gene duplication and loss
Dotaz
Zobrazit nápovědu
Adult-onset neuronal ceroid lipofuscinoses (ANCL, Kufs disease) are rare hereditary neuropsychiatric disorders characterized by intralysosomal accumulation of ceroid in tissues. The ceroid accumulation primarily affects the brain, leading to neuronal loss and progressive neurodegeneration. Although several causative genes have been identified (DNAJC5, CLN6, CTSF, GRN, CLN1, CLN5, ATP13A2), the genetic underpinnings of ANCL in some families remain unknown. Here we report one family with autosomal dominant (AD) Kufs disease caused by a 30 bp in-frame duplication in DNAJC5, encoding the cysteine-string protein alpha (CSPα). This variant leads to a duplication of the central core motif of the cysteine-string domain of CSPα and affects palmitoylation-dependent CSPα sorting in cultured neuronal cells similarly to two previously described CSPα variants, p.(Leu115Arg) and p.(Leu116del). Interestingly, the duplication was not detected initially by standard Sanger sequencing due to a preferential PCR amplification of the shorter wild-type allele and allelic dropout of the mutated DNAJC5 allele. It was also missed by subsequent whole-exome sequencing (WES). Its identification was facilitated by reanalysis of original WES data and modification of the PCR and Sanger sequencing protocols. Independently occurring variants in the genomic sequence of DNAJC5 encoding the cysteine-string domain of CSPα suggest that this region may be more prone to DNA replication errors and that insertions or duplications within this domain should be considered in unsolved ANCL cases.
- MeSH
- buněčné linie MeSH
- dospělí MeSH
- duplikace genu * MeSH
- falešně negativní reakce MeSH
- genetické testování normy MeSH
- lidé středního věku MeSH
- lidé MeSH
- membránové proteiny genetika metabolismus MeSH
- myši MeSH
- neuronální ceroidlipofuscinózy genetika patologie MeSH
- neurony metabolismus MeSH
- posttranslační úpravy proteinů MeSH
- proteiny tepelného šoku HSP40 genetika metabolismus MeSH
- sekvenování celého genomu normy MeSH
- transport proteinů MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Rapid plant genome evolution is crucial to adapt to environmental changes. Chromosomal rearrangements and gene copy number variation (CNV) are two important tools for genome evolution and sources for the creation of new genes. However, their emergence takes many generations. In this study, we show that in Arabidopsis thaliana, a significant loss of ribosomal RNA (rRNA) genes with a past history of a mutation for the chromatin assembly factor 1 (CAF1) complex causes rapid changes in the genome structure. Using long-read sequencing and microscopic approaches, we have identified up to 15 independent large tandem duplications in direct orientation (TDDOs) ranging from 60 kb to 1.44 Mb. Our data suggest that these TDDOs appeared within a few generations, leading to the duplication of hundreds of genes. By subsequently focusing on a line only containing 20% of rRNA gene copies (20rDNA line), we investigated the impact of TDDOs on 3D genome organization, gene expression, and cytosine methylation. We found that duplicated genes often accumulate more transcripts. Among them, several are involved in plant-pathogen response, which could explain why the 20rDNA line is hyper-resistant to both bacterial and nematode infections. Finally, we show that the TDDOs create gene fusions and/or truncations and discuss their potential implications for the evolution of plant genomes.
We report an infant with sickle cell disease phenotype by biochemical analysis whose β-globin gene (HBB) sequencing showed sickle cell mutation (HBBS ) heterozygosity. The proband has a unique head-to-tail duplication of the β-globin gene cluster having wild-type (HBBA ) and HBBS alleles inherited from her father; constituting her HBBS /HBBS -HBBA genotype. Further analyses revealed that proband's duplicated β-globin gene cluster (∼650 kb) encompassing HBBA does not include the immediate upstream locus control region (LCR) or 3' DNase I hypersensitivity (HS) element. The LCR interacts with β-globin gene cluster involving long range DNA interactions mediated by various transcription factors to drive the regulation of globin genes expression. However, a low level of HBBA transcript was clearly detected by digital PCR. In this patient, the observed transcription from the duplicated, distally displaced HBBA cluster demonstrates that the loss of LCR and flanking 3'HS sites do not lead to complete silencing of HBB transcription.
- MeSH
- 3' přiléhající oblast DNA MeSH
- beta-globiny genetika MeSH
- duplicitní geny * MeSH
- genetická transkripce MeSH
- kojenec MeSH
- lidé MeSH
- mutace MeSH
- regulační oblast lokusu (genu) MeSH
- srpkovitá anemie genetika MeSH
- umlčování genů MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
Toll-like receptors (TLRs) are key sensor molecules in vertebrates triggering initial phases of immune responses to pathogens. The avian TLR family typically consists of ten receptors, each adapted to distinct ligands. To understand the complex evolutionary history of each avian TLR, we analyzed all members of the TLR family in the whole genome assemblies and target sequence data of 63 bird species covering all major avian clades. Our results indicate that gene duplication events most probably occurred in TLR1 before synapsids diversified from sauropsids. Unlike mammals, ssRNA-recognizing TLR7 has duplicated independently in several avian taxa, while flagellin-sensing TLR5 has pseudogenized multiple times in bird phylogeny. Our analysis revealed stronger positive, diversifying selection acting in TLR5 and the three-domain TLRs (TLR10 [TLR1A], TLR1 [TLR1B], TLR2A, TLR2B, TLR4) that face the extracellular space and bind complex ligands than in single-domain TLR15 and endosomal TLRs (TLR3, TLR7, TLR21). In total, 84 out of 306 positively selected sites were predicted to harbor substitutions dramatically changing the amino acid physicochemical properties. Furthermore, 105 positively selected sites were located in the known functionally relevant TLR regions. We found evidence for convergent evolution acting between birds and mammals at 54 of these sites. Our comparative study provides a comprehensive insight into the evolution of avian TLR genetic variability. Besides describing the history of avian TLR gene gain and gene loss, we also identified candidate positions in the receptors that have been likely shaped by direct molecular host-pathogen coevolutionary interactions and most probably play key functional roles in birds.
Hsp90s, members of the Heat Shock Protein class, protect the structure and function of proteins and play a significant task in cellular homeostasis and signal transduction. In order to determine the number of hsp90 gene copies and encoded proteins in fungal and animal lineages and through that key duplication events that this family has undergone, we collected and evaluated Hsp90 protein sequences and corresponding Expressed Sequence Tags and analyzed available genomes from various taxa. We provide evidence for duplication events affecting either single species or wider taxonomic groups. With regard to Fungi, duplicated genes have been detected in several lineages. In invertebrates, we demonstrate key duplication events in certain clades of Arthropoda and Mollusca, and a possible gene loss event in a hymenopteran family. Finally, we infer that the duplication event responsible for the two (a and b) isoforms in vertebrates occurred probably shortly after the split of Hyperoartia and Gnathostomata.
- MeSH
- duplicitní geny genetika MeSH
- duplikace genu genetika fyziologie MeSH
- exprimované sekvenční adresy MeSH
- fylogeneze MeSH
- houby genetika metabolismus MeSH
- molekulární evoluce * MeSH
- proteiny tepelného šoku HSP90 klasifikace genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Burkitt's lymphomas (BL) are aggressive rapidly growing tumors typified by a high c-myc expression resulting from t(8;14)(q24;q32), t(2;8)(p12;q24) or t(8;22)(q24;q11) translocations. Alterations of the p53 tumor suppressor are also relatively frequent in BL. Several approaches have been adopted for detection of the p53 aberrations such as immunohistochemical analyses, immunoblotting, DNA sequencing, fluorescence in situ hybridization (FISH), and functional assays. We used these methods to characterize the p53 mutation in tumor cells of a 53-year-old male suffering from Burkitt's lymphoma. By immunohistochemical analyses, we detected high levels of the p53 protein in the tumor tissue. Immunoblotting showed a higher molecular weight of the p53 protein overexpressed in the tumor tissues than that of the standard p53 protein. Similarly, the molecular weight of the PCR product prepared by amplification of the tumor p53 cDNA was higher than that of the standard p53 cDNA. Functional analyses of separated alleles in yeast evidently revealed that the tumor p53 protein was transcriptionally non-functional. The yeast colonies expressing this p53 variant possessed a unique phenotype in that they were red with many white spots on their surface. Sequencing of the tumor cDNA revealed a duplication of the 30 bp region of the p53 gene (g.12155_12184dup30) leading to a repeat of 10 amino acids (Pro-77 to Ala-86) in the p53 protein. Further analyses showed that the mutation was unstable in yeast cells. The FISH analyses did not confer loss of the p53-specific locus 17p13.
- MeSH
- Burkittův lymfom genetika MeSH
- duplikace genu MeSH
- financování organizované MeSH
- geny p53 MeSH
- hybridizace in situ fluorescenční MeSH
- komplementární DNA chemie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mutace MeSH
- nádorový supresorový protein p53 analýza MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- kazuistiky MeSH
Whole-genome duplication (WGD) is usually followed by gene loss and karyotype repatterning. Despite evidence of new adaptive traits associated with WGD, the underpinnings and evolutionary significance of such genome fractionation remain elusive. Here, we use Buckler mustard (Biscutella laevigata) to infer processes that have driven the retention of duplicated genes after recurrent WGDs. In addition to the β- and α-WGD events shared by all Brassicaceae, cytogenetic and transcriptome analyses revealed two younger WGD events that occurred at times of environmental changes in the clade of Buckler mustard (Biscutelleae): a mesopolyploidy event from the late Miocene that was followed by considerable karyotype reshuffling and chromosome number reduction and a neopolyploidy event during the Pleistocene. Although a considerable number of the older duplicates presented signatures of retention under positive selection, the majority of retained duplicates arising from the younger mesopolyploidy WGD event matched predictions of the gene balance hypothesis and showed evidence of strong purifying selection as well as enrichment in gene categories responding to abiotic stressors. Retention of large stretches of chromosomes for both genomic copies supported the hypothesis that cycles of WGD and biased fractionation shaped the genome of this stress-tolerant polypolyloid, promoting the adaptive recruitment of stress-responding genes in the face of environmental challenges.
- MeSH
- duplikace genu * MeSH
- fluorescence MeSH
- fyziologický stres genetika MeSH
- genová ontologie MeSH
- hořčice rodu Brassica genetika MeSH
- karyotyp * MeSH
- modely genetické MeSH
- rostlinné geny * MeSH
- selekce (genetika) MeSH
- transkriptom genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Most patients with neurofibromatosis (NF1) are endowed with heterozygous mutations in the NF1 gene. Approximately 5% show an interstitial deletion of chromosome 17q11.2 (including NF1) and in most cases also a more severe phenotype. Here we report on a 7-year-old girl with classical NF1 signs, and in addition mild overgrowth (97th percentile), relatively low OFC (10th-25th percentile), facial dysmorphy, hoarse voice, and developmental delay. FISH analysis revealed a 17q11.2 microdeletion as well as an unbalanced 7p;13q translocation leading to trisomy of the 7q36.3 subtelomeric region. The patient's mother and grandmother who were phenotypically normal carried the same unbalanced translocation. The 17q11.2 microdeletion had arisen de novo. Array comparative genomic hybridization (CGH) demonstrated gain of a 550-kb segment from 7qter and loss of 2.5 Mb from 17q11.2 (an atypical NF1 microdeletion). We conclude that the patient's phenotype is caused by the atypical NF1 deletion, whereas 7q36.3 trisomy represents a subtelomeric copy number variation without phenotypic consequences. To our knowledge this is the first report that a duplication of the subtelomeric region of chromosome 7q containing functional genes (FAM62B, WDR60, and VIPR2) can be tolerated without phenotypic consequences. The 17q11.2 microdeletion (containing nine more genes than the common NF1 microdeletions) and the 7qter duplication were not accompanied by unexpected clinical features. Most likely the 7qter trisomy and the 17q11.2 microdeletion coincide by chance in our patient. Copyright (c) 2007 S. Karger AG, Basel
- MeSH
- chromozomální delece * MeSH
- cytogenetika MeSH
- dospělí MeSH
- duplikace genu * MeSH
- hybridizace in situ fluorescenční MeSH
- kojenec MeSH
- lidé MeSH
- lidské chromozomy, pár 17 * genetika MeSH
- lidské chromozomy, pár 7 * genetika MeSH
- neurofibromatózy * genetika patologie MeSH
- předškolní dítě MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- telomery genetika klasifikace MeSH
- Check Tag
- dospělí MeSH
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- kazuistiky MeSH
Transposable elements (TEs) are able to jump to new locations (transposition) in the genome, usually after replication. They constitute the so-called selfish or junk DNA and take over large proportions of some genomes. Due to their ability to move around they can change the DNA landscape of genomes and are therefore a rich source of innovation in genes and gene regulation. Surge of sequence data in the past years has significantly facilitated large scale comparative studies. Cephalochordates have been regarded as a useful proxy to ancestral chordate condition partially due to the comparatively slow evolutionary rate at morphological and genomic level. In this study, we used opsin gene family from three Branchiostoma species as a window into cephalochordate genome evolution. We compared opsin complements in terms of family size, gene structure and sequence allowing us to identify gene duplication and gene loss events. Furthermore, analysis of the opsin containing genomic loci showed that they are populated by TEs. In summary, we provide evidence of the way transposable elements may have contributed to the evolution of opsin gene family and to the shaping of cephalochordate genomes in general.
BACKGROUND: The most frequently identified strong cancer predisposition mutations for colorectal cancer (CRC) are those in the mismatch repair (MMR) genes in Lynch syndrome. Laboratory diagnostics include testing tumors for immunohistochemical staining (IHC) of the Lynch syndrome-associated DNA MMR proteins and/or for microsatellite instability (MSI) followed by sequencing or other techniques, such as denaturing high performance liquid chromatography (DHPLC), to identify the mutation. METHODS: In an ongoing project focusing on finding Mendelian cancer syndromes we applied whole-exome/whole-genome sequencing (WES/WGS) to 19 CRC families. RESULTS: Three families were identified with a pathogenic/likely pathogenic germline variant in a MMR gene that had previously tested negative in DHPLC gene variant screening. All families had a history of CRC in several family members across multiple generations. Tumor analysis showed loss of the MMR protein IHC staining corresponding to the mutated genes, as well as MSI. In family A, a structural variant, a duplication of exons 4 to 13, was identified in MLH1. The duplication was predicted to lead to a frameshift at amino acid 520 and a premature stop codon at amino acid 539. In family B, a 1 base pair deletion was found in MLH1, resulting in a frameshift and a stop codon at amino acid 491. In family C, we identified a splice site variant in MSH2, which was predicted to lead loss of a splice donor site. CONCLUSIONS: We identified altogether three pathogenic/likely pathogenic variants in the MMR genes in three of the 19 sequenced families. The MLH1 variants, a duplication of exons 4 to 13 and a frameshift variant, were novel, based on the InSiGHT and ClinVar databases; the MSH2 splice site variant was reported by a single submitter in ClinVar. As a variant class, duplications have rarely been reported in the MMR gene literature, particularly those covering several exons.
- Publikační typ
- časopisecké články MeSH