The Impact of Neonatal Methamphetamine on Spatial Learning and Memory in Adult Female Rats
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33679341
PubMed Central
PMC7930212
DOI
10.3389/fnbeh.2021.629585
Knihovny.cz E-zdroje
- Klíčová slova
- Morris Water Maze (MWM), Wistar rat, methamphetamine, neonatal exposure, strategies,
- Publikační typ
- časopisecké články MeSH
The present study was aimed at evaluating cognitive changes following neonatal methamphetamine exposure in combination with repeated treatment in adulthood of female Wistar rats. Pregnant dams and their pups were used in this study. One half of the offspring were treated indirectly via the breast milk of injected mothers, and the other half of pups were treated directly by methamphetamine injection. In the group with indirect exposure, mothers received methamphetamine (5 mg/ml/kg) or saline (1 ml/kg) between postnatal days (PD) 1-11. In the group with direct exposure, none of the mothers were treated. Instead, progeny were either: (1) treated with injected methamphetamine (5 mg/ml/kg); or (2) served as controls and received sham injections (no saline, just a needle stick) on PD 1-11. Learning ability and memory consolidation were tested on PD 70-90 in the Morris Water Maze (MWM) using three tests: Place Navigation Test, Probe Test, and Memory Recall Test. Adult female progeny were injected daily, after completion of the last trial of MWM tests, with saline or methamphetamine (1 mg/ml/kg). The effects of indirect/direct neonatal methamphetamine exposure combined with acute adult methamphetamine treatment on cognitive functions in female rats were compared. Statistical analyses showed that neonatal drug exposure worsened spatial learning and the ability to remember the position of a hidden platform. The study also demonstrated that direct methamphetamine exposure has a more significant impact on learning and memory than indirect exposure. The acute dose of the drug did not produce any changes in cognitive ability. Analyses of search strategies (thigmotaxis, scanning) used by females during the Place Navigation Test and Memory Recall Test confirmed all these results. Results from the present study suggested extensive deficits in learning skills and memory of female rats that may be linked to the negative impact of neonatal methamphetamine exposure.
Zobrazit více v PubMed
Acuff-Smith K., George M., Lorens S., Vorhees C. (1996). Preliminary evidence for methamphetamine-induced behavioral and ocular effects in rat offspring following exposure during early organogenesis. Psychopharmacology 109, 255–263. 10.1007/BF02245871 PubMed DOI
Bartu A., Dusci L. J., Ilett K. F. (2009). Transfer of methylamphetamine and amphetamine into breast milk following recreational use of methylamphetamine. Br. J. Clin. Pharmacol. 67, 455–459. 10.1111/j.1365-2125.2009.03366.x PubMed DOI PMC
Bayer S. A., Altman J., Russo R. J., Zhang X. (1993). Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology 14, 83–144. PubMed
Becker J. B., Hu M. (2008). Sex differences in drug abuse. Front. Neuroendocrinol. 29, 36–47. 10.1016/j.yfrne.2007.07.003 PubMed DOI PMC
Becker J. B., Molenda H., Hummer D. L. (2001). Gender differences in the behavioral responses to cocaine and amphetamine. Implications for mechanisms mediating gender differences in drug abuse. Ann. N Y Acad. Sci. 937, 172–187. 10.1111/j.1749-6632.2001.tb03564.x PubMed DOI
Becker J. B., Robinson T. E., Lorenz K. A. (1982). Sex differences and estrous cycle variations in amphetamine-elicited rotational behavior. Eur. J. Pharmacol. 80, 65–72. 10.1016/0014-2999(82)90178-9 PubMed DOI
Behnke M., Smith V. C., Committee On Substance Abuse, and Committee on Fetus and Newborn . (2013). short- and long-term effects on the exposed fetus. Pediatrics 131, e1009–e1024. 10.1542/peds.2012-3931 PubMed DOI PMC
Belcher A. M., Feinstein E. M., O’Dell S. J., Marshall J. F. (2008). Methamphetamine influences on recognition memory: comparison of escalating and single-day dosing regimens. Neuropsychopharmacology 33, 1453–1463. 10.1038/sj.npp.1301510 PubMed DOI
Bisagno V., Bowman R. E., Luine V. N. (2003a). Functional aspects of estrogen neuroprotection. Endocrine 21, 33–41. 10.1385/endo:21:1:33 PubMed DOI
Bisagno V., Ferguson D., Luine V. N. (2003b). Chronic D-amphetamine induces sexually dimorphic effects on locomotion, recognition memory, and brain monoamines. Pharmacol. Biochem. Behav. 74, 859–867. 10.1016/s0091-3057(03)00017-0 PubMed DOI
Bubeníková-Valešová V., Kačer P., Syslová K., Rambousek L., Janovský M., Schutová B., et al. . (2009). Prenatal methamphetamine exposure affects the mesolimbic dopaminergic system and behavior in adult offspring. Int. J. Dev. Neurosci. 27, 525–530. 10.1016/j.ijdevneu.2009.06.012 PubMed DOI
Cho A. K., Melega W. P., Kuczenski R., Segal D. S. (2001). Relevance of pharmacokinetic parameters in animal models of methamphetamine abuse. Synapse 39, 161–166. 10.1002/1098-2396(200102)39:2<161::AID-SYN7>3.0.CO;2-E PubMed DOI
Clancy B., Finlay B. L., Darlington R. B., Anand K. J. (2007). Extrapolating brain development from experimental species to humans. Neurotoxicology 28, 931–937. 10.1016/j.neuro.2007.01.014 PubMed DOI PMC
Fujáková-Lipski M., Kaping D., Šírová J., Horášek J., Páleníček T., Zach P., et al. . (2017). Trans-generational neurochemical modulation of methamphetamine in the adult brain of the Wistar rat. Arch. Toxicol. 91, 3373–3384. 10.1007/s00204-017-1969-y PubMed DOI
Gallagher M., Burwell R., Burchinal M. (1993). Severity of spatial learning impairment in aging: development of a learning index for performance in the Morris water maze. Behav. Neurosci. 107, 618–626. 10.1037/0735-7044.107.4.618 PubMed DOI
Grilly D. M., Loveland A. (2001). What is a “low dose” of d-amphetamine for inducing behavioral effects in laboratory rats? Psychopharmacology 153, 155–169. 10.1007/s002130000580 PubMed DOI
Homer B. D., Solomon T. M., Moeller R. W., Mascia A., Deraleau L., Halkitis P. N. (2008). Methamphetamine abuse and impairment of social functioning: a review of the underlying neurophysiological causes and behavioral implications. Psychol. Bull. 134, 301–310. 10.1037/0033-2909.134.2.301 PubMed DOI
Hrebíčková I., Malinová-Ševčíková M., Macúchová E., Nohejlová K., Šlamberová R. (2014). Exposure to methamphetamine during first and second half of prenatal period and its consequences on cognition after long-term application in adulthood. Physiol. Res. 63, S535–S545. 10.33549/physiolres.932927 PubMed DOI
Hrebíčková I., Ševčíková M., Macúchová E., Šlamberová R. (2017). How methamphetamine exposure during different neurodevelopmental stages affects social behavior of adult rats? Physiol. Behav. 179, 391–400. 10.1016/j.physbeh.2017.07.009 PubMed DOI
Hrebíčková I., Ševčíková M., Nohejlová K., Šlamberová R. (2016). Does effect from developmental methamphetamine exposure on spatial learning and memory depend on stage of neuroontogeny? Physiol. Res. 65, S577–S589. 10.33549/physiolres.933534 PubMed DOI
Hrubá L., Schutová B., Pometlová M., Rokyta R., Šlamberová R. (2010). Effect of methamphetamine exposure and cross-fostering on cognitive function in adult male rats. Behav. Brain Res. 208, 63–71. 10.1016/j.bbr.2009.11.001 PubMed DOI
Jablonski S. A., Williams M. T., Vorhees C. V. (2016). Neurobehavioral effects from developmental methamphetamine exposure. Curr. Top. Behav. Neurosci. 29, 183–230. 10.1007/7854_2015_405 PubMed DOI
Janus C. (2004). Search strategies used by APP transgenic mice during navigation in the Morris water maze. Learn. Mem. 11, 337–346. 10.1101/lm.70104 PubMed DOI PMC
Jonasson Z. (2005). Meta-analysis of sex differences in rodent models of learning and memory: a review of behavioral and biological data. Neurosci. Biobehav. Rev. 28, 811–825. 10.1016/j.neubiorev.2004.10.006 PubMed DOI
Keiser A. A., Tronson N. C. (2016). “Molecular mechanism of memory in males and females,” in Sex Differences in the Central Nervous System, ed Rebecca M. Shansky (Boston, MA: Northeastern University), 27–44.
Kornetsky C., Mirsky A. F., Kessler E. K., Dorff J. E. (1959). The effects of dextro-amphetamine on behavioral deficits produced by sleep loss in humans. J. Pharmacol. Exp. Ther. 127, 46–50. PubMed
Liu D., Diorio J., Day J. C., Francis D. D., Meaney M. J. (2000). Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nat. Neurosci. 3, 799–806. 10.1038/77702 PubMed DOI
Lubbers M. E., van den Bos R., Spruijt B. M. (2007). Mu opioid receptor knockout mice in the Morris Water Maze: a learning or motivation deficit? Behav. Brain Res. 180, 107–111. 10.1016/j.bbr.2007.02.021 PubMed DOI
Macúchová E., Nohejlová K., Ševčíková M., Hrebíčková I., Šlamberová R. (2017). Sex differences in the strategies of spatial learning in prenatally-exposed rats treated with various drugs in adulthood. Behav. Brain Res. 327, 83–93. 10.1016/j.bbr.2017.03.041 PubMed DOI
Marcondes F. K., Bianchi F. J., Tanno A. P. (2002). Determination of the estrous cycle phases of rats: some helpful considerations. Braz. J. Biol. 62, 609–614. 10.1590/s1519-69842002000400008 PubMed DOI
Melega W. P., Cho A. K., Harvey D., Laćan G. (2007). Methamphetamine blood concentrations in human abusers: application to pharmacokinetic modeling. Synapse 61, 216–220. 10.1002/syn.20365 PubMed DOI
Meredith C. W., Jaffe C., Ang-Lee K., Saxon A. J. (2005). Implications of chronic methamphetamine use: a literature review. Harv. Rev. Psychiatry 13, 141–154. 10.1080/10673220591003605 PubMed DOI
Morris R. G., Garrud P., Rawlins J. N., O’Keefe J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683. 10.1038/297681a0 PubMed DOI
Rakic P., Nowakowski R. S. (1981). The time of origin of neurons in the hippocampal region of the rhesus-monkey. J. Comp. Neurol. 196, 99–128. 10.1002/cne.901960109 PubMed DOI
Rambousek L., Kačer P., Syslová K., Bumba J., Bubeníková-ValeŠová V., Šlamberová R. (2014). Sex differences in methamphetamine pharmacokinetics in adult rats and its transfer to pups through the placental membrane and breast milk. Drug Alcohol Depend. 139, 138–144. 10.1016/j.drugalcdep.2014.break03.023 PubMed DOI
Rice D., Barone S., Jr. (2000). Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ. Health Perspect. 108, 511–533. 10.1289/ehp.00108s3511 PubMed DOI PMC
Robbins T. W. (2002). The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology 163, 362–380. 10.1007/s00213-002-1154-7 PubMed DOI
Roussotte F. F., Bramen J. E., Nunez S. C., Quandt L. C., Smith L., O’Connor M. J., et al. . (2011). Abnormal brain activation during working memory in children with prenatal exposure to drugs of abuse: the effects of methamphetamine, alcohol, and polydrug exposure. Neuroimage 54, 3067–3075. 10.1016/j.neuroimage.2010.10.072 PubMed DOI PMC
Roussotte F. F., Rudie J. D., Smith L., O’Connor M. J., Bookheimer S. Y., Narr K. L., et al. . (2012). Frontostriatal connectivity in children during working memory and the effects of prenatal methamphetamine, alcohol, and polydrug exposure. Dev. Neurosci. 34, 43–57. 10.1159/000336242 PubMed DOI
Salamone J. D., Correa M. (2002). Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behav. Brain Res. 137, 3–25. 10.1016/s0166-4328(02)00282-6 PubMed DOI
Schaefer T. L., Skelton M. R., Herring N. R., Gudelsky G. A., Vorhees C. V., Williams M. T. (2008). Short- and long-term effects of (+)-methamphetamine and (±)-3,4-methylenedioxymethamphetamine on monoamine and corticosterone levels in the neonatal rat following multiple days of treatment. J. Neurochem. 104, 1674–1685. 10.1111/j.1471-4159.2007.05112.x PubMed DOI PMC
Schroder N., O’Dell S. J., Marshall J. F. (2003). Neurotoxic methamphetamine regimen severely impairs recognition memory in rats. Synapse 49, 89–96. 10.1002/syn.10210 PubMed DOI
Schutová B., Hrubá L., Pometlová M., Šlamberová R. (2009). Impact of prenatal and acute methamphetamine exposure on behaviour of adult male rats. Prague Med. Rep. 110, 67–78. PubMed
Schutová B., Hrubá L., Pometlová M., Deykun K., Šlamberová R. (2008). Impact of methamphetamine administered prenatally and in adulthood on cognitive functions of male rats tested in Morris water maze. Prague Med. Rep. 109, 62–70. PubMed
Schutová B., Hrubá L., Rokyta R., Šlamberová R. (2013). Gender differences in behavioral changes elicited by prenatal methamphetamine exposure and application of the same drug in adulthood. Dev. Psychobiol. 55, 232–242. 10.1002/dev.21016 PubMed DOI
Ševčíková M., Hrebíčková I., Macúchová E., Šlamberová R. (2017). The influence of methamphetamine on maternal behavior and development of the pups during the neonatal period. Int. J. Dev. Neurosci. 59, 37–46. 10.1016/j.ijdevneu.2017.03.005 PubMed DOI
Shansky R. M., Woolley C. S. (2016). Considering sex as a biological variable will be valuable for neuroscience research. J. Neurosci. 36, 11817–11822. 10.1523/JNEUROSCI.1390-16.2016 PubMed DOI PMC
Simões P. F., Silva A. P., Pereira F. C., Marques E., Grade S., Milhazes N., et al. . (2007). Methamphetamine induces alterations on hippocampal NMDA and AMPA receptor subunit levels and impairs spatial working memory. Neuroscience 150, 433–441. 10.1016/j.neuroscience.2007.09.044 PubMed DOI
Simpson J., Ryan C., Curley A., Mulcaire J., Kelly J. P. (2012). Sex differences in baseline and drug-induced behavioural responses in classical behavioural tests. Prog. Neuropsychopharmacol. Biol. Psychiatry 37, 227–236. 10.1016/j.pnpbp.2012.02.004 PubMed DOI
Šlamberová R., Charousová P., Pometlová M. (2005). Methamphetamine administration during gestation impairs maternal behavior. Dev. Psychobiol. 46, 57–65. 10.1002/dev.20042 PubMed DOI
Šlamberová R., Pometlová M., Charousová P. (2006). Postnatal development of rat pups is altered by prenatal methamphetamine exposure. Prog. Neuropsychopharmacol. Biol. Psychiatry 30, 82–88. 10.1016/j.pnpbp.2005.06.006 PubMed DOI
Sulzer D., Sonders M. S., Poulsen N. W., Galli A. (2005). Mechanisms of neurotransmitter release by amphetamines: a review. Prog. Neurobiol. 75, 406–433. 10.1016/j.pneurobio.2005.04.003 PubMed DOI
Vorhees C. V., Ahrens K. G., Acuff-Smith K. D., Schilling M. A., Fisher J. E. (1994a). Methamphetamine exposure during early postnatal development in rats: I. Acoustic startle augmentation and spatial learning deficits. Psychopharmacology 114, 392–401. 10.1007/BF02249328 PubMed DOI
Vorhees C. V., Ahrens K. G., Acuff-Smith K. D., Schilling M. A., Fisher J. E. (1994b). Methamphetamine exposure during early postnatal development in rats: II. Hypoactivity and altered responses to pharmacological challenge. Psychopharmacology 114, 402–408. 10.1007/BF02249329 PubMed DOI
Vorhees C. V., Skelton M. R., Grace C. E., Schaefer T. L., Graham D. L., Braun A. A., et al. . (2009). Effects of (+)-methamphetamine on path integration and spatial learning, but not locomotor activity or acoustic startle, align with the stress hyporesponsive period in rats. Int. J. Dev. Neurosci. 27, 289–298. 10.1016/j.ijdevneu.2008.12.003 PubMed DOI PMC
Warren S. G., Juraska J. M. (1997). Spatial and nonspatial learning across the rat estrous cycle. Behav. Neurosci. 111, 259–266. 10.1037//0735-7044.111.2.259 PubMed DOI
Williams M. T., Blankenmeyer T. L., Schaefer T. L., Brown C. A., Gudelsky G. A., Vorhees C. V. (2003a). Long-term effects of neonatal methamphetamine exposure in rats on spatial learning in the Barnes maze and on cliff avoidance, corticosterone release, and neurotoxicity in adulthood. Dev. Brain Res. 147, 163–175. 10.1016/j.devbrainres.2003.11.001 PubMed DOI
Williams M. T., Morford L. L., Wood S. L., Wallace T. L., Fukumura M., Broening H. W., et al. . (2003b). Developmental D-methamphetamine treatment selectively induces spatial navigation impairments in reference memory in the Morris water maze while sparing working memory. Synapse 48, 138–148. 10.1002/syn.10159 PubMed DOI
Woolley C. S., McEwen B. S. (1992). Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J. Neurosci. 12, 2549–2554. 10.1523/JNEUROSCI.12-07-02549.1992 PubMed DOI PMC