-110617-062331. DOI
Wu Y, et al. Global patterns in mycorrhizal mediation of soil carbon storage, stability, and nitrogen demand: a meta-analysis. Soil Biol. Biochem. 2022;166:108578. doi: 10.1016/j.soilbio.2022.108578. DOI
Reich PB, et al. Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecol. Lett. 2005;8:811–818. doi: 10.1111/j.1461-0248.2005.00779.x. DOI
Almeida LFJ, et al. Forest litter constraints on the pathways controlling soil organic matter formation. Soil Biol. Biochem. 2021;163:108447. doi: 10.1016/j.soilbio.2021.108447. DOI
Cyle KT, et al. Substrate quality influences organic matter accumulation in the soil silt and clay fraction. Soil Biol. Biochem. 2016;103:138–148. doi: 10.1016/j.soilbio.2016.08.014. DOI
Angst, G. et al. Soil organic carbon stability in forests: distinct effects of tree species identity and traits. Glob. Chang. Biol. 14548. 10.1111/gcb.14548 (2019). PubMed
Mueller KE, et al. Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment. Biogeochemistry. 2012;111:601–614. doi: 10.1007/s10533-011-9695-7. DOI
Blume, H.-P. et al. Soil Science. (Springer Berlin Heidelberg, 2015).
Steffens C, Beer C, Schelfhout S, Vesterdal L. Tree species affect the vertical distribution of soil organic carbon and total nitrogen. J. Plant Nutr. Soil Sci. 2018;185:864–875. doi: 10.1002/jpln.202200165. DOI
Craig ME, et al. Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter. Glob. Chang. Biol. 2018;24:3317–3330. doi: 10.1111/gcb.14132. PubMed DOI
Lin G, et al. Mycorrhizal associations of tree species influence soil nitrogen dynamics via effects on soil acid–base chemistry. Glob. Ecol. Biogeogr. 2022;31:168–182. doi: 10.1111/geb.13418. DOI
Keller AB, Brzostek ER, Craig ME, Fisher JB, Phillips RP. Root-derived inputs are major contributors to soil carbon in temperate forests, but vary by mycorrhizal type. Ecol. Lett. 2021;24:626–635. doi: 10.1111/ele.13651. PubMed DOI
Cheeke TE, et al. Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function. N. Phytol. 2017;214:432–442. doi: 10.1111/nph.14343. PubMed DOI
Kalbitz K, Kaiser K. Contribution of dissolved organic matter to carbon storage in forest mineral soils. J. Plant Nutr. Soil Sci. 2008;171:52–60. doi: 10.1002/jpln.200700043. DOI
Augusto L, Boča A. Tree functional traits, forest biomass, and tree species diversity interact with site properties to drive forest soil carbon. Nat. Commun. 2022;13:1097. doi: 10.1038/s41467-022-28748-0. PubMed DOI PMC
Jia Y, et al. Plant and microbial pathways driving plant diversity effects on soil carbon accumulation in subtropical forest. Soil Biol. Biochem. 2021;161:108375. doi: 10.1016/j.soilbio.2021.108375. DOI
Pierson D, et al. Mineral stabilization of soil carbon is suppressed by live roots, outweighing influences from litter quality or quantity. Biogeochemistry. 2021;154:433–449. doi: 10.1007/s10533-021-00804-9. DOI
Ferreira GWD, et al. Retaining eucalyptus harvest residues promotes different pathways for particulate and mineral-associated organic matter. Ecosphere. 2021;12:e03439. doi: 10.1002/ecs2.3439. DOI
Don A, Hagen C, Grüneberg E, Vos C. Simulated wild boar bioturbation increases the stability of forest soil carbon. Biogeosciences. 2019;16:4145–4155. doi: 10.5194/bg-16-4145-2019. DOI
Ferlian O, et al. Soil chemistry turned upside down: a meta-analysis of invasive earthworm effects on soil chemical properties. Ecology. 2020;101:1–12. doi: 10.1002/ecy.2936. PubMed DOI PMC
Szalai Z, et al. Accelerated soil development due to seasonal water-saturation under hydric conditions. Geoderma. 2021;401:115328. doi: 10.1016/j.geoderma.2021.115328. DOI
Noll M, Matthies D, Frenzel P, Derakshani M, Liesack W. Succession of bacterial community structure and diversity in a paddy soil oxygen gradient. Environ. Microbiol. 2005;7:382–395. doi: 10.1111/j.1462-2920.2005.00700.x. PubMed DOI
Sokol, N. W. et al. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat. Rev. Microbiol.10.1038/s41579-022-00695-z (2022). PubMed
Mueller CW, et al. Large amounts of labile organic carbon in permafrost soils of northern Alaska. Glob. Chang. Biol. 2015;21:2804–2817. doi: 10.1111/gcb.12876. PubMed DOI
Hugelius G, et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences. 2014;11:6573–6593. doi: 10.5194/bg-11-6573-2014. DOI
Prater I, et al. From fibrous plant residues to mineral-associated organic carbon–the fate of organic matter in Arctic permafrost soils. Biogeosciences. 2020;17:3367–3383. doi: 10.5194/bg-17-3367-2020. DOI
Yan D, Wang D, Yang L. Long-term effect of chemical fertilizer, straw, and manure on labile organic matter fractions in a paddy soil. Biol. Fertil. Soils. 2007;44:93–101. doi: 10.1007/s00374-007-0183-0. DOI
Buettner SW, Kramer MG, Chadwick OA, Thompson A. Mobilization of colloidal carbon during iron reduction in basaltic soils. Geoderma. 2014;221–222:139–145. doi: 10.1016/j.geoderma.2014.01.012. DOI
Thompson A, Chadwick OA, Boman S, Chorover J. Colloid mobilization during soil iron redox oscillations. Environ. Sci. Technol. 2006;40:5743–5749. doi: 10.1021/es061203b. PubMed DOI
Peplau T, Schroeder J, Gregorich E, Poeplau C. Subarctic soil carbon losses after deforestation for agriculture depend on permafrost abundance. Glob. Chang. Biol. 2022;28:5227–5242. doi: 10.1111/gcb.16307. PubMed DOI
Huang Y, et al. Tradeoff of CO2 and CH4 emissions from global peatlands under water-table drawdown. Nat. Clim. Chang. 2021;11:618–622. doi: 10.1038/s41558-021-01059-w. DOI
Amelung W, et al. Towards a global-scale soil climate mitigation strategy. Nat. Commun. 2020;11:1–10. doi: 10.1038/s41467-020-18887-7. PubMed DOI PMC
Angst G, Kögel-Knabner I, Kirfel K, Hertel D, Mueller CW. Spatial distribution and chemical composition of soil organic matter fractions in rhizosphere and non-rhizosphere soil under European beech (Fagus sylvatica L.) Geoderma. 2016;264:179–187. doi: 10.1016/j.geoderma.2015.10.016. DOI
Urbanski L, et al. Legacy of plaggen agriculture: high soil organic carbon stocks as result from high carbon input and volume increase. Geoderma. 2022;406:115513. doi: 10.1016/j.geoderma.2021.115513. DOI
Ae, S. S. et al. Composition of organic matter in sandy relict and cultivated heathlands as examined by pyrolysis-field ionization MS Abbreviations CLSM Confocal laser scanning microscopy MOC and MN Mineral protected organic C and N OC Organic carbon Py-FIMS Pyrolysis Field Ionization Mass Spectroscopy ROC and RN Recalcitrant organic C and N SOM Soil organic matter. 89, 253–271 (2008).
Springob G, Kirchmann H. C-rich sandy Ap horizons of specific historical land-use contain large fractions of refractory organic matter. Soil Biol. Biochem. 2002;34:1571–1581. doi: 10.1016/S0038-0717(02)00127-X. DOI
Kern J, Giani L, Teixeira W, Lanza G, Glaser B. What can we learn from ancient fertile anthropic soil (Amazonian Dark Earths, shell mounds, Plaggen soil) for soil carbon sequestration? CATENA. 2019;172:104–112. doi: 10.1016/j.catena.2018.08.008. DOI
Zhang Z, Kaye JP, Bradley BA, Amsili JP, Suseela V. Cover crop functional types differentially alter the content and composition of soil organic carbon in particulate and mineral-associated fractions. Glob. Chang. Biol. 2022;28:5831–5848. doi: 10.1111/gcb.16296. PubMed DOI PMC
Moinet GYK, Hijbeek R, van Vuuren DP, Giller KE. Carbon for soils, not soils for carbon. Glob. Chang. Biol. 2023;29:2384–2398. doi: 10.1111/gcb.16570. PubMed DOI
Ha KV, Marschner P, Bünemann EK. Dynamics of C, N, P and microbial community composition in particulate soil organic matter during residue decomposition. Plant Soil. 2008;303:253–264. doi: 10.1007/s11104-007-9504-1. DOI
Lehmann J, Bossio DA, Kögel-Knabner I, Rillig MC. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020;1:544–553. doi: 10.1038/s43017-020-0080-8. PubMed DOI PMC
Eisenhauer N. Plant diversity effects on soil microorganisms: spatial and temporal heterogeneity of plant inputs increase soil biodiversity. Pedobiologia (Jena.). 2016;59:175–177. doi: 10.1016/j.pedobi.2016.04.004. DOI
Jilling A, et al. Rapid and distinct responses of particulate and mineral-associated organic nitrogen to conservation tillage and cover crops. Geoderma. 2020;359:114001. doi: 10.1016/j.geoderma.2019.114001. DOI
Commission, E. et al. Setting up and implementing result-based carbon farming mechanisms in the EU: technical guidance handbook. (Publications Office of the European Union, 2021). 10.2834/056153.
Leifeld J. Carbon farming: Climate change mitigation via non-permanent carbon sinks. J. Environ. Manag. 2023;339:117893. doi: 10.1016/j.jenvman.2023.117893. PubMed DOI
Oldfield EE, et al. Crediting agricultural soil carbon sequestration. Sci. (80-.). 2022;375:1222–1225. doi: 10.1126/science.abl7991. PubMed DOI
Pierson D, et al. Optimizing process-based models to predict current and future soil organic carbon stocks at high-resolution. Sci. Rep. 2022;12:10824. doi: 10.1038/s41598-022-14224-8. PubMed DOI PMC
Abramoff RZ, et al. Improved global-scale predictions of soil carbon stocks with millennial version 2. Soil Biol. Biochem. 2022;164:108466. doi: 10.1016/j.soilbio.2021.108466. DOI
Abramoff R, et al. The Millennial model: in search of measurable pools and transformations for modeling soil carbon in the new century. Biogeochemistry. 2018;137:51–71. doi: 10.1007/s10533-017-0409-7. DOI
Zhang Y, et al. Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model. Biogeosciences. 2021;18:3147–3171. doi: 10.5194/bg-18-3147-2021. DOI
Just, C. et al. A simple approach to isolate slow and fast cycling organic carbon fractions in central European soils—importance of dispersion method. Front. Soil Sci. 1, 692583 (2021).