Sturgeon gut development: a unique yolk utilization strategy among vertebrates

. 2024 ; 12 () : 1358702. [epub] 20240530

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38872929

In vertebrates, maternally supplied yolk is typically used in one of two ways: either intracellularly by endodermal cells or extracellularly via the yolk sac. This study delves into the distinctive gut development in sturgeons, which are among the most ancient extant fish groups, contrasting it with that of other vertebrates. Our observations indicate that while sturgeon endodermal cells form the archenteron (i.e., the primitive gut) dorsally, the floor of the archenteron is uniquely composed of extraembryonic yolk cells (YCs). As development progresses, during neurulation, the archenteric cavity inflates, expands laterally, and roofs a semicircle of YCs. By the pharyngula stage, the cavity fully encompasses the YC mass, which begins to be digested at the hatching stage. This suggests a notable deviation in sturgeon gut development from that in other vertebrates, as their digestive tract initiates its function by processing endogenous nutrition even before external feeding begins. Our findings highlight the evolutionary diversity of gut development strategies among vertebrates and provide new insights into the developmental biology of sturgeons.

Zobrazit více v PubMed

Ballard W. W., Ginsburg A. S. (1980). Morphogenetic movements in acipenserid embryos. J. Exp. Zoology 213, 69–103. 10.1002/jez.1402130110 DOI

Ballard W. W., Needham R. G. (1964). Normal embryonic stages of Polyodon spathula (Walbaum). J. Morphol. 114, 465–477. 10.1002/jmor.1051140307 PubMed DOI

Bolker J. A. (1993). Gastrulation and mesoderm morphogenesis in the white sturgeon. J. Exp. Zoology 266, 116–131. 10.1002/jez.1402660206 PubMed DOI

Bolker J. A. (1994). Comparison of gastrulation in frogs and fish. Integr. Comp. Biol. 34, 313–322. 10.1093/icb/34.3.313 DOI

Braasch I., Guiguen Y., Loker R., Letaw J. H., Ferrara A., Bobe J., et al. (2014). “Connectivity of vertebrate genomes: paired-related homeobox (Prrx) genes in spotted gar, basal teleosts, and tetrapods,” in Comparative biochemistry and physiology part - C: toxicology and pharmacology. 10.1016/j.cbpc.2014.01.005 PubMed DOI PMC

Breeuwer P., Drocourt J. L., Bunschoten N., Zwietering M. H., Rombouts F. M., Abee T. (1995). Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product. Appl. Environ. Microbiol. 61, 1614–1619. 10.1128/aem.61.4.1614-1619.1995 PubMed DOI PMC

Buchholz D. R., Singamsetty S., Karadge U., Williamson S., Langer C. E., Elinson R. P. (2007). Nutritional endoderm in a direct developing frog: a potential parallel to the evolution of the amniote egg. Dev. Dyn. 236, 1259–1272. 10.1002/dvdy.21153 PubMed DOI

Buddington R. K., Doroshov S. I. (1986). Structural and functional relations of the white sturgeon alimentary canal (Acipenser transmontanus). J. Morphol. 190, 201–213. 10.1002/jmor.1051900205 PubMed DOI

Carvalho L., Heisenberg C. P. (2010). The yolk syncytial layer in early zebrafish development. Trends Cell. Biol. 20, 586–592. 10.1016/j.tcb.2010.06.009 PubMed DOI

Collazo A., Bolker J. A., Keller R. (1994). A phylogenetic perspective on teleost gastrulation. Am. Nat. 144, 133–152. 10.1086/285665 DOI

Comabella Y., Hernández Franyutti A., Hurtado A., Canabal J., García-Galano T. (2013). Ontogenetic development of the digestive tract in Cuban gar (Atractosteus tristoechus) larvae. Rev. Fish. Biol. Fish. 23, 245–260. 10.1007/s11160-012-9289-z DOI

D’Amico L. A., Cooper M. S. (2001). Morphogenetic domains in the yolk syncytial layer of axiating zebrafish embryos. Dev. Dyn. 222, 611–624. 10.1002/dvdy.1216 PubMed DOI

Dettlaff T. A. (1993) Sturgeon fishes, 155–195. 10.1007/978-3-642-77057-9 DOI

Diedhiou S., Bartsch P. (2009). Staging of the early development of Polypterus cladistia. Dev. Non-teleost Fishes, 104–169. 10.1201/b10184-3 DOI

Frankenberg E., Lauf R., Shroyer N. F. (2012). Vertebrate intestinal endoderm development. Dev. Dyn. 240, 501–520. 10.1002/dvdy.22540 PubMed DOI PMC

Gilbert S. F. (2010) Developmental biology, developmental biology. Ninth ed. Sinauer Associates, Oxford University Press.

Hamburger V., Hamilton H. L. (1951). A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92. 10.1002/jmor.1050880104 PubMed DOI

Hudson C., Clements D., Friday R. V., Stott D., Woodland H. R. (1997). Xsox17alpha and -beta mediate endoderm formation in Xenopus. Cell. 91, 397–405. 10.1016/S0092-8674(00)80423-7 PubMed DOI

Kaufman M. H. (1992) The atlas of mouse development. New York, London: Elsevier Academic Press.

Keller R. E. (1981). An experimental analysis of the role of bottle cells and the deep marginal zone in gastrulation of Xenopus laevis . J. Exp. Zoology 216, 181–101. 10.1002/jez.1402160109 PubMed DOI

Kemp A. (2011). Comparison of embryological development in the threatened Australian lungfish Neoceratodus forsteri from two sites in a Queensland river system. Endanger. Species Res. 15, 87–101. 10.3354/esr00358 DOI

Kimmel C. B., Ballard W. W., Kimmel S. R., Ullmann B., Schilling T. F. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310. 10.1002/aja.1002030302 PubMed DOI

Kimura W., Yasugi S., Fukuda K. (2007). Regional specification of the endoderm in the early chick embryo. Dev. Growth Differ. 49, 365–372. 10.1111/j.1440-169x.2007.00933.x PubMed DOI

Korzhuev P. A., Sharkova L. B. (1967). “On peculiarities of digestion of the Russian sturgeon in the Caspian Sea,” in Metabolism and biochemistry of fishes. Editor Karzinkin G. S. (Moscow: Nauka; ), 205–209. (in Russian) .

Lawson A., Schoenwolf G. C. (2003). Epiblast and primitive-streak origins of the endoderm in the gastrulating chick embryo. Development 130, 3491–3501. 10.1242/dev.00579 PubMed DOI

Lawson K. A., Meneses J. J., Pedersen R. A. (1986). Cell fate and cell lineage in the endoderm of the presomite mouse embryo, studied with an intracellular tracer. Dev. Biol. 115, 325–339. 10.1016/0012-1606(86)90253-8 PubMed DOI

Long W. L., Ballard W. W. (2001). Normal embryonic stages of the longnose gar, Lepisosteus osseus. BMC Dev. Biol. 1, 6. 10.1186/1471-213X-1-6 PubMed DOI PMC

Minarik M., Stundl J., Fabian P., Jandzik D., Metscher B. D., Psenicka M., et al. (2017). Pre-oral gut contributes to facial structures in non-teleost fishes. Nat. Publ. Group 547, 209–212. 10.1038/nature23008 PubMed DOI

Miyake A., Saito T., Kashiwagi T., Ando D., Yamamoto A., Suzuki T., et al. (2006). Cloning and pattern of expression of the shiro-uo vasa gene during embryogenesis and its roles in PGC development. Int. J. Dev. Biol. 50, 619–625. 10.1387/ijdb.062172am PubMed DOI

Naraine R., Iegorova V., Abaffy P., Franek R., Soukup V., Psenicka M., et al. (2022). Evolutionary conservation of maternal RNA localization in fishes and amphibians revealed by TOMO-Seq. Dev. Biol. 489, 146–160. 10.1016/j.ydbio.2022.06.013 PubMed DOI

Ng A. N. Y., De Jong-Curtain T. A., Mawdsley D. J., White S. J., Shin J., Appel B., et al. (2005). Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Dev. Biol. 286, 114–135. 10.1016/j.ydbio.2005.07.013 PubMed DOI

Nowotschin S., Hadjantonakis A. K., Campbell K. (2019a). The endoderm: a divergent cell lineage with many commonalities. Dev. Camb. 146, dev150920–12. 10.1242/dev.150920 PubMed DOI PMC

Nowotschin S., Setty M., Kuo Y. Y., Liu V., Garg V., Sharma R., et al. (2019b). The emergent landscape of the mouse gut endoderm at single-cell resolution. Nature 569, 361–367. 10.1038/s41586-019-1127-1 PubMed DOI PMC

Ober E. A., Field H. A., Stainier D. Y. R. (2003). From endoderm formation to liver and pancreas development in zebrafish. Mech. Dev. 120, 5–18. 10.1016/S0925-4773(02)00327-1 PubMed DOI

Pocherniaieva K., Psenicka M., Sidova M., Havelka M., Saito T., Sindelka R., et al. (2018). Comparison of oocyte mRNA localization patterns in sterlet Acipenser ruthenus and African clawed frog Xenopus laevis . ournal Exp. zoology. Part B, Mol. Dev. Evol. 330, 181–187. 10.1002/jez.b.22802 PubMed DOI

Rosenquist G. C. (1971). The location of the pregut endoderm in the chick embryo at the primitive streak stage as determined by radioautographic mapping. Dev. Biol. 26, 323–335. 10.1016/0012-1606(71)90131-X PubMed DOI

Saito T., Psěnička M., Goto R., Adachi S., Inoue K., Arai K., et al. (2014). The origin and migration of primordial germ cells in sturgeons. PLoS One 9, e86861. 10.1371/journal.pone.0086861 PubMed DOI PMC

Shah M. A., Fatira E., Iegorova V., Xie X., Gela D., Rodina M., et al. (2022). Blastomeres derived from the vegetal pole provide extra-embryonic nutrition to sturgeon (Acipenser) embryos: transition from holoblastic to meroblastic cleavage. Aquaculture 551, 737899. 10.1016/j.aquaculture.2022.737899 DOI

Shih J., Keller R. (1994). Gastrulation in Xenopus laevis: involution-a current view. Semin. Dev. Biol. 5, 85–90. 10.1006/sedb.1994.1012 DOI

Stundl J., Pospisilova A., Jandzik D., Fabian P., Dobiasova B., Minarik M., et al. (2019). Bichir external gills arise via heterochronic shift that accelerates hyoid arch development. Elife 8, e43531. 10.7554/eLife.43531 PubMed DOI PMC

Stundl J., Pospisilova A., Matějková T., Psenicka M., Bronner M. E., Cerny R. (2020). Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes. Dev. Biol. 467, 14–29. 10.1016/j.ydbio.2020.08.007 PubMed DOI PMC

Sullivan-Brown J., Bisher M. E., Burdine R. D. (2011). Embedding, serial sectioning and staining of zebrafish embryos using JB-4 resin. Nat. Protoc. 6, 46–55. 10.1038/nprot.2010.165 PubMed DOI PMC

Takeuchi M., Okabe M., Aizawa S. (2009a). The genus Polypterus (bichirs): a fish group diverged at the stem of ray-finned. Fishes ( Actinopterygii ) 1, 1–12. 10.1101/pdb.emo117 PubMed DOI

Takeuchi M., Takahashi M., Okabe M., Aizawa S. (2009b). Germ layer patterning in bichir and lamprey; an insight into its evolution in vertebrates. Dev. Biol. 332, 90–102. 10.1016/J.YDBIO.2009.05.543 PubMed DOI

Tam P. P. L., Khoo P. L., Lewis S. L., Bildsoe H., Wong N., Tsang T. E., et al. (2007). Sequential allocation and global pattern of movement of the definitive endoderm in the mouse embryo during gastrulation. Development 134, 251–260. 10.1242/dev.02724 PubMed DOI

Tremblay K. D., Zaret K. S. (2005). Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. Dev. Biol. 280, 87–99. 10.1016/j.ydbio.2005.01.003 PubMed DOI

Wallace K. N., Pack M. (2003). Unique and conserved aspects of gut development in zebrafish. Dev. Biol. 255, 12–29. 10.1016/S0012-1606(02)00034-9 PubMed DOI

Zorn A. M., Wells J. M. (2009). Vertebrate endoderm development and organ formation. Annu. Rev. Cell. Biol. 25, 221–251. 10.1146/annurev.cellbio.042308.113344 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...