Bifidobacterium β-Glucosidase Activity and Fermentation of Dietary Plant Glucosides Is Species and Strain Specific
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2018100
METROFOOD-CZ
CZ.02.1.01/0.0/0.0/16_019/0000845
European Regional Development Fund-Project
PubMed
32503148
PubMed Central
PMC7355683
DOI
10.3390/microorganisms8060839
PII: microorganisms8060839
Knihovny.cz E-zdroje
- Klíčová slova
- amygdalin, antibacterial activity, arbutin, bifidobacteria, esculin, hydroquinone, β-glucosidase,
- Publikační typ
- časopisecké články MeSH
Dietary plant glucosides are phytochemicals whose bioactivity and bioavailability can be modified by glucoside hydrolase activity of intestinal microbiota through the release of acylglycones. Bifidobacteria are gut commensals whose genomic potential indicates host-adaption as they possess a diverse set of glycosyl hydrolases giving access to a variety of dietary glycans. We hypothesized bifidobacteria with β-glucosidase activity could use plant glucosides as fermentation substrate and tested 115 strains assigned to eight different species and from different hosts for their potential to express β-glucosidases and ability to grow in the presence of esculin, amygdalin, and arbutin. Concurrently, the antibacterial activity of arbutin and its acylglycone hydroquinone was investigated. Beta-glucosidase activity of bifidobacteria was species specific and most prevalent in species occurring in human adults and animal hosts. Utilization and fermentation profiles of plant glucosides differed between strains and might provide a competitive benefit enabling the intestinal use of dietary plant glucosides as energy sources. Bifidobacterial β-glucosidase activity can increase the bioactivity of plant glucosides through the release of acylglycone.
Zobrazit více v PubMed
Biernat K.A., Li B., Redinbo M.R. Microbial unmasking of plant glycosides. MBio. 2018;9:e02433-17. doi: 10.1128/mBio.02433-17. PubMed DOI PMC
De Arriba S.G., Naser B., Nolte K.-U. Risk assessment of free hydroquinone derived from Arctostaphylos Uva-ursi folium herbal preparations. Int. J. Toxicol. 2013;32:442–453. doi: 10.1177/1091581813507721. PubMed DOI
Theilmann M.C., Goh Y.J., Nielsen K.F., Klaenhammer T.R., Barrangou R., Abou Hachem M. Lactobacillus acidophilus metabolizes dietary plant glucosides and externalizes their bioactive phytochemicals. MBio. 2017;8 doi: 10.1128/mBio.01421-17. PubMed DOI PMC
Jurica K., Gobin I., Kremer D., Čepo D.V., Grubešić R.J., Karačonji I.B., Kosalec I. Arbutin and its metabolite hydroquinone as the main factors in the antimicrobial effect of strawberry tree (Arbutus unedo L.) leaves. J. Herb. Med. 2017;8:17–23. doi: 10.1016/j.hermed.2017.03.006. DOI
Dabek M., McCrae S.I., Stevens V.J., Duncan S.H., Louis P. Distribution of β-glucosidase and β-glucuronidase activity and of β-glucuronidase gene gus in human colonic bacteria. FEMS Microbiol. Ecol. 2008;66:487–495. doi: 10.1111/j.1574-6941.2008.00520.x. PubMed DOI
Ventura M., Turroni F., Motherway M.O., MacSharry J., van Sinderen D. Host-microbe interactions that facilitate gut colonization by commensal bifidobacteria. Trends Microbiol. 2012;20:467–476. doi: 10.1016/j.tim.2012.07.002. PubMed DOI
Russell D.A., Ross R.P., Fitzgerald G.F., Stanton C. Metabolic activities and probiotic potential of bifidobacteria. Int. J. Food Microbiol. 2011;149:88–105. doi: 10.1016/j.ijfoodmicro.2011.06.003. PubMed DOI
Schwab C., Ruscheweyh H.J., Bunesova V., Pham V.T., Beerenwinkel N., Lacroix C. Trophic interactions of infant bifidobacteria and Eubacterium hallii during L-fucose and fucosyllactose degradation. Front. Microbiol. 2017;8 doi: 10.3389/fmicb.2017.00095. PubMed DOI PMC
Turroni F., Milani C., Duranti S., Mahony J., van Sinderen D., Ventura M. Glycan utilization and cross-feeding activities by bifidobacteria. Trends Microbiol. 2018;26:339–350. doi: 10.1016/j.tim.2017.10.001. PubMed DOI
Milani C., Turroni F., Duranti S., Lugli G.A., Mancabelli L., Ferrario C., Van Sinderen D., Ventura M. Genomics of the genus Bifidobacterium reveals species-specific adaptation to the glycan-rich gut environment. Appl. Environ. Microbiol. 2016;82:980–991. doi: 10.1128/AEM.03500-15. PubMed DOI PMC
Bunesova V., Killer J., Javurkova B., Vlkova E., Tejnecky V., Musilova S., Rada V. Diversity of the subspecies Bifidobacterium animalis subsp. lactis. Anaerobe. 2017;44:40–47. doi: 10.1016/j.anaerobe.2017.01.006. PubMed DOI
Bottacini F., Morrissey R., Esteban-Torres M., James K., Van Breen J., Dikareva E., Egan M., Lambert J., Van Limpt K., Knol J., et al. Comparative genomics and genotype-phenotype associations in Bifidobacterium breve. Sci. Rep. 2018;8 doi: 10.1038/s41598-018-28919-4. PubMed DOI PMC
Derrien M., van Hylckama Vlieg J.E.T. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol. 2015;23:354–366. doi: 10.1016/j.tim.2015.03.002. PubMed DOI
Bunešová V., Joch M., Musilová S., Rada V. Bifidobacteria, lactobacilli, and short chain fatty acids of vegetarians and omnivores. Sci. Agric. Bohem. 2017;48:47–54. doi: 10.1515/sab-2017-0007. DOI
Makino H., Kushiro A., Ishikawa E., Kubota H., Gawad A., Sakai T., Oishi K., Martin R., Ben-Amor K., Knol J. Mother-to-infant transmission of intestinal bifidobacterial strains has an impact on the early development of vaginally delivered infant’s microbiota. PLoS ONE. 2013;8:e78331. doi: 10.1371/journal.pone.0078331. PubMed DOI PMC
Nouioui I., Carro L., García-López M., Meier-Kolthoff J.P., Woyke T., Kyrpides N.C., Pukall R., Klenk H.-P., Goodfellow M., Göker M. Genome-based taxonomic classification of the phylum Actinobacteria. Front. Microbiol. 2018;9:2007. doi: 10.3389/fmicb.2018.02007. PubMed DOI PMC
Sharma V., Mobeen F., Prakash T. Exploration of survival traits, probiotic determinants, host interactions, and functional evolution of bifidobacterial genomes using comparative genomics. Genes. 2018;9:477. doi: 10.3390/genes9100477. PubMed DOI PMC
Turroni F., Peano C., Pass D.A., Foroni E., Severgnini M., Claesson M.J., Kerr C., Hourihane J., Murray D., Fuligni F. Diversity of bifidobacteria within the infant gut microbiota. PLoS ONE. 2012;7:e36957. doi: 10.1371/journal.pone.0036957. PubMed DOI PMC
Duranti S., Lugli G.A., Milani C., James K., Mancabelli L., Turroni F., Alessandri G., Mangifesta M., Mancino W., Ossiprandi M.C., et al. Bifidobacterium bifidum and the infant gut microbiota: An intriguing case of microbe-host co-evolution. Environ. Microbiol. 2019;21:3683–3695. doi: 10.1111/1462-2920.14705. PubMed DOI
Masco L., Ventura M., Zink R., Huys G., Swings J. Polyphasic taxonomic analysis of Bifidobacterium animalis and Bifidobacterium lactis reveals relatedness at the subspecies level: Reclassification of Bifidobacterium animalis as Bifidobacterium animalis subsp. animalis subsp. nov. and Bifidobacterium lactis as Bifidobacterium animalis subsp. lactis subsp. nov. Int. J. Syst. Evol. Microbiol. 2004;54:1137–1143. doi: 10.1099/ijs.0.03011-0. PubMed DOI
Henne K., Rheinberg A., Melzer-Krick B., Conrads G. Aciduric microbial taxa including Scardovia wiggsiae and Bifidobacterium spp. in caries and caries free subjects. Anaerobe. 2015;35:60–65. doi: 10.1016/j.anaerobe.2015.04.011. PubMed DOI
Neves B.G., Stipp R.N., Bezerra D.D.S., Guedes S.F.D.F., Rodrigues L.K.A. Quantitative analysis of biofilm bacteria according to different stages of early childhood caries. Arch. Oral. Biol. 2018;96:155–161. doi: 10.1016/j.archoralbio.2018.09.007. PubMed DOI
Modrackova N., Makovska M., Mekadim C., Vlkova E., Tejnecky V., Bolechova P., Bunesova V. Prebiotic potential of natural gums and starch for bifidobacteria of variable origins. Bioact. Carbohydr. Diet. Fibre. 2019;20 doi: 10.1016/j.bcdf.2019.100199. DOI
Bunesova V., Domig K.J., Killer J., Vlkova E., Kopecny J., Mrazek J., Rockova S., Rada V. Characterization of bifidobacteria suitable for probiotic use in calves. Anaerobe. 2012;18:166–168. doi: 10.1016/j.anaerobe.2011.09.008. PubMed DOI
Bunesova V., Vlkova E., Killer J., Rada V., Rockova S. Identification of Bifidobacterium strains from faeces of lambs. Small Rumin. Res. 2012;105:355–360. doi: 10.1016/j.smallrumres.2011.12.004. DOI
Pei K., Xiong Y., Li X., Jiang H., Xiong Y. Colorimetric ELISA with an acid–base indicator for sensitive detection of ochratoxin A in corn samples. Anal. Methods. 2018;10:30–36. doi: 10.1039/C7AY01959A. DOI
Youn S.Y., Park M.S., Ji G.E. Identification of the β-glucosidase gene from Bifidobacterium animalis subsp. lactis and its expression in B. bifidum BGN4. J. Microbiol. Biotechnol. 2012;22:1714–1723. doi: 10.4014/jmb.1208.08028. PubMed DOI
Guadamuro L., Flórez A.B., Alegría Á., Vázquez L., Mayo B. Characterization of four β-glucosidases acting on isoflavone-glycosides from Bifidobacterium pseudocatenulatum IPLA 36007. Food Res. Int. 2017;100:522–528. doi: 10.1016/j.foodres.2017.07.024. PubMed DOI
Aziz R.K., Bartels D., Best A., DeJongh M., Disz T., Edwards R.A., Formsma K., Gerdes S., Glass E.M., Kubal M., et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008;9 doi: 10.1186/1471-2164-9-75. PubMed DOI PMC
Yin Y., Mao X., Yang J., Chen X., Mao F., Xu Y. DbCAN: A web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40:W445–W451. doi: 10.1093/nar/gks479. PubMed DOI PMC
Jung I.H., Lee J.H., Hyun Y.J., Kim D.H. Metabolism of ginsenoside Rb1 by human intestinal microflora and cloning of its metabolizing β-D-glucosidase from Bifidobacterium longum H-1. Biol. Pharm. Bull. 2012;35:573–581. doi: 10.1248/bpb.35.573. PubMed DOI
Florindo R.N., Souza V.P., Manzine L.R., Camilo C.M., Marana S.R., Polikarpov I., Nascimento A.S. Structural and biochemical characterization of a GH3 β-glucosidase from the probiotic bacteria Bifidobacterium adolescentis. Biochimie. 2018;148:107–115. doi: 10.1016/j.biochi.2018.03.007. PubMed DOI
Yang L., Ding W., Xu Y., Wu D., Li S., Chen J., Guo B. New insights into the antibacterial activity of hydroxycoumarins against Ralstonia solanacearum. Molecules. 2016;21:468. doi: 10.3390/molecules21040468. PubMed DOI PMC
Rúa J., Fernández-Álvarez L., De Castro C., Del Valle P., De Arriaga D., García-Armesto M.R. Antibacterial activity against foodborne Staphylococcus aureus and antioxidant capacity of various pure phenolic compounds. Foodborne Path Dis. 2011;8:149–157. doi: 10.1089/fpd.2010.0659. PubMed DOI
Ma C., He N., Zhao Y., Xia D., Wei J., Kang W. Antimicrobial mechanism of hydroquinone. Appl. Biochem. Biotechnol. 2019;189:1291–1303. doi: 10.1007/s12010-019-03067-1. PubMed DOI
Byeon S.E., Yi Y.S., Lee J., Yang W.S., Kim J.H., Kim J., Hong S., Kim J.-H., Cho J.Y. Hydroquinone exhibits in vitro and in vivo anti-cancer activity in cancer cells and mice. Int. J. Mol. Sci. 2018;19:903. doi: 10.3390/ijms19030903. PubMed DOI PMC
Horn C.M., Aucamp J., Smit F.J., Seldon R., Jordaan A., Warner D.F., N’Da D.D. Synthesis and in vitro antimycobacterial and antileishmanial activities of hydroquinone-triazole hybrids. Med. Chem. Res. 2020 doi: 10.1007/s00044-020-02553-0. DOI
Mykkänen H., Tikka J., Pitkänen T., Hänninen O. Fecal bacterial enzyme activities in infants increase with age and adoption of adult-type diet. J. Pediatr. Gastroenterol. Nutr. 1997;25:312–316. doi: 10.1097/00005176-199709000-00012. PubMed DOI
De Vries W., Stouthamer A. Pathway of glucose fermentation in relation to the taxonomy of bifidobacteria. J. Bacteriol. 1967;93:574–576. doi: 10.1128/JB.93.2.574-576.1967. PubMed DOI PMC
Palframan R.J., Gibson G.R., Rastall R.A. Carbohydrate preferences of Bifidobacterium species isolated from the human gut. Curr. Issues Intest. Microbiol. 2003;4:71–75. PubMed
Van der Meulen R., Adriany T., Verbrugghe K., De Vuyst L. Kinetic analysis of bifidobacterial metabolism reveals a minor role for succinic acid in the regeneration of NAD+ through its growth-associated production. Appl. Environ. Microbiol. 2006;72:5204–5210. doi: 10.1128/AEM.00146-06. PubMed DOI PMC
Metabolic diversity and responses of anteater clostridial isolates to chitin-based substrates