Beyond the whole-mount phenotype: high-resolution imaging in fluorescence-based applications on zebrafish

. 2019 May 24 ; 8 (5) : . [epub] 20190524

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31126903
Odkazy

PubMed 31126903
PubMed Central PMC6550072
DOI 10.1242/bio.042374
PII: 8/5/bio042374
Knihovny.cz E-zdroje

Zebrafish is now widely used in biomedical research as a model for human diseases, but the relevance of the model depends on a rigorous analysis of the phenotypes obtained. Many zebrafish disease models, experimental techniques and manipulations take advantage of fluorescent reporter molecules. However, phenotypic analysis often does not go beyond establishing overall distribution patterns of the fluorophore in whole-mount embryos or using vibratome or paraffin sections with poor preservation of tissue architecture and limited resolution. Obtaining high-resolution data of fluorescent signals at the cellular level from internal structures mostly depends on the availability of expensive imaging technology. Here, we propose a new and easily applicable protocol for embedding and sectioning of zebrafish embryos using in-house prepared glycol methacrylate (GMA) plastic that is suited for preservation of fluorescent signals (including photoactivatable fluorophores) without the need for antibodies. Four main approaches are described, all involving imaging fluorescent signals on semithin (3 µm or less) sections. These include sectioning transgenic animals, whole-mount immunostained embryos, cell tracking, as well as on-section enzyme histochemistry.

Zobrazit více v PubMed

Bell K., Mitchell S., Paultre D., Posch M. and Oparka K. (2013). Correlative imaging of fluorescent proteins in resin embedded plant material. Plant Physiol. 161, 1595-1603. 10.1104/pp.112.212365 PubMed DOI PMC

Bruneel B. and Witten P. E. (2015). Power and challenges of using zebrafish as a model for skeletal tissue imaging. Conn. Tiss. Res. 56, 161-173. 10.3109/03008207.2015.1013193 PubMed DOI

Colognato H. and Yurchenco P. D. (2000). Form and function: the laminin family of heterotrimers. Dev. Dyn. 218, 213-234. 10.1002/(SICI)1097-0177(200006)218:2<213::AID-DVDY1>3.0.CO;2-R PubMed DOI

Cox B. D., De Simone A., Tornini V. A., Singh S. P., Di Talia S. and Poss K. D. (2018). In toto imaging of dynamic osteoblast behaviors in regenerating skeletal bone. Curr. Biol. 28, 3937-3947.e4. 10.1016/j.cub.2018.10.052 PubMed DOI PMC

Crump J. G., Maves L., Lawson N. D., Weinstein B. M. and Kimmel C. B. (2004). An essential role for Fgfs in endodermal pouch formation influences later craniofacial skeletal patterning. Development 131, 5703-5716. 10.1242/dev.01444 PubMed DOI

Eisenhoffer G. T., Slattum G., Ruiz O. E., Otsuna H., Bryan C. D., Lopez J., Wagner D. S., Bonkowsky J. L., Chien C.-B., Dorsky R. I. et al. (2017). A toolbox to study epidermal cell types in zebrafish. J. Cell Sci. 130, 269-277. 10.1242/jcs.184341 PubMed DOI PMC

Ekblom P., Lonai O. and Talts J. F. (2003). Expression and biological role of laminin-1. Matrix Biol. 22, 35-47. 10.1016/S0945-053X(03)00015-5 PubMed DOI

Fukazawa C., Santiago C., Park K. M., Deery W. J., de la Torre Canny S. G., Holterhoff C. K. and Wagner D. S. (2010). poky/chuk/ikkl is required for differentiation of the zebrafish (Danio rerio). Int. J. Dev. Biol. 48, 217-231. 10.1016/j.ydbio.2010.07.037 PubMed DOI PMC

Gistelinck C., Kwon R. Y., Malfait F., Symoens S., Harris M. P., Henke K., Hawkins M. B., Fisher S., Sips P., Guillemyn B. et al. (2018). Zebrafish type I collagen mutants faithfully recapitulate human type I collagenopathies. Proc. Natl. Acad. Sci. USA 115, E8037-E8046. 10.1073/pnas.1722200115 PubMed DOI PMC

Gong Z., Ju B., Wang X., He J., Wan H., Sudha P. M. and Yan T. (2002). Green fluorescent protein expression in germ-line transmitted transgenic zebrafish under a stratified epithelial promoter from Keratin8. Dev. Dyn. 223, 204-215. 10.1002/dvdy.10051 PubMed DOI

Griffith C. M. and Hay E. D. (1992). Epithelial-mesenchymal transformation during palatal fusion: carboxyfluorescein traces cells at light and electron microscopic levels. Development 116, 1087-1099. PubMed

Hallmann R., Horn N., Selg M., Wendler O., Pausch F. and Sorokin L. M. (2005). Expression and function of laminins in the embryonic and mature vasculature. Physiol. Rev. 85, 979-1000. 10.1152/physrev.00014.2004 PubMed DOI

Hand N. M. and Blythe D. (2016). Plastic embedding of bone marrow trephine biopsies for routine immunohistochemistry and diagnosis: our developments, updates and experiences over 20 years. J. Histotechnol. 39, 135-146. 10.1080/01478885.2016.1207912 DOI

Hogan B. M. and Schulte-Merker S. (2017). How to plumb a Pisces: understanding vascular development and disease using zebrafish embryos. Dev. Cell 42, 567-583. 10.1016/j.devcel.2017.08.015 PubMed DOI

Kague E., Witten P. E., Soenens M., Campos C. L., Lubiana T., Fisher S., Hammond C., Robson-Brown K., Passos-Bueno M. R. and Huysseune A. (2018). Zebrafish sp7 mutants show tooth cycling independent of attachment, eruption and poor differentiation of teeth. Dev. Biol. 435, 176-184. 10.1016/j.ydbio.2018.01.021 PubMed DOI

Kimmel C. B., Warga R. M. and Schilling T. F. (1990). Origin and organization of the zebrafish fate map. Development 108, 581-594. PubMed

Kimmel C. B., Ballard W. W., Kimmel S. R., Ullmann B. and Schilling T. F. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253-310. 10.1002/aja.1002030302 PubMed DOI

Laizé V., Gavaia P. J. and Cancela M. L. (2014). Fish: a suitable system to model human bone disorders and discover drugs with osteogenic or osteotoxic activities. Drug Discov. Today Dis. Model. 13, 29-37. 10.1016/j.ddmod.2014.08.001 DOI

Le Guellec D., Morvan-Dubois G. and Sire J.-Y. (2004). Skin development in bony fish with particular emphasis on collagen deposition in the dermis of the zebrafish (Danio rerio). Int. J. Dev. Biol. 48, 217-231. 10.1387/ijdb.15272388 PubMed DOI

Liu T.-L., Upadhyayula S., Milkie D. E., Singh V., Wang K., Swinburne I. A., Mosaliganti K. R., Collins Z. M., Hiscock T. W., Shea J. et al. (2018). Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms. Science 360, eaaq1392 10.1126/science.aaq1392 PubMed DOI PMC

Loizides M., Georgiou A. N., Somarakis S., Witten P. E. and Koumoundouros G. (2014). A new type of lordosis and vertebral body compression in Gilthead sea bream, Sparus aurata L.: aetiology, anatomy and consequences for survival . J. Fish Dis. 37, 949-957. 10.1111/jfd.12189 PubMed DOI

Lovely C. B., Swartz M. E., McCarthy N., Norrie J. L. and Eberhart J. K. (2016). Bmp signaling mediates endoderm pouch morphogenesis by regulating Fgf signaling in zebrafish. Development 143, 2000-2011. 10.1242/dev.129379 PubMed DOI PMC

Luby-Phelps K., Ning G., Fogerty J. and Besharse J. C. (2003). Visualization of identified GFP-expressing cells by light and electron microscopy. J. Histochem. Cytochem. 51, 271-274. 10.1177/002215540305100301 PubMed DOI

Mizoguchi T., Verkade H., Heath J. K., Kuroiwa A. and Kikuchi Y. (2008). Sdf1/Cxcr4 signaling controls the dorsal migration of endodermal cells during zebrafish gastrulation. Development 135, 2521-2529. 10.1242/dev.020107 PubMed DOI

Newman G. R. and Hobot J. A. (2001). Resin Microscopy and on-Section Immunocytochemistry . 2nd edn Berlin, Heidelberg: Springer Verlag.

Nixon S. J., Webb R. I., Floetenmeyer M., Schieber N., Lo H. P. and Parton R. G. (2009). A single method for cryofixation and correlative light, electron microscopy and tomography of zebrafish embryos. Traffic 10, 131-136. 10.1111/j.1600-0854.2008.00859.x PubMed DOI

O'Brien G. S., Rieger S., Wang F., Smolen G. A., Gonzalez R. E., Buchan J. and Sagasti A. (2011). Coordinate development of skin cells and cutaneous sensory axon in zebrafish. J. Comp. Neurol. 520, 816-831. 10.1002/cne.22791 PubMed DOI PMC

Schultz L. E., Haltom J. A., Almeida M. P., Wierson W. A., Solin S. L., Weiss T. J., Helmer J. A., Sandquist E. J., Shive H. R. and McGrail M. (2018). Epigenetic regulators Rbbp4 and Hdac1 are overexpressed in a zebrafish model of RB1 embryonal brain tumor, and are required for neural progenitor survival and proliferation. Dis. Model. Mech. 11, dmm034124 10.1242/dmm.034124 PubMed DOI PMC

Shone V. and Graham A. (2014). Endodermal/ectodermal interfaces during pharyngeal segmentation in vertebrates. J. Anat. 225, 479-491. 10.1111/joa.12234 PubMed DOI PMC

Sullivan-Brown J., Bisher M. E. and Burdine R. D. (2011). Embedding, serial sectioning and staining of zebrafish embryos using JB-4 resin. Nat. Protocols 6, 46-55. 10.1038/nprot.2010.165 PubMed DOI PMC

Verduzco D. and Amatruda J. F. (2013). Analysis of cell proliferation, senescence and cell death in zebrafish embryos. Methods Cell Biol. 101 10.1016/B978-0-12-387036-0.00002-5 PubMed DOI PMC

Verstraeten B., Sanders E. and Huysseune A. (2012). Whole mount immunohistochemistry and in situ hybridization of larval and adult zebrafish dental tissues. In Odontogenesis. Methods and Protocols, Vol. 887 (ed. Kioussi C.), pp. 179-191. Meth. Molec. Biol USA: Humana Press. PubMed

Watanabe S., Punge A., Hollopeter G., Willig K. I., Hobson R. J., Davis M. W., Hell S. W. and Jorgensen E. M. (2011). Protein localization in electron micrographs using fluorescence nanoscopy. Nat. Methods 8, 80-84. 10.1038/nmeth.1537 PubMed DOI PMC

Watson A. M., Rose A. H., Gibson G. A., Gardner C. L., Sun C., Reed D. S., Lam L. K. M., St. Croix C. M., Strick P. L. et al. (2017). Ribbon scanning confocal for high-speed high-resolution volume imaging of brain. PLoS ONE 12, e0180486 10.1371/journal.pone.0180486 PubMed DOI PMC

Wehner D. and Weidinger G. (2015). Signaling networks organizing regenerative growth of the zebrafish fin. Trends Genet. 31, 336-343. 10.1016/j.tig.2015.03.012 PubMed DOI

Westerfield M. (1993). The Zebrafish Book, a Guide for the Laboratory use of Zebrafish (Danio rerio). Eugene, USA: University of Oregon press.

Witten P. E. (1997). Enzyme histochemical characteristics of osteoblasts and mononucleated osteoclasts in a teleost fish with acellular bone (Oreochromis niloticus, Cichlidae). Cell Tiss. Res. 287, 591-599. 10.1007/s004410050782 PubMed DOI

Witten P. E. and Huysseune A. (2009). A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function. Biol. Rev. 84, 315-346. 10.1111/j.1469-185X.2009.00077.x PubMed DOI

Witten P. E., Holliday L. S., Delling G. and Hall B. K. (1999). Immunohistochemical identification of a vacuolar proton pump (V-ATPase) in bone-resorbing cells of an advanced teleost species (Oreochromis niloticus, Teleostei, Cichlidae). J. Fish Biol. 55, 1258-1272. 10.1111/j.1095-8649.1999.tb02074.x DOI

Witten P. E., Villwock W., Peters N. and Hall B. K. (2000). Bone resorption and bone remodelling in juvenile carp, Cyprinus carpio L. J. Appl. Ichthyol. 16, 254-261. 10.1046/j.1439-0426.2000.00233.x DOI

Witten P. E., Hansen A. and Hall B. K. (2001). Features of mono and multinucleated bone resorbing cells of the zebrafish Danio rerio and their contribution to skeletal development, remodeling and growth. J. Morphol. 250, 197-207. 10.1002/jmor.1065.abs PubMed DOI

Witten P. E., Harris M. P., Huysseune A. and Winkler C. (2017). Chapter 13. Fish provide insight into skeletal diseases. Methods Cell Biol. 138, 321-346. 10.1016/bs.mcb.2016.09.001 PubMed DOI

Xiong H., Zhou Z., Zhu M., Lv X., Li A., Li S., Li L., Yang T., Wang S., Yang Z. et al. (2014). Chemical reactivation of quenched fluorescent protein molecules enables resin-embedded fluorescence microimaging. Nat. Comm. 5, 3992 10.1038/ncomms4992 PubMed DOI PMC

Yang Z., Hu B., Zhang Y., Luo Q. and Gong H. (2013). Development of a plastic embedding method for large-volume and fluorescent-protein-expressing tissues. PLoS ONE 8, e60877 10.1371/journal.pone.0060877 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...