Metabolic diversity and responses of anteater clostridial isolates to chitin-based substrates

. 2025 ; 12 () : 1459378. [epub] 20250219

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40046417

AIM: Clostridium species, such as Clostridium perfringens, C. baratii, C. colicanis, Paraclostridium bifermentans, and Paeniclostridium sordellii, are Gram-positive, anaerobic, endospore-forming bacteria with diverse pathogenic mechanisms. While these species are commensals in the guts of variable animal species, such as anteaters, they are less frequently found in humans. The diet of anteaters, which includes chitin and formic acid, plays an important role in their specific dietary habits, as well as in clostridial metabolism. METHODS AND RESULTS: This study investigates the metabolic diversity and responses of anteater clostridial isolates to various substrates, namely chitin, chitosan, cellulose, N-acetyl-D-glucosamine (NAG), and glucose. All tested clostridia were able to grow in the presence of chitin, cellulose, NAG, and glucose, but varied in metabolite production. However, the presence of chitosan surprisingly showed an antimicrobial effect against clostridia, especially Pae. sordellii, P. bifermentans, and C. colicanis. The results demonstrate significant variations in fermentation profiles, and metabolite production across substrates and clostridial species. Acetate production was detected as common for all tested clostridia despite species variability and incoming substrates, as well as lactate, butyrate, propionate, and formate for some strains. CONCLUSION: In relation to digestion, anteater clostridia could play an important role in chitin and its degradation products, which, in the end, can influence clostridial occurrence and pathogenicity via chitosan.

Zobrazit více v PubMed

Lopetuso LR, Scaldaferri F, Petito V, Gasbarrini A. Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog. (2013) 5:23. doi: 10.1186/1757-4749-5-23, PMID: PubMed DOI PMC

Asare PT, Lee C-H, Hürlimann V, Teo Y, Cuénod A, Akduman N, et al. . A MALDI-TOF MS library for rapid identification of human commensal gut bacteria from the class Clostridia. Front Microbiol. (2023) 14:1104707. doi: 10.3389/fmicb.2023.1104707, PMID: PubMed DOI PMC

Guo P, Zhang K, Ma X, He P. Clostridium species as probiotics: potentials and challenges. J Animal Sci Biotechnol. (2020) 11:24. doi: 10.1186/s40104-019-0402-1, PMID: PubMed DOI PMC

Candeliere F. Profiling of the intestinal community of Clostridia: taxonomy and evolutionary analysis. Microbiome Res Rep. (2023) 2:13. doi: 10.20517/mrr.2022.19, PMID: PubMed DOI PMC

Montalban-Arques A, Katkeviciute E, Busenhart P, Bircher A, Wirbel J, Zeller G, et al. . Commensal Clostridiales strains mediate effective anti-cancer immune response against solid tumors. Cell Host Microbe. (2021) 29:1573–1588.e7. doi: 10.1016/j.chom.2021.08.001, PMID: PubMed DOI

Beyer-Sehlmeyer G, Glei M, Hartmann E, Hughes R, Persin C, Böhm V, et al. . Butyrate is only one of several growth inhibitors produced during gut flora-mediated fermentation of dietary fibre sources. Br J Nutr. (2003) 90:1057–70. doi: 10.1079/BJN20031003, PMID: PubMed DOI

Cruz-Morales P, Orellana CA, Moutafis G, Moonen G, Rincon G, Nielsen LK, et al. . Revisiting the evolution and taxonomy of Clostridia, a Phylogenomic update. Genome Biol Evol. (2019) 11:2035–44. doi: 10.1093/gbe/evz096, PMID: PubMed DOI PMC

Youngblut ND, Reischer GH, Walters W, Schuster N, Walzer C, Stalder G, et al. . Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat Commun. (2019) 10:2200. doi: 10.1038/s41467-019-10191-3, PMID: PubMed DOI PMC

Bourguignon T, Lo N, Dietrich C, Šobotník J, Sidek S, Roisin Y, et al. . Rampant host switching shaped the termite gut microbiome. Curr Biol. (2018) 28:649–654.e2. doi: 10.1016/j.cub.2018.01.035, PMID: PubMed DOI

Takahashi K, Kuwahara H, Horikawa Y, Izawa K, Kato D, Inagaki T, et al. . Emergence of putative energy parasites within Clostridia revealed by genome analysis of a novel endosymbiotic clade. ISME J. (2023) 17:1895–906. doi: 10.1038/s41396-023-01502-0, PMID: PubMed DOI PMC

Kim HW, Kim NK, Thompson J, De Jesus M, Rehberger J, Rehberger T, et al. . Effects of dosing non-toxigenic Clostridia on the bacterial populations and immunological responses in the intestinal tract of lactating dairy cows. Front Microbiol. (2023) 14:1107964. doi: 10.3389/fmicb.2023.1107964, PMID: PubMed DOI PMC

Amin A, Mekadim C, Modrackova N, Bolechova P, Mrazek J, Neuzil-Bunesova V. Microbiome composition and presence of cultivable commensal groups of southern tamanduas (Tamandua tetradactyla) varies with captive conditions. anim microbiome. (2024) 6:21. doi: 10.1186/s42523-024-00311-w, PMID: PubMed DOI PMC

Myers GSA, Rasko DA, Cheung JK, Ravel J, Seshadri R, DeBoy RT, et al. . Skewed genomic variability in strains of the toxigenic bacterial pathogen. Clostridium perfringens Genome Res. (2006) 16:1031–40. doi: 10.1101/gr.5238106, PMID: PubMed DOI PMC

Kiu R, Hall LJ. An update on the human and animal enteric pathogen Clostridium perfringens. Emerg Microbes Infect. (2018) 7:1–15. doi: 10.1038/s41426-018-0144-8, PMID: PubMed DOI PMC

Sheh A, Artim SC, Burns MA, Molina-Mora JA, Lee MA, Dzink-Fox J, et al. . Alterations in common marmoset gut microbiome associated with duodenal strictures. Sci Rep. (2022) 12:5277. doi: 10.1038/s41598-022-09268-9, PMID: PubMed DOI PMC

Silva-Andrade C, Martin AJ, Garrido D. Comparative genomics of Clostridium baratii reveals strain-level diversity in toxin abundance. Microorganisms. (2022) 10:213. doi: 10.3390/microorganisms10020213, PMID: PubMed DOI PMC

Ingribelli E, Modrackova N, Tejnecky V, Killer J, Schwab C, Neuzil-Bunesova V. Culture-dependent screening of endospore-forming clostridia in infant feces. BMC Microbiol. (2023) 23:347. doi: 10.1186/s12866-023-03104-4, PMID: PubMed DOI PMC

Greetham HL, Gibson GR, Giffard C, Hippe H, Merkhoffer B, Steiner U, et al. . Clostridium colicanis sp. nov., from canine faeces. Int J Syst Evol Microbiol. (2003) 53:259–62. doi: 10.1099/ijs.0.02260-0, PMID: PubMed DOI

Neuzil-Bunesova V, Lugli GA, Modrackova N, Makovska M, Mrazek J, Mekadim C, et al. . Bifidobacterium canis sp. nov., a novel member of the Bifidobacterium pseudolongum phylogenetic group isolated from faeces of a dog (Canis lupus f. familiaris). Int J Syst Evol Microbiol. (2020) 70:5040–7. doi: 10.1099/ijsem.0.004378, PMID: PubMed DOI

Aldape MJ, Bryant AE, Stevens DL. Clostridium sordellii infection: epidemiology, clinical findings, and current perspectives on diagnosis and treatment. Clin Infect Dis. (2006) 43:1436–46. doi: 10.1086/508866, PMID: PubMed DOI

Kim JY, Kim YB, Song HS, Chung W-H, Lee C, Ahn SW, et al. . Genomic analysis of a pathogenic bacterium, Paeniclostridium sordellii CBA7122 containing the highest number of rRNA operons, isolated from a human stool sample. Front Pharmacol. (2017) 8:840. doi: 10.3389/fphar.2017.00840, PMID: PubMed DOI PMC

Gohil P, Patel K, Patel S, Pandit R, Suthar V, Duggirala S, et al. . In-depth analysis of an obligate anaerobe Paraclostridium bifermentans isolated from uterus of Bubalus bubalis. Animals. (2022) 12:1765. doi: 10.3390/ani12141765, PMID: PubMed DOI PMC

Firmino MDO, Pereira HCDS, Carvalho LRRA, Guerra RR. External and digestive system morphology of the Tamandua tetradactyla. Anat Histol Embryol. (2020) 49:97–104. doi: 10.1111/ahe.12494, PMID: PubMed DOI

Teullet S, Tilak M-K, Magdeleine A, Schaub R, Weyer NM, Panaino W, et al. . Metagenomics uncovers dietary adaptations for chitin digestion in the gut microbiota of convergent myrmecophagous mammals. mSystems. (2023) 8:e00388–23. doi: 10.1128/msystems.00388-23 PubMed DOI PMC

Hungate RE. A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW. editors. Methods in Microbiology. Vol. 3, Part B. London: Academic Press. (1969). p. 117–32. doi: 10.1016/S0580-9517(08)70503-8 DOI

Modrackova N, Stovicek A, Burtscher J, Bolechova P, Killer J, Domig KJ, et al. . The bifidobacterial distribution in the microbiome of captive primates reflects parvorder and feed specialization of the host. Sci Rep. (2021) 11:15273. doi: 10.1038/s41598-021-94824-y, PMID: PubMed DOI PMC

Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. (1991) 173:697–703. doi: 10.1128/jb.173.2.697-703.1991, PMID: PubMed DOI PMC

Hall T. BioEdit: An important software for molecular biology. GERF Bull Biosci. (2011) 2:6.

Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res. (1994) 22:4673–80. doi: 10.1093/nar/22.22.4673, PMID: PubMed DOI PMC

Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, et al. . Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. (2017) 67:1613–7. doi: 10.1099/ijsem.0.001755, PMID: PubMed DOI PMC

Masco L, Huys G, Gevers D, Verbrugghen L, Swings J. Identification of Bifidobacterium species using rep-PCR fingerprinting. Syst Appl Microbiol. (2003) 26:557–63. doi: 10.1078/072320203770865864, PMID: PubMed DOI

Bunesova V, Killer J, Javurkova B, Vlkova E, Tejnecky V, Musilova S, et al. . Diversity of the subspecies Bifidobacterium animalis subsp. lactis. Anaerobe. (2017) 44:40–7. doi: 10.1016/j.anaerobe.2017.01.006, PMID: PubMed DOI

Joshi S, Robles A, Aguiar S, Delgado AG. The occurrence and ecology of microbial chain elongation of carboxylates in soils. ISME J. (2021) 15:1907–18. doi: 10.1038/s41396-021-00893-2, PMID: PubMed DOI PMC

Laue M, Han H-M, Dittmann C, Setlow P. Intracellular membranes of bacterial endospores are reservoirs for spore core membrane expansion during spore germination. Sci Rep. (2018) 8:11388. doi: 10.1038/s41598-018-29879-5, PMID: PubMed DOI PMC

Bernard K, Burdz T, Wiebe D, Alfa M, Bernier A-M. Clostridium neonatale sp. nov. linked to necrotizing enterocolitis in neonates and a clarification of species assignable to the genus Clostridium (Prazmowski 1880) emend. Lawson and Rainey 2016. Int J Syst Evol Microbiol. (2018) 68:2416–23. doi: 10.1099/ijsem.0.002827, PMID: PubMed DOI

Urvashi CS, Jain A, Sharma D, Grover V, Korpole S. Paraclostridium dentum, a novel species with pathogenic features isolated from human dental plaque sample. Anaerobe. (2020) 65:102239. doi: 10.1016/j.anaerobe.2020.102239, PMID: PubMed DOI

Zhao H, Wang J, Peng Y, Cai X, Liu Y, Huang W, et al. . Genomic insights from Paraclostridium bifermentans HD0315_2: general features and pathogenic potential. Front Microbiol. (2022) 13:928153. doi: 10.3389/fmicb.2022.928153, PMID: PubMed DOI PMC

Zhang F, Xu N, Wang W, Yu Y, Wu S. The gut microbiome of the Sunda pangolin (Manis javanica) reveals its adaptation to specialized myrmecophagy. PeerJ. (2021) 9:e11490. doi: 10.7717/peerj.11490, PMID: PubMed DOI PMC

Cai X, Peng Y, Yang G, Feng L, Tian X, Huang P, et al. . Populational genomic insights of Paraclostridium bifermentans as an emerging human pathogen. Front Microbiol. (2023) 14:1293206. doi: 10.3389/fmicb.2023.1293206, PMID: PubMed DOI PMC

Grenda T, Jarosz A, Sapała M, Grenda A, Patyra E, Kwiatek K. Clostridium perfringens—opportunistic foodborne pathogen, Its Diversity and Epidemiological Significance. Pathogens. (2023) 12:768. doi: 10.3390/pathogens12060768, PMID: PubMed DOI PMC

Xiao S, Jiang S, Qian D, Duan J. Modulation of microbially derived short-chain fatty acids on intestinal homeostasis, metabolism, and neuropsychiatric disorder. Appl Microbiol Biotechnol. (2020) 104:589–601. doi: 10.1007/s00253-019-10312-4, PMID: PubMed DOI

Wang X-M, Janssens GPJ, Xie C-G, Xie B-W, Xie Z-G, He H-J, et al. . To save pangolins: a nutritional perspective. Animals. (2022) 12:3137. doi: 10.3390/ani12223137, PMID: PubMed DOI PMC

Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. (2009) 294:1–8. doi: 10.1111/j.1574-6968.2009.01514.x, PMID: PubMed DOI

Modrackova N, Vlkova E, Tejnecky V, Schwab C, Neuzil-Bunesova V. Bifidobacterium β-glucosidase activity and fermentation of dietary plant glucosides is species and strain specific. Microorganisms. (2020) 8:839. doi: 10.3390/microorganisms8060839, PMID: PubMed DOI PMC

Dubberke ER, Reske KA, Noble-Wang J, Thompson A, Killgore G, Mayfield J, et al. . Prevalence of Clostridium difficile environmental contamination and strain variability in multiple health care facilities. Am J Infect Control. (2007) 35:315–8. doi: 10.1016/j.ajic.2006.12.006, PMID: PubMed DOI

Ricke SC, Dittoe DK, Richardson KE. Formic acid as an antimicrobial for poultry production: a review. Front Vet Sci. (2020) 7:563. doi: 10.3389/fvets.2020.00563, PMID: PubMed DOI PMC

Leuchner L, Nofs SA, Dierenfeld ES, Horvath P. Chitin supplementation in the diets of captive giant anteaters (Myrmycophaga tridactyla) for improved gastrointestinal function. J Zoo Aquarium Res. (2017) 5:92–6. doi: 10.19227/jzar.v5i2.170 DOI

Cheng SC, Liu CB, Yao XQ, Hu JY, Yin TT, Lim BK, et al. . Hologenomic insights into mammalian adaptations to myrmecophagy. Nat Sci Rev. (2023) 10:nwac174. doi: 10.1093/nsr/nwac174 PubMed DOI PMC

Lopez-Santamarina A, Mondragon ADC, Lamas A, Miranda JM, Franco CM, Cepeda A. Animal-origin prebiotics based on chitin: an alternative for the future? A Critical Review. Foods. (2020) 9:782. doi: 10.3390/foods9060782, PMID: PubMed DOI PMC

Sasi Jyothsna TS, Tushar L, Sasikala C, Ramana CV. Paraclostridium benzoelyticum gen. Nov., sp. nov., isolated from marine sediment and reclassification of Clostridium bifermentans as Paraclostridium bifermentans comb. nov. proposal of a new genus Paeniclostridium gen. Nov. to accommodate Clostridium sordellii and Clostridium ghonii. Int J Syst Evol Microbiol. (2016) 66:1268–74. doi: 10.1099/ijsem.0.000874, PMID: PubMed DOI

Landsberg JH, Tabuchi M, Rotstein DS, Subramaniam K, Rodrigues TCS, Waltzek TB, et al. . Novel lethal Clostridial infection in Florida manatees (Trichechus manatus latirostris): cause of the 2013 unusual mortality event in the Indian River lagoon. Front Mar Sci. (2022) 9:841857. doi: 10.3389/fmars.2022.841857 DOI

Li J, Zhuang S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: current state and perspectives. Eur Polym J. (2020) 138:109984. doi: 10.1016/j.eurpolymj.2020.109984 DOI

Al-Zahrani SS, Bora RS, Al-Garni SM. Antimicrobial activity of chitosan nanoparticles. Biotechnol. Biotechnologic Equip. (2021) 35:1874–80. doi: 10.1080/13102818.2022.2027816 DOI

Guarnieri A, Triunfo M, Scieuzo C, Ianniciello D, Tafi E, Hahn T, et al. . Antimicrobial properties of chitosan from different developmental stages of the bioconverter insect Hermetia illucens. Sci Rep. (2022) 12:8084. doi: 10.1038/s41598-022-12150-3, PMID: PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...