Pre-mandibular pharyngeal pouches in early non-teleost fish embryos
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37700650
PubMed Central
PMC10498051
DOI
10.1098/rspb.2023.1158
Knihovny.cz E-zdroje
- Klíčová slova
- evolution, mouth, pharyngeal pouch, pharynx, pre-oral gut, vertebrate head,
- MeSH
- lebka * MeSH
- mandibula * MeSH
- morfogeneze MeSH
- os hyoideum MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The vertebrate pharynx is a key embryonic structure with crucial importance for the metameric organization of the head and face. The pharynx is primarily built upon progressive formation of paired pharyngeal pouches that typically develop in post-oral (mandibular, hyoid and branchial) domains. However, in the early embryos of non-teleost fishes, we have previously identified pharyngeal pouch-like outpocketings also in the pre-oral domain of the cranial endoderm. This pre-oral gut (POG) forms by early pouching of the primitive gut cavity, followed by the sequential formation of typical (post-oral) pharyngeal pouches. Here, we tested the pharyngeal nature of the POG by analysing expression patterns of selected core pharyngeal regulatory network genes in bichir and sturgeon embryos. Our comparison revealed generally shared expression patterns, including Shh, Pax9, Tbx1, Eya1, Six1, Ripply3 or Fgf8, between early POG and post-oral pharyngeal pouches. POG thus shares pharyngeal pouch-like morphogenesis and a gene expression profile with pharyngeal pouches and can be regarded as a pre-mandibular pharyngeal pouch. We further suggest that pre-mandibular pharyngeal pouches represent a plesiomorphic vertebrate trait inherited from our ancestor's pharyngeal metameric organization, which is incorporated in the early formation of the pre-chordal plate of vertebrate embryos.
Department of Zoology Comenius University in Bratislava Bratislava Slovakia
Department of Zoology Faculty of Science Charles University Prague 12844 Prague Czech Republic
Zobrazit více v PubMed
Hopwood N. 2015. Haeckel's embryos: images, evolution, and fraud. Chicago, IL: University of Chicago Press.
Kuratani S, Nobusada Y, Horigome N, Shigetani Y. 2001. Embryology of the lamprey and evolution of the vertebrate jaw: insights from molecular and developmental perspectives. Phil. Trans. R. Soc. B 356, 1615-1632. (10.1098/rstb.2001.0976) PubMed DOI PMC
Irie N, Kuratani S. 2011. Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis. Nat. Commun. 2, 248. (10.1038/ncomms1248) PubMed DOI PMC
Piotrowski T, Nüsslein-Volhard C. 2000. The endoderm plays an important role in patterning the segmented pharyngeal region in zebrafish (Danio rerio). Dev. Biol. 225, 339-356. (10.1006/dbio.2000.9842) PubMed DOI
Couly G, Creuzet S, Bennaceur S, Vincent C, Le Douarin NM. 2002. Interactions between Hox-negative cephalic neural crest cells and the foregut endoderm in patterning the facial skeleton in the vertebrate head. Development 129, 1061-1073. (10.1242/dev.129.4.1061) PubMed DOI
Choe CP, Crump JG. 2015. Dynamic epithelia of the developing vertebrate face. Curr. Opin Genet. Dev. 32, 66-72. (10.1016/j.gde.2015.02.003) PubMed DOI PMC
Goodrich ES. 1930. Studies on the structure and development of vertebrates I. New York, NY: Dover.
De Beer GR. 1937. The development on the vertebrate skull. Oxford, UK: Clarendon Press.
Gans C, Northcutt RG. 1983. Neural crest and the origin of vertebrates: a new head. Science 220, 268-274. (10.1126/science.220.4594.268) PubMed DOI
Northcutt RG. 2005. The new head hypothesis revisited. J. Exp. Zool. B Mol. Dev. Evol. 304, 274-297. (10.1002/jez.b.21063) PubMed DOI
Satoh N. 2016. Chordate origins and evolution: The molecular evolutionary road to vertebrates. London, UK: Elsevier Inc.
Mallat J. 1996. Ventilation and the origin of jawed vertebrates: a new mouth. Zool. J. Linn. Soc. 117, 329-404. (10.1111/j.1096-3642.1996.tb01658.x) DOI
Shigetani Y, Sugahara F, Kuratani S. 2005. A new evolutionary scenario for the vertebrate jaw. Bioessays 27, 331-338. (10.1002/bies.20182) PubMed DOI
Cerny R, Cattell M, Sauka-Spengler T, Bronner-Fraser M, Yu F, Medeiros DM. 2010. Evidence for the prepattern/cooption model of vertebrate jaw evolution. Proc. Natl Acad. Sci. USA 107, 17 262-17 267. (10.1073/pnas.1009304107) PubMed DOI PMC
Square T, Jandzik D, Romášek M, Cerny R, Medeiros DM. 2017. The origin and diversification of the developmental mechanisms that pattern the vertebrate head skeleton. Dev. Biol. 427, 219-229. (10.1016/j.ydbio.2016.11.014) PubMed DOI
Stundl J, Pospisilova A, Jandzik D, Fabian P, Dobiasova B, Minarik M, Metscher BD, Soukup V, Cerny R. 2019. Bichir external gills arise via heterochronic shift that accelerates hyoid arch development. eLife 8, e43531. (10.7554/eLife.43531) PubMed DOI PMC
Grevellec A, Tucker AS. 2010. The pharyngeal pouches and clefts: development, evolution, structure and derivatives. Semin. Cell Dev. Biol. 21, 325-332. (10.1016/j.semcdb.2010.01.022) PubMed DOI
Shone V, Graham A. 2014. Endodermal/ectodermal interfaces during pharyngeal segmentation in vertebrates. J. Anat. 225, 479-491. (10.1111/joa.12234) PubMed DOI PMC
Graham A, Smith A. 2001. Patterning the pharyngeal arches. Bioessays 23, 54-61. (10.1002/1521-1878(200101)23:1<54::AID-BIES1007>3.0.CO;2-5) PubMed DOI
Willey A. 1891. The later larval development of amphioxus. J. Cell Sci. 44, 183-234. (10.1242/jcs.s2-32.126.183) DOI
Gillis JA, Fritzenwanker JH, Lowe CJ. 2012. A stem-deuterostome origin of the vertebrate pharyngeal transcriptional network. Proc. R. Soc. B 279, 237-246. (10.1098/rspb.2011.0599) PubMed DOI PMC
Koop D, Chen J, Theodosiou M, Carvalho JE, Alvarez S, de Lera AR, Holland LZ, Schubert M. 2014. Roles of retinoic acid and Tbx1/10 in pharyngeal segmentation: amphioxus and the ancestral chordate condition. EvoDevo 5, 1-16. (10.1186/2041-9139-5-36) PubMed DOI PMC
Yoshida K, Nakahata A, Treen N, Sakuma T, Yamamoto T, Sasakura Y. 2017. Hox-mediated endodermal identity patterns pharyngeal muscle formation in the chordate pharynx. Development 144, 1629-1634. PubMed
Horigome N, Myojin M, Ueki T, Hirano S, Aizawa S, Kuratani S. 1999. Development of cephalic neural crest cells in embryos of Lampetra japonica, with special reference to the evolution of the jaw. Dev. Biol. 207, 287-308. (10.1006/dbio.1998.9175) PubMed DOI
Cerny R, Lwigale P, Ericsson R, Meulemans D, Epperlein HH, Bronner-Fraser M. 2004. Developmental origins and evolution of jaws: new interpretation of ‘maxillary’ and ‘mandibular’. Dev. Biol. 276, 225-236. (10.1016/j.ydbio.2004.08.046) PubMed DOI
Stundl J, Pospisilova A, Matějková T, Psenicka M, Bronner ME, Cerny R. 2020. Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes. Dev. Biol. 467, 14-29. (10.1016/j.ydbio.2020.08.007) PubMed DOI PMC
Veitch E, Begbie J, Schilling TF, Smith MM, Graham A. 1999. Pharyngeal arch patterning in the absence of neural crest. Curr. Biol. 9, 1481-1484. (10.1016/S0960-9822(00)80118-9) PubMed DOI
Simakov O, et al. 2015. Hemichordate genomes and deuterostome origins. Nature 527, 459-465. (10.1038/nature16150) PubMed DOI PMC
Xu PX, Zheng W, Laclef C, Maire P, Maas RL, Peters H, Xu X. 2002. Eya1 is required for the morphogenesis of mammalian thymus, parathyroid and thyroid. Development 129, 3033-3044. (10.1242/dev.129.13.3033) PubMed DOI PMC
Graham A, Richardson J. 2012. Developmental and evolutionary origins of the pharyngeal apparatus. EvoDevo. 3, 24. (10.1186/2041-9139-3-24) PubMed DOI PMC
Ogasawara M, Wada H, Peters H, Satoh N. 1999. Developmental expression of Pax1/9 genes in urochordate and hemichordate gills: insight into function and evolution of the pharyngeal epithelium. Dev. Camb. Engl. 126, 2539-2550. PubMed
Holland ND, Holland LZ, Kozmik Z. 1995. An amphioxus Pax gene, AmphiPax-1, expressed in embryonic endoderm, but not in mesoderm: implications for the evolution of class I paired box genes. Mol. Mar. Biol. Biotechnol. 4, 206-214. (10.1007/BF02921616) PubMed DOI
Kozmik Z, et al. 2007. Pax–Six–Eya–Dach network during amphioxus development: Conservation in vitro but context specificity in vivo. Dev. Biol. 306, 143-159. (10.1016/j.ydbio.2007.03.009) PubMed DOI
Ogasawara M, Shigetani Y, Hirano S, Satoh N, Kuratani S. 2000. Pax1/Pax9-related genes in an Agnathan Vertebrate, Lampetra japonica: expression pattern of LjPax9 implies sequential evolutionary events toward the gnathostome body plan. Dev. Biol. 223, 399-410. (10.1006/dbio.2000.9756) PubMed DOI
Adachi N, Takechi M, Hirai T, Kuratani S. 2012. Development of the head and trunk mesoderm in the dogfish, Scyliorhinus torazame: II. Comparison of gene expression between the head mesoderm and somites with reference to the origin of the vertebrate head. Evol. Dev. 14, 257-276. (10.1111/j.1525-142X.2012.00543.x) PubMed DOI
Mise T, Iijima M, Inohaya K, Kudo A, Wada H. 2008. Function of Pax1 and Pax9 in the sclerotome of medaka fish. Genesis 46, 185-192. (10.1002/dvg.20381) PubMed DOI
Sánchez RS, Sánchez SS. 2013. Characterization of pax1, pax9, and uncx sclerotomal genes during Xenopus laevis embryogenesis. Dev. Dyn. 242, 572-579. PubMed
Müller TS, Ebensperger C, Neubüser A, Koseki H, Balling R, Christ B, Wilting J. 1996. Expression of Avian Pax1 and Pax9 Is intrinsically regulated in the pharyngeal endoderm, but depends on environmental influences in the paraxial mesoderm. Dev. Biol. 178, 403-417. (10.1006/dbio.1996.0227) PubMed DOI
Peters H, Neubüser A, Kratochwil K, Balling R. 1998. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev. 12, 2735-2747. (10.1101/gad.12.17.2735) PubMed DOI PMC
Sato S, Ikeda K, Shioi G, Nakao K, Yajima H, Kawakami K. 2012. Regulation of Six1 expression by evolutionarily conserved enhancers in tetrapods. Dev. Biol. 368, 95-108. (10.1016/j.ydbio.2012.05.023) PubMed DOI
Ishihara T, Ikeda K, Sato S, Yajima H, Kawakami K. 2008. Differential expression of Eya1 and Eya2 during chick early embryonic development. Gene Expr. Patterns 8, 357-367. (10.1016/j.gep.2008.01.003) PubMed DOI
Yamagishi H, Maeda J, Hu T, McAnally J, Conway SJ, Kume T, Meyers EN, Yamagishi C, Srivastava D. 2003. Tbx1 is regulated by tissue-specific forkhead proteins through a common Sonic hedgehog-responsive enhancer. Genes Dev. 17, 269-281. (10.1101/gad.1048903) PubMed DOI PMC
Mahadevan NR, Horton AC, Gibson-Brown JJ. 2004. Developmental expression of the amphioxus Tbx1/10 gene illuminates the evolution of vertebrate branchial arches and sclerotome. Dev. Genes Evol. 214, 559-566. (10.1007/s00427-004-0433-1) PubMed DOI
Sauka-Spengler T, Le Mentec C, Lepage M, Mazan S. 2002. Embryonic expression of Tbx1, a DiGeorge syndrome candidate gene, in the lamprey Lampetrafluviatilis. Gene Expr. Patterns. 2, 99-103. (10.1016/S0925-4773(02)00301-5) PubMed DOI
Choe CP, Crump JG. 2014. Tbx1 controls the morphogenesis of pharyngeal pouch epithelia through mesodermal Wnt11r and Fgf8a. Dev. Camb. 141, 3583-3593. PubMed PMC
Ataliotis P, Ivins S, Mohun TJ, Scambler PJ. 2005. XTbx1 is a transcriptional activator involved in head and pharyngeal arch development in Xenopus laevis. Dev. Dyn. 232, 979-991. (10.1002/dvdy.20276) PubMed DOI
Garg V, Yamagishi C, Hu T, Kathiriya IS, Yamagishi H, Srivastava D. 2001. Tbx1, a DiGeorge syndrome candidate gene, is regulated by sonic hedgehog during pharyngeal arch development. Dev. Biol. 235, 62-73. (10.1006/dbio.2001.0283) PubMed DOI
Chapman DL, et al. 1996. Expression of the T-box family genes, Tbx1-Tbx5, during early mouse development. Dev. Dyn. 206, 379-390. (10.1002/(SICI)1097-0177(199608)206:4<379::AID-AJA4>3.0.CO;2-F) PubMed DOI
Hitachi K, Danno H, Tazumi S, Aihara Y, Uchiyama H, Okabayashi K, Kondow A, Asashima M. 2009. The Xenopus Bowline/Ripply family proteins negatively regulate the transcriptional activity of T-box transcription factors. Int. J. Dev. Biol. 53, 631-639. (10.1387/ijdb.082823kh) PubMed DOI
Okubo T, Kawamura A, Takahashi J, Yagi H, Morishima M, Matsuoka R, Takada S. 2011. Ripply3, a Tbx1 repressor, is required for development of the pharyngeal apparatus and its derivatives in mice. Development 138, 339-348. (10.1242/dev.054056) PubMed DOI
Okada K, Inohaya K, Mise T, Kudo A, Takada S, Wada H. 2016. Reiterative expression of pax1 directs pharyngeal pouch segmentation in medaka. Development 143, 1800-1810. PubMed
Bertrand S, Camasses A, Somorjai I, Belgacem MR, Chabrol O, Escande ML, Pontarotti P, Escriva H. 2011. Amphioxus FGF signaling predicts the acquisition of vertebrate morphological traits. Proc. Natl Acad. Sci. USA 108, 9160-9165. (10.1073/pnas.1014235108) PubMed DOI PMC
Jandzik D, Hawkins MB, Cattell MV, Cerny R, Square TA, Medeiros DM. 2014. Roles for FGF in lamprey pharyngeal pouch formation and skeletogenesis highlight ancestral functions in the vertebrate head. Development 141, 629-638. (10.1242/dev.097261) PubMed DOI
Walshe J, Mason I. 2003. Fgf signalling is required for formation of cartilage in the head. Dev. Biol. 264, 522-536. (10.1016/j.ydbio.2003.08.010) PubMed DOI
Mahmood R, Kiefer P, Guthrie S, Dickson C, Mason I. 1995. Multiple roles for FGF-3 during cranial neural development in the chicken. Development 121, 1399-1410. (10.1242/dev.121.5.1399) PubMed DOI
Stolte D, Huang R, Christ B. 2002. Spatial and temporal pattern of Fgf-8 expression during chicken development. Anat. Embryol. (Berl) 205, 1-6. (10.1007/s00429-002-0227-z) PubMed DOI
Crump JG, Maves L, Lawson ND, Weinstein BM, Kimmel CB. 2004. An essential role for Fgfs in endodermal pouch formation influences later craniofacial skeletal patterning. Dev. Camb. Engl. 131, 5703-5716. PubMed
Moore-Scott BA, Manley NR. 2005. Differential expression of Sonic hedgehog along the anterior-posterior axis regulates patterning of pharyngeal pouch endoderm and pharyngeal endoderm-derived organs. Dev. Biol. 278, 323-335. (10.1016/j.ydbio.2004.10.027) PubMed DOI
Stundl J, et al. 2022. Efficient CRISPR mutagenesis in sturgeon demonstrates its utility in large, slow-maturing vertebrates. Front. Cell Dev. Biol. 10, 750833. (10.3389/fcell.2022.750833) PubMed DOI PMC
Minarik M, et al. 2017. Pre-oral gut contributes to facial structures in non-Teleost fishes. Nature 547, 209-212. (10.1038/nature23008) PubMed DOI
Satoh N, et al. 2014. On a possible evolutionary link of the stomochord of hemichordates to pharyngeal organs of chordates. Genesis 52, 925-934. (10.1002/dvg.22831) PubMed DOI PMC
Yu JK, Holland LZ, Jamrich M, Blitz IL, Hollan ND. 2002. AmphiFoxE4, an amphioxus winged helix/forkhead gene encoding a protein closely related to vertebrate thyroid transcription factor-2: expression during pharyngeal development. Evol. Dev. 4, 9-15. (10.1046/j.1525-142x.2002.01057.x) PubMed DOI
Dettlaff TA, Ginsburg AS, Schmalhausen OI. 1993. Sturgeon fishes. Developmental biology and aquaculture. Berlin, Germany: Springer.
Diedhiou S, Bartsch P. 2009. Staging of the early development of Polypterus (Cladistia: actinopterygii). In: Development of non-Teleost fishes (eds YW Kunz-Ramsay, CA Leur, BG Kapoor), pp. 104-109. Enfield: Science Publishers. (https://www.researchgate.net/publication/280713312_Staging_of_The_Early_Development_of_Polypterus_Cladistia_Actinopterygii)
Quinlan R, Martin P, Graham A. 2004. The role of actin cables in directing the morphogenesis of the pharyngeal pouches. Development 131, 593-599. (10.1242/dev.00950) PubMed DOI
Schlosser G. 2021. Vertebrate cranial placodes, 1st edn. New York, NY: CRC Press.
Gibbs MA, Northcutt RG. 2004. Development of the lateral line system in the shovelnose sturgeon. Brain Behav. Evol. 64, 70-84. (10.1159/000079117) PubMed DOI
Lowe CJ, Clarke DN, Medeiros DM, Rokhsar DS, Gerhart J. 2015. The deuterostome context of chordate origins. Nature 520, 456-465. (10.1038/nature14434) PubMed DOI
Cameron CB. 2005. A phylogeny of the hemichordates based on morphological characters. Can. J. Zool. 83, 196-215. (10.1139/z04-190) DOI
Röttinger E, Lowe CJ. 2012. Evolutionary crossroads in developmental biology: hemichordates. Dev. Camb. Engl. 139, 2463-2475. PubMed
Holland ND, Holland LZ, Holland PWH. 2015. Scenarios for the making of vertebrates. Nature 520, 450-455. (10.1038/nature14433) PubMed DOI
Yasui K, Kaji T. 2008. The lancelet and ammocoete mouths. Zoolog. Sci. 25, 1012-1019. (10.2108/zsj.25.1012) PubMed DOI
Hatschek B. 1881. Studien über Entwicklung des Amphioxus. In Arbeiten aus dem zoologischen Institut der Universität Wien und der Zoologischen Station Triest, pp. 1-88. Vienna, Austria.
Holland ND, Paris M, Koop D. 2009. The club-shaped gland of amphioxus: export of secretion to the pharynx in pre-metamorphic larvae and apoptosis during metamorphosis. Acta Zool. 90, 372-379. (10.1111/j.1463-6395.2008.00379.x) DOI
Goodrich ES. 1917. ‘Proboscis pores’ in craniate vertebrates, a suggestion concerning the premandibular somites and hypophysis. Q. J. Microsc. Sci. 62, 539-553.
Stach T. 2002. Minireview: On the homology of the protocoel in Cephalochordata and ‘lower’ Deuterostomia. Acta Zool. 83, 25-31. (10.1046/j.1463-6395.2002.00097.x) DOI
MacBride EW. 1898. The early development of amphioxus. Q. J. Microsc. Sci. s2–40, 589-612.
Tian Q, Zhao F, Zeng H, Zhu M, Jiang B. 2022. Ultrastructure reveals ancestral vertebrate pharyngeal skeleton in yunnanozoans. Science 377, 218-222. (10.1126/science.abm2708) PubMed DOI
Hirschberger C, Gillis JA. 2022. The pseudobranch of jawed vertebrates is a mandibular arch-derived gill. Development 149, dev200184. (10.1242/dev.200184) PubMed DOI PMC
Thiruppathy M, Fabian P, Gillis JA, Crump JG. 2022. Gill developmental program in the teleost mandibular arch. eLife 11, e78170. (10.7554/eLife.78170) PubMed DOI PMC
Dickinson AJG, Sive H. 2006. Development of the primary mouth in Xenopus laevis. Dev. Biol. 295, 700-713. (10.1016/j.ydbio.2006.03.054) PubMed DOI
Dickinson AJG, Sive HL. 2009. The Wnt antagonists Frzb-1 and crescent locally regulate basement membrane dissolution in the developing primary mouth. Development 136, 1071-1081. (10.1242/dev.032912) PubMed DOI PMC
Christiaen L, Jaszczyszyn Y, Kerfant M, Kano S, Thermes V, Joly JS. 2007. Evolutionary modification of mouth position in deuterostomes. Semin. Cell Dev. Biol. 18, 502-511. (10.1016/j.semcdb.2007.06.002) PubMed DOI
Veeman MT, Newman-Smith E, El-Nachef D, Smith WC. 2010. The ascidian mouth opening is derived from the anterior neuropore: reassessing the mouth/neural tube relationship in chordate evolution. Dev. Biol. 344, 138-149. (10.1016/j.ydbio.2010.04.028) PubMed DOI
Kuratani S, Adachi N, Wada N, Oisi Y, Sugahara F. 2013. Developmental and evolutionary significance of the mandibular arch and prechordal/premandibular cranium in vertebrates: revising the heterotopy scenario of gnathostome jaw evolution. J. Anat. 222, 41-55. (10.1111/j.1469-7580.2012.01505.x) PubMed DOI PMC
Soukup V, Horácek I, Cerny R. 2013. Development and evolution of the vertebrate primary mouth. J. Anat. 222, 79-99. (10.1111/j.1469-7580.2012.01540.x) PubMed DOI PMC
von Kupffer C. 1894. Studien zur vergleichenden Entwicklungsgeschichte des Kopfes der Kranioten. München, Germany: J.F. Lehmann.
Parker KM. 1917. The development of the hypophysis cerebri, pre-oral gut, and related structures in the Marsupialia. J. Anat. 51, 181-249. PubMed PMC
Allis EP. 1938. Concerning the development of the prechordal portion of the vertebrate head. J. Anat. 72, 584-607. PubMed PMC
Huettner AF. 1941. Fundamentals of comparative embryology of the vertebrates. Revised edition. New York, NY: Macmillan Co.
Kuratani S, Horigome N, Hirano S. 1999. Developmental morphology of the head mesoderm and reevaluation of segmental theories of the vertebrate head: evidence from embryos of an Agnathan vertebrate, Lampetra japonica. Dev. Biol. 210, 381-400. (10.1006/dbio.1999.9266) PubMed DOI
Adachi N, Kuratani S. 2012. Development of head and trunk mesoderm in the dogfish, Scyliorhinus torazame: I. Embryology and morphology of the head cavities and related structures. Evol. Dev. 14, 234-256. (10.1111/j.1525-142X.2012.00542.x) PubMed DOI
Seessel A. 1877. Zur Entwicklungsgeschichte des Vorderdarmes. Arch Für Anat Entwickelungsgeschichte 1, 449-467.
Zeleny C. 1901. The early development of the hypophysis in chelonia. Biol. Bull. 2, 267-281. (10.2307/1535704) DOI
Adelmann H. 1922. The significance of the prechordal plate: an interpretative study. Am. J. Anat. 31, 55-101. (10.1002/aja.1000310104) DOI
Seifert R, Jacob M, Jacob HJ. 1993. The avian prechordal head region: a morphological study. J. Anat. 183, 75-89. PubMed PMC
Ferran JL, Irimia M, Puelles L. 2022. Is there a prechordal region and an acroterminal domain in amphioxus? Brain Behav. Evol. 96, 334-352. (10.1159/000521966) PubMed DOI
Sambasivan R, Kuratani S, Tajbakhsh S. 2011. An eye on the head: the development and evolution of craniofacial muscles. Dev. Camb. Engl. 138, 2401-2415. PubMed
Kuratani S, Adachi N. 2016. What are head cavities? — a history of studies on vertebrate head segmentation. Zoolog. Sci. 33, 213-228. (10.2108/zs150181) PubMed DOI
Adelmann HB. 1932. The development of the prechordal plate and mesoderm of Amblystoma punctatum. J. Morphol. 54, 1-67. (10.1002/jmor.1050540102) DOI
Horackova A, Pospisilova A, Stundl J, Minarik M, Jandzik D, Cerny R. 2023. Pre-mandibular pharyngeal pouches in early non-teleost fish embryos. Figshare. (10.6084/m9.figshare.c.6806561) PubMed DOI PMC
Pre-mandibular pharyngeal pouches in early non-teleost fish embryos
figshare
10.6084/m9.figshare.c.6806561