Bifidobacterium β-Glucosidase Activity and Fermentation of Dietary Plant Glucosides Is Species and Strain Specific

. 2020 Jun 03 ; 8 (6) : . [epub] 20200603

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32503148

Grantová podpora
LM2018100 METROFOOD-CZ
CZ.02.1.01/0.0/0.0/16_019/0000845 European Regional Development Fund-Project

Odkazy

PubMed 32503148
PubMed Central PMC7355683
DOI 10.3390/microorganisms8060839
PII: microorganisms8060839
Knihovny.cz E-zdroje

Dietary plant glucosides are phytochemicals whose bioactivity and bioavailability can be modified by glucoside hydrolase activity of intestinal microbiota through the release of acylglycones. Bifidobacteria are gut commensals whose genomic potential indicates host-adaption as they possess a diverse set of glycosyl hydrolases giving access to a variety of dietary glycans. We hypothesized bifidobacteria with β-glucosidase activity could use plant glucosides as fermentation substrate and tested 115 strains assigned to eight different species and from different hosts for their potential to express β-glucosidases and ability to grow in the presence of esculin, amygdalin, and arbutin. Concurrently, the antibacterial activity of arbutin and its acylglycone hydroquinone was investigated. Beta-glucosidase activity of bifidobacteria was species specific and most prevalent in species occurring in human adults and animal hosts. Utilization and fermentation profiles of plant glucosides differed between strains and might provide a competitive benefit enabling the intestinal use of dietary plant glucosides as energy sources. Bifidobacterial β-glucosidase activity can increase the bioactivity of plant glucosides through the release of acylglycone.

Zobrazit více v PubMed

Biernat K.A., Li B., Redinbo M.R. Microbial unmasking of plant glycosides. MBio. 2018;9:e02433-17. doi: 10.1128/mBio.02433-17. PubMed DOI PMC

De Arriba S.G., Naser B., Nolte K.-U. Risk assessment of free hydroquinone derived from Arctostaphylos Uva-ursi folium herbal preparations. Int. J. Toxicol. 2013;32:442–453. doi: 10.1177/1091581813507721. PubMed DOI

Theilmann M.C., Goh Y.J., Nielsen K.F., Klaenhammer T.R., Barrangou R., Abou Hachem M. Lactobacillus acidophilus metabolizes dietary plant glucosides and externalizes their bioactive phytochemicals. MBio. 2017;8 doi: 10.1128/mBio.01421-17. PubMed DOI PMC

Jurica K., Gobin I., Kremer D., Čepo D.V., Grubešić R.J., Karačonji I.B., Kosalec I. Arbutin and its metabolite hydroquinone as the main factors in the antimicrobial effect of strawberry tree (Arbutus unedo L.) leaves. J. Herb. Med. 2017;8:17–23. doi: 10.1016/j.hermed.2017.03.006. DOI

Dabek M., McCrae S.I., Stevens V.J., Duncan S.H., Louis P. Distribution of β-glucosidase and β-glucuronidase activity and of β-glucuronidase gene gus in human colonic bacteria. FEMS Microbiol. Ecol. 2008;66:487–495. doi: 10.1111/j.1574-6941.2008.00520.x. PubMed DOI

Ventura M., Turroni F., Motherway M.O., MacSharry J., van Sinderen D. Host-microbe interactions that facilitate gut colonization by commensal bifidobacteria. Trends Microbiol. 2012;20:467–476. doi: 10.1016/j.tim.2012.07.002. PubMed DOI

Russell D.A., Ross R.P., Fitzgerald G.F., Stanton C. Metabolic activities and probiotic potential of bifidobacteria. Int. J. Food Microbiol. 2011;149:88–105. doi: 10.1016/j.ijfoodmicro.2011.06.003. PubMed DOI

Schwab C., Ruscheweyh H.J., Bunesova V., Pham V.T., Beerenwinkel N., Lacroix C. Trophic interactions of infant bifidobacteria and Eubacterium hallii during L-fucose and fucosyllactose degradation. Front. Microbiol. 2017;8 doi: 10.3389/fmicb.2017.00095. PubMed DOI PMC

Turroni F., Milani C., Duranti S., Mahony J., van Sinderen D., Ventura M. Glycan utilization and cross-feeding activities by bifidobacteria. Trends Microbiol. 2018;26:339–350. doi: 10.1016/j.tim.2017.10.001. PubMed DOI

Milani C., Turroni F., Duranti S., Lugli G.A., Mancabelli L., Ferrario C., Van Sinderen D., Ventura M. Genomics of the genus Bifidobacterium reveals species-specific adaptation to the glycan-rich gut environment. Appl. Environ. Microbiol. 2016;82:980–991. doi: 10.1128/AEM.03500-15. PubMed DOI PMC

Bunesova V., Killer J., Javurkova B., Vlkova E., Tejnecky V., Musilova S., Rada V. Diversity of the subspecies Bifidobacterium animalis subsp. lactis. Anaerobe. 2017;44:40–47. doi: 10.1016/j.anaerobe.2017.01.006. PubMed DOI

Bottacini F., Morrissey R., Esteban-Torres M., James K., Van Breen J., Dikareva E., Egan M., Lambert J., Van Limpt K., Knol J., et al. Comparative genomics and genotype-phenotype associations in Bifidobacterium breve. Sci. Rep. 2018;8 doi: 10.1038/s41598-018-28919-4. PubMed DOI PMC

Derrien M., van Hylckama Vlieg J.E.T. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol. 2015;23:354–366. doi: 10.1016/j.tim.2015.03.002. PubMed DOI

Bunešová V., Joch M., Musilová S., Rada V. Bifidobacteria, lactobacilli, and short chain fatty acids of vegetarians and omnivores. Sci. Agric. Bohem. 2017;48:47–54. doi: 10.1515/sab-2017-0007. DOI

Makino H., Kushiro A., Ishikawa E., Kubota H., Gawad A., Sakai T., Oishi K., Martin R., Ben-Amor K., Knol J. Mother-to-infant transmission of intestinal bifidobacterial strains has an impact on the early development of vaginally delivered infant’s microbiota. PLoS ONE. 2013;8:e78331. doi: 10.1371/journal.pone.0078331. PubMed DOI PMC

Nouioui I., Carro L., García-López M., Meier-Kolthoff J.P., Woyke T., Kyrpides N.C., Pukall R., Klenk H.-P., Goodfellow M., Göker M. Genome-based taxonomic classification of the phylum Actinobacteria. Front. Microbiol. 2018;9:2007. doi: 10.3389/fmicb.2018.02007. PubMed DOI PMC

Sharma V., Mobeen F., Prakash T. Exploration of survival traits, probiotic determinants, host interactions, and functional evolution of bifidobacterial genomes using comparative genomics. Genes. 2018;9:477. doi: 10.3390/genes9100477. PubMed DOI PMC

Turroni F., Peano C., Pass D.A., Foroni E., Severgnini M., Claesson M.J., Kerr C., Hourihane J., Murray D., Fuligni F. Diversity of bifidobacteria within the infant gut microbiota. PLoS ONE. 2012;7:e36957. doi: 10.1371/journal.pone.0036957. PubMed DOI PMC

Duranti S., Lugli G.A., Milani C., James K., Mancabelli L., Turroni F., Alessandri G., Mangifesta M., Mancino W., Ossiprandi M.C., et al. Bifidobacterium bifidum and the infant gut microbiota: An intriguing case of microbe-host co-evolution. Environ. Microbiol. 2019;21:3683–3695. doi: 10.1111/1462-2920.14705. PubMed DOI

Masco L., Ventura M., Zink R., Huys G., Swings J. Polyphasic taxonomic analysis of Bifidobacterium animalis and Bifidobacterium lactis reveals relatedness at the subspecies level: Reclassification of Bifidobacterium animalis as Bifidobacterium animalis subsp. animalis subsp. nov. and Bifidobacterium lactis as Bifidobacterium animalis subsp. lactis subsp. nov. Int. J. Syst. Evol. Microbiol. 2004;54:1137–1143. doi: 10.1099/ijs.0.03011-0. PubMed DOI

Henne K., Rheinberg A., Melzer-Krick B., Conrads G. Aciduric microbial taxa including Scardovia wiggsiae and Bifidobacterium spp. in caries and caries free subjects. Anaerobe. 2015;35:60–65. doi: 10.1016/j.anaerobe.2015.04.011. PubMed DOI

Neves B.G., Stipp R.N., Bezerra D.D.S., Guedes S.F.D.F., Rodrigues L.K.A. Quantitative analysis of biofilm bacteria according to different stages of early childhood caries. Arch. Oral. Biol. 2018;96:155–161. doi: 10.1016/j.archoralbio.2018.09.007. PubMed DOI

Modrackova N., Makovska M., Mekadim C., Vlkova E., Tejnecky V., Bolechova P., Bunesova V. Prebiotic potential of natural gums and starch for bifidobacteria of variable origins. Bioact. Carbohydr. Diet. Fibre. 2019;20 doi: 10.1016/j.bcdf.2019.100199. DOI

Bunesova V., Domig K.J., Killer J., Vlkova E., Kopecny J., Mrazek J., Rockova S., Rada V. Characterization of bifidobacteria suitable for probiotic use in calves. Anaerobe. 2012;18:166–168. doi: 10.1016/j.anaerobe.2011.09.008. PubMed DOI

Bunesova V., Vlkova E., Killer J., Rada V., Rockova S. Identification of Bifidobacterium strains from faeces of lambs. Small Rumin. Res. 2012;105:355–360. doi: 10.1016/j.smallrumres.2011.12.004. DOI

Pei K., Xiong Y., Li X., Jiang H., Xiong Y. Colorimetric ELISA with an acid–base indicator for sensitive detection of ochratoxin A in corn samples. Anal. Methods. 2018;10:30–36. doi: 10.1039/C7AY01959A. DOI

Youn S.Y., Park M.S., Ji G.E. Identification of the β-glucosidase gene from Bifidobacterium animalis subsp. lactis and its expression in B. bifidum BGN4. J. Microbiol. Biotechnol. 2012;22:1714–1723. doi: 10.4014/jmb.1208.08028. PubMed DOI

Guadamuro L., Flórez A.B., Alegría Á., Vázquez L., Mayo B. Characterization of four β-glucosidases acting on isoflavone-glycosides from Bifidobacterium pseudocatenulatum IPLA 36007. Food Res. Int. 2017;100:522–528. doi: 10.1016/j.foodres.2017.07.024. PubMed DOI

Aziz R.K., Bartels D., Best A., DeJongh M., Disz T., Edwards R.A., Formsma K., Gerdes S., Glass E.M., Kubal M., et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008;9 doi: 10.1186/1471-2164-9-75. PubMed DOI PMC

Yin Y., Mao X., Yang J., Chen X., Mao F., Xu Y. DbCAN: A web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40:W445–W451. doi: 10.1093/nar/gks479. PubMed DOI PMC

Jung I.H., Lee J.H., Hyun Y.J., Kim D.H. Metabolism of ginsenoside Rb1 by human intestinal microflora and cloning of its metabolizing β-D-glucosidase from Bifidobacterium longum H-1. Biol. Pharm. Bull. 2012;35:573–581. doi: 10.1248/bpb.35.573. PubMed DOI

Florindo R.N., Souza V.P., Manzine L.R., Camilo C.M., Marana S.R., Polikarpov I., Nascimento A.S. Structural and biochemical characterization of a GH3 β-glucosidase from the probiotic bacteria Bifidobacterium adolescentis. Biochimie. 2018;148:107–115. doi: 10.1016/j.biochi.2018.03.007. PubMed DOI

Yang L., Ding W., Xu Y., Wu D., Li S., Chen J., Guo B. New insights into the antibacterial activity of hydroxycoumarins against Ralstonia solanacearum. Molecules. 2016;21:468. doi: 10.3390/molecules21040468. PubMed DOI PMC

Rúa J., Fernández-Álvarez L., De Castro C., Del Valle P., De Arriaga D., García-Armesto M.R. Antibacterial activity against foodborne Staphylococcus aureus and antioxidant capacity of various pure phenolic compounds. Foodborne Path Dis. 2011;8:149–157. doi: 10.1089/fpd.2010.0659. PubMed DOI

Ma C., He N., Zhao Y., Xia D., Wei J., Kang W. Antimicrobial mechanism of hydroquinone. Appl. Biochem. Biotechnol. 2019;189:1291–1303. doi: 10.1007/s12010-019-03067-1. PubMed DOI

Byeon S.E., Yi Y.S., Lee J., Yang W.S., Kim J.H., Kim J., Hong S., Kim J.-H., Cho J.Y. Hydroquinone exhibits in vitro and in vivo anti-cancer activity in cancer cells and mice. Int. J. Mol. Sci. 2018;19:903. doi: 10.3390/ijms19030903. PubMed DOI PMC

Horn C.M., Aucamp J., Smit F.J., Seldon R., Jordaan A., Warner D.F., N’Da D.D. Synthesis and in vitro antimycobacterial and antileishmanial activities of hydroquinone-triazole hybrids. Med. Chem. Res. 2020 doi: 10.1007/s00044-020-02553-0. DOI

Mykkänen H., Tikka J., Pitkänen T., Hänninen O. Fecal bacterial enzyme activities in infants increase with age and adoption of adult-type diet. J. Pediatr. Gastroenterol. Nutr. 1997;25:312–316. doi: 10.1097/00005176-199709000-00012. PubMed DOI

De Vries W., Stouthamer A. Pathway of glucose fermentation in relation to the taxonomy of bifidobacteria. J. Bacteriol. 1967;93:574–576. doi: 10.1128/JB.93.2.574-576.1967. PubMed DOI PMC

Palframan R.J., Gibson G.R., Rastall R.A. Carbohydrate preferences of Bifidobacterium species isolated from the human gut. Curr. Issues Intest. Microbiol. 2003;4:71–75. PubMed

Van der Meulen R., Adriany T., Verbrugghe K., De Vuyst L. Kinetic analysis of bifidobacterial metabolism reveals a minor role for succinic acid in the regeneration of NAD+ through its growth-associated production. Appl. Environ. Microbiol. 2006;72:5204–5210. doi: 10.1128/AEM.00146-06. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Metabolic diversity and responses of anteater clostridial isolates to chitin-based substrates

. 2025 ; 12 () : 1459378. [epub] 20250219

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...