Global stocks and capacity of mineral-associated soil organic carbon
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
35778395
PubMed Central
PMC9249731
DOI
10.1038/s41467-022-31540-9
PII: 10.1038/s41467-022-31540-9
Knihovny.cz E-zdroje
- MeSH
- minerály MeSH
- půda * MeSH
- sekvestrace uhlíku MeSH
- uhlík * MeSH
- zemědělství MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- minerály MeSH
- půda * MeSH
- uhlík * MeSH
Soil is the largest terrestrial reservoir of organic carbon and is central for climate change mitigation and carbon-climate feedbacks. Chemical and physical associations of soil carbon with minerals play a critical role in carbon storage, but the amount and global capacity for storage in this form remain unquantified. Here, we produce spatially-resolved global estimates of mineral-associated organic carbon stocks and carbon-storage capacity by analyzing 1144 globally-distributed soil profiles. We show that current stocks total 899 Pg C to a depth of 1 m in non-permafrost mineral soils. Although this constitutes 66% and 70% of soil carbon in surface and deeper layers, respectively, it is only 42% and 21% of the mineralogical capacity. Regions under agricultural management and deeper soil layers show the largest undersaturation of mineral-associated carbon. Critically, the degree of undersaturation indicates sequestration efficiency over years to decades. We show that, across 103 carbon-accrual measurements spanning management interventions globally, soils furthest from their mineralogical capacity are more effective at accruing carbon; sequestration rates average 3-times higher in soils at one tenth of their capacity compared to soils at one half of their capacity. Our findings provide insights into the world's soils, their capacity to store carbon, and priority regions and actions for soil carbon management.
Agricultural Research Service U S Department of Agriculture Temple TX 76502 USA
Cambridge Conservation Institute University of Cambridge Cambridge CB2 3EA UK
Climate and Ecosystem Sciences Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
Department of Biology University of Antwerp Antwerp 2000 Belgium
Department of Earth System Science Stanford University Stanford CA 94305 USA
Department of Plant Sciences University of Cambridge Cambridge CB2 3EA UK
Deptartment of Physical Geography and Ecosystem Science Lund University Lund SE 22100 Sweden
Energy and Resources Group University of California Berkeley Berkeley CA 94720 USA
Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37830 USA
Granular Inc San Francisco CA 94103 USA
Institute for Environmental Studies Charles University Prague 128 01 Czech Republic
Laboratoire des Sciences du Climat et de l'Environnement Gif sur Yvette F 91191 France
Physical and Life Sciences Directorate Lawrence Livermore National Laboratory Livermore CA 94551 USA
Precourt Institute for Energy Stanford University Stanford CA 94305 USA
U S Geological Survey Menlo Park CA 94035 USA
Woods Institute for the Environment Stanford University Stanford CA 94305 USA
Zobrazit více v PubMed
Tiessen H, Cuevas E, Chacon P. The role of soil organic matter in sustaining soil fertility. Nature. 1994;371:783–785. doi: 10.1038/371783a0. DOI
Jobbágy EG, Jackson RB. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000;10:423–436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2. DOI
Todd-Brown KEO, et al. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences. 2013;10:1717–1736. doi: 10.5194/bg-10-1717-2013. DOI
Hengl, T. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE12, e0169748 (2017). PubMed PMC
Sanderman J, Hengl T, Fiske GJ. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA. 2018;115:1–6. doi: 10.1073/iti0118115. PubMed DOI PMC
Houghton RA, et al. Carbon emissions from land use and land-cover change. Biogeosciences. 2012;9:5125–5142. doi: 10.5194/bg-9-5125-2012. DOI
Gasser T, et al. Historical CO 2emissions from land use and land cover change and their uncertainty. Biogeosciences. 2020;17:4075–4101. doi: 10.5194/bg-17-4075-2020. DOI
Chabbi A, et al. Aligning agriculture and climate policy. Nat. Clim. Chang. 2017;7:307–309. doi: 10.1038/nclimate3286. DOI
Rumpel C, et al. Put more carbon in soils to meet paris climate pledges. Nature. 2018;564:32–34. doi: 10.1038/d41586-018-07587-4. PubMed DOI
Kögel-Knabner I, et al. Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. J. Plant Nutr. Soil Sci. 2008;171:61–82. doi: 10.1002/jpln.200700048. DOI
Cotrufo MF, Ranalli MG, Haddix ML, Six J, Lugato E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 2019;12:989–994. doi: 10.1038/s41561-019-0484-6. DOI
Hemingway JD, et al. Mineral protection regulates long-term global preservation of natural organic carbon. Nature. 2019;570:228–231. doi: 10.1038/s41586-019-1280-6. PubMed DOI
Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Chang. Biol. 2013;19:988–995. doi: 10.1111/gcb.12113. PubMed DOI
Kleber M, et al. Mineral-organic associations: formation, properties, and relevance in soil environments. Adv. Agron. 2015;130:1–140. doi: 10.1016/bs.agron.2014.10.005. DOI
Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM. Mineral control of soil organic carbon storage and turnover. Nature. 1997;3603:3601–3603.
Lavallee JM, Soong JL, Cotrufo MF. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Chang. Biol. 2020;26:261–273. doi: 10.1111/gcb.14859. PubMed DOI
Wieder WR, Sulman BN, Hartman MD, Koven CD, Bradford MA. Arctic soil governs whether climate change drives global losses or gains in soil carbon. Geophys. Res. Lett. 2019;46:14486–14495. doi: 10.1029/2019GL085543. DOI
Wieder WR, Allison SD, Davidson EA, Georgiou K, Hararuk O. Explicitly representing soil microbial processes in Earth system models. Glob. Biogeochem. Cycles. 2015;29:1782–1800. doi: 10.1002/2015GB005188. DOI
Kleber M, Sollins P, Sutton R. A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry. 2007;85:9–24. doi: 10.1007/s10533-007-9103-5. DOI
Sulman BN, et al. Multiple models and experiments underscore large uncertainty in soil carbon dynamics. Biogeochemistry. 2018;141:109–123. doi: 10.1007/s10533-018-0509-z. DOI
Woolf D, Lehmann J. Microbial models with minimal mineral protection can explain long-term soil organic carbon persistence. Sci. Rep. 2019;9:1–8. doi: 10.1038/s41598-019-43026-8. PubMed DOI PMC
Kaiser K, Guggenberger G. Mineral surfaces and soil organic matter. Eur. J. Soil Sci. 2003;54:219–236. doi: 10.1046/j.1365-2389.2003.00544.x. DOI
Six J, Conant RT, Paul EA, Paustian K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil. 2002;241:155–176. doi: 10.1023/A:1016125726789. DOI
Hassink J. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil. 1997;191:77–87. doi: 10.1023/A:1004213929699. DOI
Doetterl S, et al. Soil carbon storage controlled by interactions between geochemistry and climate. Nat. Geosci. 2015;8:780–783. doi: 10.1038/ngeo2516. DOI
Rasmussen C, et al. Beyond clay: towards an improved set of variables for predicting soil organic matter content. Biogeochemistry. 2018;137:297–306. doi: 10.1007/s10533-018-0424-3. DOI
Feng W, Plante AF, Aufdenkampe AK, Six J. Soil organic matter stability in organo-mineral complexes as a function of increasing C loading. Soil Biol. Biochem. 2014;69:398–0405. doi: 10.1016/j.soilbio.2013.11.024. DOI
Feng W, Plante AF, Six J. Improving estimates of maximal organic carbon stabilization by fine soil particles. Biogeochemistry. 2013;112:81–93. doi: 10.1007/s10533-011-9679-7. DOI
Singh, M. et al. Stabilization of soil organic carbon as influenced by clay mineralogy. Adv. Agronomy148, 33–84 (2018).
Kleber, M. et al. Dynamic interactions at the mineral–organic matter interface. Nat. Rev. Earth Environ. 2, 402–421 (2021).
Ito A, Wagai R. Global distribution of clay-size minerals on land surface for biogeochemical and climatological studies. Sci. Data. 2017;4:1–11. doi: 10.1038/sdata.2017.103. PubMed DOI PMC
Beare MH, et al. Estimating the organic carbon stabilisation capacity and saturation deficit of soils: a New Zealand case study. Biogeochemistry. 2014;120:71–87. doi: 10.1007/s10533-014-9982-1. DOI
McNally SR, et al. Soil carbon sequestration potential of permanent pasture and continuous cropping soils in New Zealand. Glob. Chang. Biol. 2017;23:4544–4555. doi: 10.1111/gcb.13720. PubMed DOI
Chen S, et al. Fine resolution map of top- and subsoil carbon sequestration potential in France. Sci. Total Environ. 2018;630:389–400. doi: 10.1016/j.scitotenv.2018.02.209. PubMed DOI
Angers DA, Arrouays D, Saby NPA, Walter C. Estimating and mapping the carbon saturation deficit of French agricultural topsoils. Soil Use Manag. 2011;27:448–452. doi: 10.1111/j.1475-2743.2011.00366.x. DOI
Wiesmeier M, et al. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation. Glob. Chang. Biol. 2014;20:653–665. doi: 10.1111/gcb.12384. PubMed DOI
Wiesmeier M, et al. Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China. Glob. Chang. Biol. 2015;21:3836–3845. doi: 10.1111/gcb.12957. PubMed DOI
Stewart CE, Paustian K, Conant RT, Plante AF, Six J. Soil carbon saturation: Implications for measurable carbon pool dynamics in long-term incubations. Soil Biol. Biochem. 2009;41:357–366. doi: 10.1016/j.soilbio.2008.11.011. DOI
West TO, Six J. Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity. Clim. Change. 2007;80:25–41. doi: 10.1007/s10584-006-9173-8. DOI
Balesdent J, et al. Atmosphere–soil carbon transfer as a function of soil depth. Nature. 2018;559:599–602. doi: 10.1038/s41586-018-0328-3. PubMed DOI
Lorenz K, Lal R. The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Adv. Agron. 2005;88:35–66. doi: 10.1016/S0065-2113(05)88002-2. DOI
Jackson RB, et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 2017;48:419–445. doi: 10.1146/annurev-ecolsys-112414-054234. DOI
Sokol NW, Bradford MA. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat. Geosci. 2019;12:46–53. doi: 10.1038/s41561-018-0258-6. DOI
Villarino SH, Pinto P, Jackson RB, Piñeiro G. Plant rhizodeposition: a key factor for soil organic matter formation in stable fractions. Sci. Adv. 2021;7:1–14. doi: 10.1126/sciadv.abd3176. PubMed DOI PMC
Jackson RB, et al. A global analysis of root distributions for terrestrial biomes. Oecologia. 1996;108:389–411. doi: 10.1007/BF00333714. PubMed DOI
Balesdent J, et al. Renouvellement du carbone profond des sols cultivés: une estimation par compilation de données isotopiques. Biotechnol. Agron. Soc. Environ. 2017;21:1–10.
Kramer MG, Chadwick OA. Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale. Nat. Clim. Chang. 2018;8:1104–1108. doi: 10.1038/s41558-018-0341-4. DOI
Mayer LM, Xing B. Organic Matter-Surface Area Relationships in Acid Soils. Soil Sci. Soc. Am. J. 2001;65:250–258. doi: 10.2136/sssaj2001.651250x. DOI
Keil, R. G. & Mayer, L. M. Mineral Matrices and Organic Matter. Treatise on Geochemistry. 2nd edn. (Elsevier Ltd., 2013).
Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 2006;440:165–173. doi: 10.1038/nature04514. PubMed DOI
Kleber M, et al. Old and stable soil organic matter is not necessarily chemically recalcitrant: Implications for modeling concepts and temperature sensitivity. Glob. Chang. Biol. 2011;17:1097–1107. doi: 10.1111/j.1365-2486.2010.02278.x. DOI
Rodrigues CC, Moraes DJ. Control of the emission of ammonia through adsorption in a fixed bed of activated carbon. Adsorpt. Sci. Technol. 2002;20:1013–1022. doi: 10.1260/026361702321705285. DOI
Chenu C, et al. Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil Tillage Res. 2019;188:41–52. doi: 10.1016/j.still.2018.04.011. DOI
Stuble, K. L. et al. Long-term impacts of warming drive decomposition and accelerate the turnover of labile, not recalcitrant, carbon. Ecosphere10, e02715 (2019).
Alcántara V, Don A, Well R, Nieder R. Deep ploughing increases agricultural soil organic matter stocks. Glob. Chang. Biol. 2016;22:2939–2956. doi: 10.1111/gcb.13289. PubMed DOI
Schiedung M, Tregurtha CS, Beare MH, Thomas SM, Don A. Deep soil flipping increases carbon stocks of New Zealand grasslands. Glob. Chang. Biol. 2019;25:2296–2309. doi: 10.1111/gcb.14588. PubMed DOI PMC
Mayes MA, Heal KR, Brandt CC, Phillips JR, Jardine PM. Relation between Soil Order and Sorption of Dissolved Organic Carbon in Temperate Subsoils. Soil Sci. Soc. Am. J. 2012;76:1027–1037. doi: 10.2136/sssaj2011.0340. DOI
Abramoff, R. Z. et al. How much carbon can be added to soil by sorption? Biogeochem. Lett. under Rev. 10.1007/s10533-021-00759-x (2021).
Kallenbach CM, Frey SD, Grandy AS. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 2016;7:1–10. doi: 10.1038/ncomms13630. PubMed DOI PMC
Minasny B, et al. Soil carbon 4 per mille. Geoderma. 2017;292:59–86. doi: 10.1016/j.geoderma.2017.01.002. DOI
Amelung W, et al. Towards a global-scale soil climate mitigation strategy. Nat. Commun. 2020;11:1–10. doi: 10.1038/s41467-020-18887-7. PubMed DOI PMC
Bossio DA, et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 2020;3:391–398. doi: 10.1038/s41893-020-0491-z. DOI
Nolan CJ, Field CB, Mach KJ. Constraints and enablers for increasing carbon storage in the terrestrial biosphere. Nat. Rev. Earth Environ. 2021;2:436–446. doi: 10.1038/s43017-021-00166-8. DOI
Lal R. Soil carbon sequestration impacts on global climate change and food security. Science. 2004;304:1623–1627. doi: 10.1126/science.1097396. PubMed DOI
Lehmann J, Bossio DA, Kögel-Knabner I, Rillig MC. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020;1:544–553. doi: 10.1038/s43017-020-0080-8. PubMed DOI PMC
Fuss, S. et al. Negative emissions - Part 2: Costs, potentials and side effects. Environ. Res. Lett. 13, 063002 (2018).
Lal R. Digging deeper: a holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Glob. Chang. Biol. 2018;24:3285–3301. doi: 10.1111/gcb.14054. PubMed DOI
Smith P. Soil carbon sequestration and biochar as negative emission technologies. Glob. Chang. Biol. 2016;22:1315–1324. doi: 10.1111/gcb.13178. PubMed DOI
Spohn M. Increasing the organic carbon stocks in mineral soils sequesters large amounts of phosphorus. Glob. Chang. Biol. 2020;26:4169–4177. doi: 10.1111/gcb.15154. PubMed DOI
Davies, C. A., Robertson, A. D. & McNamara, N. P. The importance of nitrogen for net carbon sequestration when considering natural climate solutions. Glob. Chang. Biol. 218–219. 10.1111/gcb.15381 (2020). PubMed
Amundson R, Biardeau L. Soil carbon sequestration is an elusive climate mitigation tool. Proc. Natl Acad. Sci. USA. 2018;115:11652–11656. doi: 10.1073/pnas.1815901115. PubMed DOI PMC
Schlesinger WH, Amundson R. Managing for soil carbon sequestration: let’s get realistic. Glob. Chang. Biol. 2019;25:386–389. doi: 10.1111/gcb.14478. PubMed DOI
Six J. Spare our restored soil. Nature. 2013;498:180–181. doi: 10.1038/498180a. PubMed DOI
Searchinger TD, Wirsenius S, Beringer T, Dumas P. Assessing the efficiency of changes in land use for mitigating climate change. Nature. 2018;564:249–253. doi: 10.1038/s41586-018-0757-z. PubMed DOI
Bell SM, Terrer C, Barriocanal C, Jackson RB, Rosell-Melé A. Soil organic carbon accumulation rates on Mediterranean abandoned agricultural lands. Sci. Total Environ. 2021;759:143535. doi: 10.1016/j.scitotenv.2020.143535. PubMed DOI
Bell S, Barriocanal C, Terrer C, Rosell-Melé A. Management opportunities for soil carbon sequestration following agricultural land abandonment. Environ. Sci. Policy. 2020;108:104–111. doi: 10.1016/j.envsci.2020.03.018. DOI
Potter KN, Torbert HA, Johnson HB, Tischler CR. Carbon storage after long-term grass establishment on degraded soils. Soil Sci. 1999;164:718–725. doi: 10.1097/00010694-199910000-00002. DOI
Burke IC, Lauenroth WK, Coffin DP. Soil organic matter recovery in semiarid grasslands: implications for the conservation reserve program. Ecol. Appl. 1995;5:793–801. doi: 10.2307/1941987. DOI
Cramer VA, Hobbs RJ, Standish RJ. What’s new about old fields? Land abandonment and ecosystem assembly. Trends Ecol. Evol. 2008;23:104–112. doi: 10.1016/j.tree.2007.10.005. PubMed DOI
Schuman GE, Janzen HH, Herrick JE. Soil carbon dynamics and potential carbon sequestration by rangelands. Environ. Pollut. 2002;116:391–396. doi: 10.1016/S0269-7491(01)00215-9. PubMed DOI
Ryals R, Kaiser M, Torn MS, Berhe AA, Silver WL. Impacts of organic matter amendments on carbon and nitrogen dynamics in grassland soils. Soil Biol. Biochem. 2014;68:52–61. doi: 10.1016/j.soilbio.2013.09.011. DOI
Fynn A, et al. Soil carbon sequestration in United States rangelands. Integr. Crop Manag. 2010;11:57–104.
Sanderman J, et al. Carbon sequestration under subtropical perennial pastures II: Carbon dynamics. Soil Res. 2013;51:771–780. doi: 10.1071/SR12351. DOI
Bardgett RD, et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2021;2:720–735. doi: 10.1038/s43017-021-00207-2. DOI
Foley JA, et al. Solutions for a cultivated planet. Nature. 2011;478:337–342. doi: 10.1038/nature10452. PubMed DOI
Campbell JE, Lobell DB, Genova RC, Field CB. The global potential of bioenergy on abandoned agriculture lands. Environ. Sci. Technol. 2008;42:5791–5794. doi: 10.1021/es800052w. PubMed DOI
Conant RT, Cerri CEP, Osborne BB, Paustian K. Grassland management impacts on soil carbon stocks: a new synthesis. Ecol. Appl. 2017;27:662–668. doi: 10.1002/eap.1473. PubMed DOI
Schapel A, Marschner P. & Churchman, J. Clay amount and distribution influence organic carbon content in sand with subsoil clay addition. Soil Tillage Res. 2018;184:253–260. doi: 10.1016/j.still.2018.08.001. DOI
Dalal RC, Mayer RJ. Long-term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. IV. Loss of organic carbon from different density functions. Aust. J. Soil Res. 1986;24:301–309. doi: 10.1071/SR9860301. DOI
Dalal RC, Mayer RJ. Long-term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. III: Distribution and kinetics of soil organic carbon in particle-size fractions. Aust. J. Soil Res. 1986;24:293–300. doi: 10.1071/SR9860293. DOI
Lawrence CR, et al. An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0. Earth Syst. Sci. Data. 2020;12:61–76. doi: 10.5194/essd-12-61-2020. DOI
Lugato E, Lavallee JM, Haddix ML, Panagos P, Cotrufo MF. Different climate sensitivity of particulate and mineral-associated soil organic matter. Nat. Geosci. 2021;14:295–300. doi: 10.1038/s41561-021-00744-x. DOI
Batjes NH, et al. WoSIS: providing standardised soil profile data for the world. Earth Syst. Sci. Data. 2017;9:1–14. doi: 10.5194/essd-9-1-2017. DOI
Hartley IP, Hill TC, Chadburn SE, Hugelius G. Temperature effects on carbon storage are controlled by soil stabilisation capacities. Nat. Commun. 2021;12:1–7. doi: 10.1038/s41467-021-27101-1. PubMed DOI PMC
Heckman, K. & Rasmussen, C. Role of mineralogy and climate in the soil carbon cycle. Clim. Chang. Impacts Soil Process. Ecosyst. Prop. Chapter 4, 93–110. 10.1016/b978-0-444-63865-6.00004-1 (2018).
de Oliveira, J. S. et al. Soil properties governing phosphorus adsorption in soils of Southern Brazil. Geoderma Reg. 22, e00318 (2020).
Churchman GJ. Is the geological concept of clay minerals appropriate for soil science? A literature-based and philosophical analysis. Phys. Chem. Earth. 2010;35:927–940. doi: 10.1016/j.pce.2010.05.009. DOI
Wieder, W. R., Boehnert, J., Bonan, G. B. & Langseth, M. Regridded Harmonized World Soil Database v1.2. Data set. Oak Ridge Natl. Lab. Distrib. Act. Arch. Center, Oak Ridge, Tennessee, USA. 10.3334/ORNLDAAC/1247 (2014).
Ahrens, B. et al. Combination of energy limitation and sorption capacity explains 14 C depth gradients. Soil Biol. Biochem. 148, 107912 (2020).
Ahrens B, Braakhekke MC, Guggenberger G, Schrumpf M, Reichstein M. Contribution of sorption, DOC transport and microbial interactions to the 14C age of a soil organic carbon profile: insights from a calibrated process model. Soil Biol. Biochem. 2015;88:390–402. doi: 10.1016/j.soilbio.2015.06.008. DOI
Mikutta R, et al. Microbial and abiotic controls on mineral-associated organic matter in soil profiles along an ecosystem gradient. Sci. Rep. 2019;9:1–9. doi: 10.1038/s41598-019-46501-4. PubMed DOI PMC
Castellano MJ, Mueller KE, Olk DC, Sawyer JE, Six J. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Glob. Chang. Biol. 2015;21:3200–3209. doi: 10.1111/gcb.12982. PubMed DOI
Breiman L. Random forests. Mach. Learn. 2001;45:5–32. doi: 10.1023/A:1010933404324. DOI
Liaw A, Wiener M. Classification and Regression by randomForest. R. N. 2002;2(3):18–22.
Kirchner JW, et al. Streamflow response to forest management. Nature. 2020;578:E12–E15. doi: 10.1038/s41586-020-1940-6. PubMed DOI
Friedman JH. Greedy function approximation: a gradient boosting machine. Ann. Stat. 2001;29:1189–1232. doi: 10.1214/aos/1013203451. DOI
Hengl, T. et al. SoilGrids1km - Global soil information based on automated mapping. PLoS ONE9, e114788 (2014). PubMed PMC
Ploton P, et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 2020;11:1–11. doi: 10.1038/s41467-020-18321-y. PubMed DOI PMC
Roberts DR, et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography. 2017;40:913–929. doi: 10.1111/ecog.02881. DOI
Harris I, Jones PD, Osborn TJ, Lister DH. Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset. Int. J. Climatol. 2014;34:623–642. doi: 10.1002/joc.3711. DOI
Schneider, U. et al. GPCC Full Data Reanalysis Version 6.0 at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data. 10.5676/DWD_GPCC/FD_M_V6_050 (2011).
Shi Z, et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 2020;13:555–559. doi: 10.1038/s41561-020-0596-z. DOI
Friedl MA, et al. MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010;114:168–182. doi: 10.1016/j.rse.2009.08.016. DOI
Hugelius G, et al. The northern circumpolar soil carbon database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth Syst. Sci. Data. 2013;5:3–13. doi: 10.5194/essd-5-3-2013. DOI
Koven CD, Hugelius G, Lawrence DM, Wieder WR. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Chang. 2017;7:817–822. doi: 10.1038/nclimate3421. DOI
Tifafi M, Guenet B, Hatté C. Large Differences in Global and Regional Total Soil Carbon Stock Estimates Based on SoilGrids, HWSD, and NCSCD: Intercomparison and Evaluation Based on Field Data From USA, England, Wales, and France. Glob. Biogeochem. Cycles. 2018;32:42–56. doi: 10.1002/2017GB005678. DOI
Post WM, Kwon KC. Soil carbon sequestration and land-use change: Processes and potential. Glob. Chang. Biol. 2000;6:317–327. doi: 10.1046/j.1365-2486.2000.00308.x. DOI
Vesterdal L, Clarke N, Sigurdsson BD, Gundersen P. Do tree species influence soil carbon stocks in temperate and boreal forests? . Ecol. Manag. 2013;309:4–18. doi: 10.1016/j.foreco.2013.01.017. DOI
Whittaker, R. Communities and Ecosystems. (MacMillan, New York, 1975).