Sturgeon gut development: a unique yolk utilization strategy among vertebrates
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38872929
PubMed Central
PMC11169612
DOI
10.3389/fcell.2024.1358702
PII: 1358702
Knihovny.cz E-zdroje
- Klíčová slova
- gut–endoderm, holoblastic cleavage, meroblastic cleavage, sturgeon, vertebrate evolution,
- Publikační typ
- časopisecké články MeSH
In vertebrates, maternally supplied yolk is typically used in one of two ways: either intracellularly by endodermal cells or extracellularly via the yolk sac. This study delves into the distinctive gut development in sturgeons, which are among the most ancient extant fish groups, contrasting it with that of other vertebrates. Our observations indicate that while sturgeon endodermal cells form the archenteron (i.e., the primitive gut) dorsally, the floor of the archenteron is uniquely composed of extraembryonic yolk cells (YCs). As development progresses, during neurulation, the archenteric cavity inflates, expands laterally, and roofs a semicircle of YCs. By the pharyngula stage, the cavity fully encompasses the YC mass, which begins to be digested at the hatching stage. This suggests a notable deviation in sturgeon gut development from that in other vertebrates, as their digestive tract initiates its function by processing endogenous nutrition even before external feeding begins. Our findings highlight the evolutionary diversity of gut development strategies among vertebrates and provide new insights into the developmental biology of sturgeons.
Zobrazit více v PubMed
Ballard W. W., Ginsburg A. S. (1980). Morphogenetic movements in acipenserid embryos. J. Exp. Zoology 213, 69–103. 10.1002/jez.1402130110 DOI
Ballard W. W., Needham R. G. (1964). Normal embryonic stages of Polyodon spathula (Walbaum). J. Morphol. 114, 465–477. 10.1002/jmor.1051140307 PubMed DOI
Bolker J. A. (1993). Gastrulation and mesoderm morphogenesis in the white sturgeon. J. Exp. Zoology 266, 116–131. 10.1002/jez.1402660206 PubMed DOI
Bolker J. A. (1994). Comparison of gastrulation in frogs and fish. Integr. Comp. Biol. 34, 313–322. 10.1093/icb/34.3.313 DOI
Braasch I., Guiguen Y., Loker R., Letaw J. H., Ferrara A., Bobe J., et al. (2014). “Connectivity of vertebrate genomes: paired-related homeobox (Prrx) genes in spotted gar, basal teleosts, and tetrapods,” in Comparative biochemistry and physiology part - C: toxicology and pharmacology. 10.1016/j.cbpc.2014.01.005 PubMed DOI PMC
Breeuwer P., Drocourt J. L., Bunschoten N., Zwietering M. H., Rombouts F. M., Abee T. (1995). Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product. Appl. Environ. Microbiol. 61, 1614–1619. 10.1128/aem.61.4.1614-1619.1995 PubMed DOI PMC
Buchholz D. R., Singamsetty S., Karadge U., Williamson S., Langer C. E., Elinson R. P. (2007). Nutritional endoderm in a direct developing frog: a potential parallel to the evolution of the amniote egg. Dev. Dyn. 236, 1259–1272. 10.1002/dvdy.21153 PubMed DOI
Buddington R. K., Doroshov S. I. (1986). Structural and functional relations of the white sturgeon alimentary canal (Acipenser transmontanus). J. Morphol. 190, 201–213. 10.1002/jmor.1051900205 PubMed DOI
Carvalho L., Heisenberg C. P. (2010). The yolk syncytial layer in early zebrafish development. Trends Cell. Biol. 20, 586–592. 10.1016/j.tcb.2010.06.009 PubMed DOI
Collazo A., Bolker J. A., Keller R. (1994). A phylogenetic perspective on teleost gastrulation. Am. Nat. 144, 133–152. 10.1086/285665 DOI
Comabella Y., Hernández Franyutti A., Hurtado A., Canabal J., García-Galano T. (2013). Ontogenetic development of the digestive tract in Cuban gar (Atractosteus tristoechus) larvae. Rev. Fish. Biol. Fish. 23, 245–260. 10.1007/s11160-012-9289-z DOI
D’Amico L. A., Cooper M. S. (2001). Morphogenetic domains in the yolk syncytial layer of axiating zebrafish embryos. Dev. Dyn. 222, 611–624. 10.1002/dvdy.1216 PubMed DOI
Dettlaff T. A. (1993) Sturgeon fishes, 155–195. 10.1007/978-3-642-77057-9 DOI
Diedhiou S., Bartsch P. (2009). Staging of the early development of Polypterus cladistia. Dev. Non-teleost Fishes, 104–169. 10.1201/b10184-3 DOI
Frankenberg E., Lauf R., Shroyer N. F. (2012). Vertebrate intestinal endoderm development. Dev. Dyn. 240, 501–520. 10.1002/dvdy.22540 PubMed DOI PMC
Gilbert S. F. (2010) Developmental biology, developmental biology. Ninth ed. Sinauer Associates, Oxford University Press.
Hamburger V., Hamilton H. L. (1951). A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92. 10.1002/jmor.1050880104 PubMed DOI
Hudson C., Clements D., Friday R. V., Stott D., Woodland H. R. (1997). Xsox17alpha and -beta mediate endoderm formation in Xenopus. Cell. 91, 397–405. 10.1016/S0092-8674(00)80423-7 PubMed DOI
Kaufman M. H. (1992) The atlas of mouse development. New York, London: Elsevier Academic Press.
Keller R. E. (1981). An experimental analysis of the role of bottle cells and the deep marginal zone in gastrulation of Xenopus laevis . J. Exp. Zoology 216, 181–101. 10.1002/jez.1402160109 PubMed DOI
Kemp A. (2011). Comparison of embryological development in the threatened Australian lungfish Neoceratodus forsteri from two sites in a Queensland river system. Endanger. Species Res. 15, 87–101. 10.3354/esr00358 DOI
Kimmel C. B., Ballard W. W., Kimmel S. R., Ullmann B., Schilling T. F. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310. 10.1002/aja.1002030302 PubMed DOI
Kimura W., Yasugi S., Fukuda K. (2007). Regional specification of the endoderm in the early chick embryo. Dev. Growth Differ. 49, 365–372. 10.1111/j.1440-169x.2007.00933.x PubMed DOI
Korzhuev P. A., Sharkova L. B. (1967). “On peculiarities of digestion of the Russian sturgeon in the Caspian Sea,” in Metabolism and biochemistry of fishes. Editor Karzinkin G. S. (Moscow: Nauka; ), 205–209. (in Russian) .
Lawson A., Schoenwolf G. C. (2003). Epiblast and primitive-streak origins of the endoderm in the gastrulating chick embryo. Development 130, 3491–3501. 10.1242/dev.00579 PubMed DOI
Lawson K. A., Meneses J. J., Pedersen R. A. (1986). Cell fate and cell lineage in the endoderm of the presomite mouse embryo, studied with an intracellular tracer. Dev. Biol. 115, 325–339. 10.1016/0012-1606(86)90253-8 PubMed DOI
Long W. L., Ballard W. W. (2001). Normal embryonic stages of the longnose gar, Lepisosteus osseus. BMC Dev. Biol. 1, 6. 10.1186/1471-213X-1-6 PubMed DOI PMC
Minarik M., Stundl J., Fabian P., Jandzik D., Metscher B. D., Psenicka M., et al. (2017). Pre-oral gut contributes to facial structures in non-teleost fishes. Nat. Publ. Group 547, 209–212. 10.1038/nature23008 PubMed DOI
Miyake A., Saito T., Kashiwagi T., Ando D., Yamamoto A., Suzuki T., et al. (2006). Cloning and pattern of expression of the shiro-uo vasa gene during embryogenesis and its roles in PGC development. Int. J. Dev. Biol. 50, 619–625. 10.1387/ijdb.062172am PubMed DOI
Naraine R., Iegorova V., Abaffy P., Franek R., Soukup V., Psenicka M., et al. (2022). Evolutionary conservation of maternal RNA localization in fishes and amphibians revealed by TOMO-Seq. Dev. Biol. 489, 146–160. 10.1016/j.ydbio.2022.06.013 PubMed DOI
Ng A. N. Y., De Jong-Curtain T. A., Mawdsley D. J., White S. J., Shin J., Appel B., et al. (2005). Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Dev. Biol. 286, 114–135. 10.1016/j.ydbio.2005.07.013 PubMed DOI
Nowotschin S., Hadjantonakis A. K., Campbell K. (2019a). The endoderm: a divergent cell lineage with many commonalities. Dev. Camb. 146, dev150920–12. 10.1242/dev.150920 PubMed DOI PMC
Nowotschin S., Setty M., Kuo Y. Y., Liu V., Garg V., Sharma R., et al. (2019b). The emergent landscape of the mouse gut endoderm at single-cell resolution. Nature 569, 361–367. 10.1038/s41586-019-1127-1 PubMed DOI PMC
Ober E. A., Field H. A., Stainier D. Y. R. (2003). From endoderm formation to liver and pancreas development in zebrafish. Mech. Dev. 120, 5–18. 10.1016/S0925-4773(02)00327-1 PubMed DOI
Pocherniaieva K., Psenicka M., Sidova M., Havelka M., Saito T., Sindelka R., et al. (2018). Comparison of oocyte mRNA localization patterns in sterlet Acipenser ruthenus and African clawed frog Xenopus laevis . ournal Exp. zoology. Part B, Mol. Dev. Evol. 330, 181–187. 10.1002/jez.b.22802 PubMed DOI
Rosenquist G. C. (1971). The location of the pregut endoderm in the chick embryo at the primitive streak stage as determined by radioautographic mapping. Dev. Biol. 26, 323–335. 10.1016/0012-1606(71)90131-X PubMed DOI
Saito T., Psěnička M., Goto R., Adachi S., Inoue K., Arai K., et al. (2014). The origin and migration of primordial germ cells in sturgeons. PLoS One 9, e86861. 10.1371/journal.pone.0086861 PubMed DOI PMC
Shah M. A., Fatira E., Iegorova V., Xie X., Gela D., Rodina M., et al. (2022). Blastomeres derived from the vegetal pole provide extra-embryonic nutrition to sturgeon (Acipenser) embryos: transition from holoblastic to meroblastic cleavage. Aquaculture 551, 737899. 10.1016/j.aquaculture.2022.737899 DOI
Shih J., Keller R. (1994). Gastrulation in Xenopus laevis: involution-a current view. Semin. Dev. Biol. 5, 85–90. 10.1006/sedb.1994.1012 DOI
Stundl J., Pospisilova A., Jandzik D., Fabian P., Dobiasova B., Minarik M., et al. (2019). Bichir external gills arise via heterochronic shift that accelerates hyoid arch development. Elife 8, e43531. 10.7554/eLife.43531 PubMed DOI PMC
Stundl J., Pospisilova A., Matějková T., Psenicka M., Bronner M. E., Cerny R. (2020). Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes. Dev. Biol. 467, 14–29. 10.1016/j.ydbio.2020.08.007 PubMed DOI PMC
Sullivan-Brown J., Bisher M. E., Burdine R. D. (2011). Embedding, serial sectioning and staining of zebrafish embryos using JB-4 resin. Nat. Protoc. 6, 46–55. 10.1038/nprot.2010.165 PubMed DOI PMC
Takeuchi M., Okabe M., Aizawa S. (2009a). The genus Polypterus (bichirs): a fish group diverged at the stem of ray-finned. Fishes ( Actinopterygii ) 1, 1–12. 10.1101/pdb.emo117 PubMed DOI
Takeuchi M., Takahashi M., Okabe M., Aizawa S. (2009b). Germ layer patterning in bichir and lamprey; an insight into its evolution in vertebrates. Dev. Biol. 332, 90–102. 10.1016/J.YDBIO.2009.05.543 PubMed DOI
Tam P. P. L., Khoo P. L., Lewis S. L., Bildsoe H., Wong N., Tsang T. E., et al. (2007). Sequential allocation and global pattern of movement of the definitive endoderm in the mouse embryo during gastrulation. Development 134, 251–260. 10.1242/dev.02724 PubMed DOI
Tremblay K. D., Zaret K. S. (2005). Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. Dev. Biol. 280, 87–99. 10.1016/j.ydbio.2005.01.003 PubMed DOI
Wallace K. N., Pack M. (2003). Unique and conserved aspects of gut development in zebrafish. Dev. Biol. 255, 12–29. 10.1016/S0012-1606(02)00034-9 PubMed DOI
Zorn A. M., Wells J. M. (2009). Vertebrate endoderm development and organ formation. Annu. Rev. Cell. Biol. 25, 221–251. 10.1146/annurev.cellbio.042308.113344 PubMed DOI PMC