Metabolic diversity and responses of anteater clostridial isolates to chitin-based substrates
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40046417
PubMed Central
PMC11879950
DOI
10.3389/fvets.2025.1459378
Knihovny.cz E-zdroje
- Klíčová slova
- N-acetyl-D-glucosamine, antimicrobial activity, cellulose, chitin, chitosan, clostridia, fermentation, metabolites,
- Publikační typ
- časopisecké články MeSH
AIM: Clostridium species, such as Clostridium perfringens, C. baratii, C. colicanis, Paraclostridium bifermentans, and Paeniclostridium sordellii, are Gram-positive, anaerobic, endospore-forming bacteria with diverse pathogenic mechanisms. While these species are commensals in the guts of variable animal species, such as anteaters, they are less frequently found in humans. The diet of anteaters, which includes chitin and formic acid, plays an important role in their specific dietary habits, as well as in clostridial metabolism. METHODS AND RESULTS: This study investigates the metabolic diversity and responses of anteater clostridial isolates to various substrates, namely chitin, chitosan, cellulose, N-acetyl-D-glucosamine (NAG), and glucose. All tested clostridia were able to grow in the presence of chitin, cellulose, NAG, and glucose, but varied in metabolite production. However, the presence of chitosan surprisingly showed an antimicrobial effect against clostridia, especially Pae. sordellii, P. bifermentans, and C. colicanis. The results demonstrate significant variations in fermentation profiles, and metabolite production across substrates and clostridial species. Acetate production was detected as common for all tested clostridia despite species variability and incoming substrates, as well as lactate, butyrate, propionate, and formate for some strains. CONCLUSION: In relation to digestion, anteater clostridia could play an important role in chitin and its degradation products, which, in the end, can influence clostridial occurrence and pathogenicity via chitosan.
Zobrazit více v PubMed
Lopetuso LR, Scaldaferri F, Petito V, Gasbarrini A. Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog. (2013) 5:23. doi: 10.1186/1757-4749-5-23, PMID: PubMed DOI PMC
Asare PT, Lee C-H, Hürlimann V, Teo Y, Cuénod A, Akduman N, et al. . A MALDI-TOF MS library for rapid identification of human commensal gut bacteria from the class Clostridia. Front Microbiol. (2023) 14:1104707. doi: 10.3389/fmicb.2023.1104707, PMID: PubMed DOI PMC
Guo P, Zhang K, Ma X, He P. Clostridium species as probiotics: potentials and challenges. J Animal Sci Biotechnol. (2020) 11:24. doi: 10.1186/s40104-019-0402-1, PMID: PubMed DOI PMC
Candeliere F. Profiling of the intestinal community of Clostridia: taxonomy and evolutionary analysis. Microbiome Res Rep. (2023) 2:13. doi: 10.20517/mrr.2022.19, PMID: PubMed DOI PMC
Montalban-Arques A, Katkeviciute E, Busenhart P, Bircher A, Wirbel J, Zeller G, et al. . Commensal Clostridiales strains mediate effective anti-cancer immune response against solid tumors. Cell Host Microbe. (2021) 29:1573–1588.e7. doi: 10.1016/j.chom.2021.08.001, PMID: PubMed DOI
Beyer-Sehlmeyer G, Glei M, Hartmann E, Hughes R, Persin C, Böhm V, et al. . Butyrate is only one of several growth inhibitors produced during gut flora-mediated fermentation of dietary fibre sources. Br J Nutr. (2003) 90:1057–70. doi: 10.1079/BJN20031003, PMID: PubMed DOI
Cruz-Morales P, Orellana CA, Moutafis G, Moonen G, Rincon G, Nielsen LK, et al. . Revisiting the evolution and taxonomy of Clostridia, a Phylogenomic update. Genome Biol Evol. (2019) 11:2035–44. doi: 10.1093/gbe/evz096, PMID: PubMed DOI PMC
Youngblut ND, Reischer GH, Walters W, Schuster N, Walzer C, Stalder G, et al. . Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat Commun. (2019) 10:2200. doi: 10.1038/s41467-019-10191-3, PMID: PubMed DOI PMC
Bourguignon T, Lo N, Dietrich C, Šobotník J, Sidek S, Roisin Y, et al. . Rampant host switching shaped the termite gut microbiome. Curr Biol. (2018) 28:649–654.e2. doi: 10.1016/j.cub.2018.01.035, PMID: PubMed DOI
Takahashi K, Kuwahara H, Horikawa Y, Izawa K, Kato D, Inagaki T, et al. . Emergence of putative energy parasites within Clostridia revealed by genome analysis of a novel endosymbiotic clade. ISME J. (2023) 17:1895–906. doi: 10.1038/s41396-023-01502-0, PMID: PubMed DOI PMC
Kim HW, Kim NK, Thompson J, De Jesus M, Rehberger J, Rehberger T, et al. . Effects of dosing non-toxigenic Clostridia on the bacterial populations and immunological responses in the intestinal tract of lactating dairy cows. Front Microbiol. (2023) 14:1107964. doi: 10.3389/fmicb.2023.1107964, PMID: PubMed DOI PMC
Amin A, Mekadim C, Modrackova N, Bolechova P, Mrazek J, Neuzil-Bunesova V. Microbiome composition and presence of cultivable commensal groups of southern tamanduas (Tamandua tetradactyla) varies with captive conditions. anim microbiome. (2024) 6:21. doi: 10.1186/s42523-024-00311-w, PMID: PubMed DOI PMC
Myers GSA, Rasko DA, Cheung JK, Ravel J, Seshadri R, DeBoy RT, et al. . Skewed genomic variability in strains of the toxigenic bacterial pathogen. Clostridium perfringens Genome Res. (2006) 16:1031–40. doi: 10.1101/gr.5238106, PMID: PubMed DOI PMC
Kiu R, Hall LJ. An update on the human and animal enteric pathogen Clostridium perfringens. Emerg Microbes Infect. (2018) 7:1–15. doi: 10.1038/s41426-018-0144-8, PMID: PubMed DOI PMC
Sheh A, Artim SC, Burns MA, Molina-Mora JA, Lee MA, Dzink-Fox J, et al. . Alterations in common marmoset gut microbiome associated with duodenal strictures. Sci Rep. (2022) 12:5277. doi: 10.1038/s41598-022-09268-9, PMID: PubMed DOI PMC
Silva-Andrade C, Martin AJ, Garrido D. Comparative genomics of Clostridium baratii reveals strain-level diversity in toxin abundance. Microorganisms. (2022) 10:213. doi: 10.3390/microorganisms10020213, PMID: PubMed DOI PMC
Ingribelli E, Modrackova N, Tejnecky V, Killer J, Schwab C, Neuzil-Bunesova V. Culture-dependent screening of endospore-forming clostridia in infant feces. BMC Microbiol. (2023) 23:347. doi: 10.1186/s12866-023-03104-4, PMID: PubMed DOI PMC
Greetham HL, Gibson GR, Giffard C, Hippe H, Merkhoffer B, Steiner U, et al. . Clostridium colicanis sp. nov., from canine faeces. Int J Syst Evol Microbiol. (2003) 53:259–62. doi: 10.1099/ijs.0.02260-0, PMID: PubMed DOI
Neuzil-Bunesova V, Lugli GA, Modrackova N, Makovska M, Mrazek J, Mekadim C, et al. . Bifidobacterium canis sp. nov., a novel member of the Bifidobacterium pseudolongum phylogenetic group isolated from faeces of a dog (Canis lupus f. familiaris). Int J Syst Evol Microbiol. (2020) 70:5040–7. doi: 10.1099/ijsem.0.004378, PMID: PubMed DOI
Aldape MJ, Bryant AE, Stevens DL. Clostridium sordellii infection: epidemiology, clinical findings, and current perspectives on diagnosis and treatment. Clin Infect Dis. (2006) 43:1436–46. doi: 10.1086/508866, PMID: PubMed DOI
Kim JY, Kim YB, Song HS, Chung W-H, Lee C, Ahn SW, et al. . Genomic analysis of a pathogenic bacterium, Paeniclostridium sordellii CBA7122 containing the highest number of rRNA operons, isolated from a human stool sample. Front Pharmacol. (2017) 8:840. doi: 10.3389/fphar.2017.00840, PMID: PubMed DOI PMC
Gohil P, Patel K, Patel S, Pandit R, Suthar V, Duggirala S, et al. . In-depth analysis of an obligate anaerobe Paraclostridium bifermentans isolated from uterus of Bubalus bubalis. Animals. (2022) 12:1765. doi: 10.3390/ani12141765, PMID: PubMed DOI PMC
Firmino MDO, Pereira HCDS, Carvalho LRRA, Guerra RR. External and digestive system morphology of the Tamandua tetradactyla. Anat Histol Embryol. (2020) 49:97–104. doi: 10.1111/ahe.12494, PMID: PubMed DOI
Teullet S, Tilak M-K, Magdeleine A, Schaub R, Weyer NM, Panaino W, et al. . Metagenomics uncovers dietary adaptations for chitin digestion in the gut microbiota of convergent myrmecophagous mammals. mSystems. (2023) 8:e00388–23. doi: 10.1128/msystems.00388-23 PubMed DOI PMC
Hungate RE. A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW. editors. Methods in Microbiology. Vol. 3, Part B. London: Academic Press. (1969). p. 117–32. doi: 10.1016/S0580-9517(08)70503-8 DOI
Modrackova N, Stovicek A, Burtscher J, Bolechova P, Killer J, Domig KJ, et al. . The bifidobacterial distribution in the microbiome of captive primates reflects parvorder and feed specialization of the host. Sci Rep. (2021) 11:15273. doi: 10.1038/s41598-021-94824-y, PMID: PubMed DOI PMC
Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. (1991) 173:697–703. doi: 10.1128/jb.173.2.697-703.1991, PMID: PubMed DOI PMC
Hall T. BioEdit: An important software for molecular biology. GERF Bull Biosci. (2011) 2:6.
Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res. (1994) 22:4673–80. doi: 10.1093/nar/22.22.4673, PMID: PubMed DOI PMC
Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, et al. . Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. (2017) 67:1613–7. doi: 10.1099/ijsem.0.001755, PMID: PubMed DOI PMC
Masco L, Huys G, Gevers D, Verbrugghen L, Swings J. Identification of Bifidobacterium species using rep-PCR fingerprinting. Syst Appl Microbiol. (2003) 26:557–63. doi: 10.1078/072320203770865864, PMID: PubMed DOI
Bunesova V, Killer J, Javurkova B, Vlkova E, Tejnecky V, Musilova S, et al. . Diversity of the subspecies Bifidobacterium animalis subsp. lactis. Anaerobe. (2017) 44:40–7. doi: 10.1016/j.anaerobe.2017.01.006, PMID: PubMed DOI
Joshi S, Robles A, Aguiar S, Delgado AG. The occurrence and ecology of microbial chain elongation of carboxylates in soils. ISME J. (2021) 15:1907–18. doi: 10.1038/s41396-021-00893-2, PMID: PubMed DOI PMC
Laue M, Han H-M, Dittmann C, Setlow P. Intracellular membranes of bacterial endospores are reservoirs for spore core membrane expansion during spore germination. Sci Rep. (2018) 8:11388. doi: 10.1038/s41598-018-29879-5, PMID: PubMed DOI PMC
Bernard K, Burdz T, Wiebe D, Alfa M, Bernier A-M. Clostridium neonatale sp. nov. linked to necrotizing enterocolitis in neonates and a clarification of species assignable to the genus Clostridium (Prazmowski 1880) emend. Lawson and Rainey 2016. Int J Syst Evol Microbiol. (2018) 68:2416–23. doi: 10.1099/ijsem.0.002827, PMID: PubMed DOI
Urvashi CS, Jain A, Sharma D, Grover V, Korpole S. Paraclostridium dentum, a novel species with pathogenic features isolated from human dental plaque sample. Anaerobe. (2020) 65:102239. doi: 10.1016/j.anaerobe.2020.102239, PMID: PubMed DOI
Zhao H, Wang J, Peng Y, Cai X, Liu Y, Huang W, et al. . Genomic insights from Paraclostridium bifermentans HD0315_2: general features and pathogenic potential. Front Microbiol. (2022) 13:928153. doi: 10.3389/fmicb.2022.928153, PMID: PubMed DOI PMC
Zhang F, Xu N, Wang W, Yu Y, Wu S. The gut microbiome of the Sunda pangolin (Manis javanica) reveals its adaptation to specialized myrmecophagy. PeerJ. (2021) 9:e11490. doi: 10.7717/peerj.11490, PMID: PubMed DOI PMC
Cai X, Peng Y, Yang G, Feng L, Tian X, Huang P, et al. . Populational genomic insights of Paraclostridium bifermentans as an emerging human pathogen. Front Microbiol. (2023) 14:1293206. doi: 10.3389/fmicb.2023.1293206, PMID: PubMed DOI PMC
Grenda T, Jarosz A, Sapała M, Grenda A, Patyra E, Kwiatek K. Clostridium perfringens—opportunistic foodborne pathogen, Its Diversity and Epidemiological Significance. Pathogens. (2023) 12:768. doi: 10.3390/pathogens12060768, PMID: PubMed DOI PMC
Xiao S, Jiang S, Qian D, Duan J. Modulation of microbially derived short-chain fatty acids on intestinal homeostasis, metabolism, and neuropsychiatric disorder. Appl Microbiol Biotechnol. (2020) 104:589–601. doi: 10.1007/s00253-019-10312-4, PMID: PubMed DOI
Wang X-M, Janssens GPJ, Xie C-G, Xie B-W, Xie Z-G, He H-J, et al. . To save pangolins: a nutritional perspective. Animals. (2022) 12:3137. doi: 10.3390/ani12223137, PMID: PubMed DOI PMC
Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. (2009) 294:1–8. doi: 10.1111/j.1574-6968.2009.01514.x, PMID: PubMed DOI
Modrackova N, Vlkova E, Tejnecky V, Schwab C, Neuzil-Bunesova V. Bifidobacterium β-glucosidase activity and fermentation of dietary plant glucosides is species and strain specific. Microorganisms. (2020) 8:839. doi: 10.3390/microorganisms8060839, PMID: PubMed DOI PMC
Dubberke ER, Reske KA, Noble-Wang J, Thompson A, Killgore G, Mayfield J, et al. . Prevalence of Clostridium difficile environmental contamination and strain variability in multiple health care facilities. Am J Infect Control. (2007) 35:315–8. doi: 10.1016/j.ajic.2006.12.006, PMID: PubMed DOI
Ricke SC, Dittoe DK, Richardson KE. Formic acid as an antimicrobial for poultry production: a review. Front Vet Sci. (2020) 7:563. doi: 10.3389/fvets.2020.00563, PMID: PubMed DOI PMC
Leuchner L, Nofs SA, Dierenfeld ES, Horvath P. Chitin supplementation in the diets of captive giant anteaters (Myrmycophaga tridactyla) for improved gastrointestinal function. J Zoo Aquarium Res. (2017) 5:92–6. doi: 10.19227/jzar.v5i2.170 DOI
Cheng SC, Liu CB, Yao XQ, Hu JY, Yin TT, Lim BK, et al. . Hologenomic insights into mammalian adaptations to myrmecophagy. Nat Sci Rev. (2023) 10:nwac174. doi: 10.1093/nsr/nwac174 PubMed DOI PMC
Lopez-Santamarina A, Mondragon ADC, Lamas A, Miranda JM, Franco CM, Cepeda A. Animal-origin prebiotics based on chitin: an alternative for the future? A Critical Review. Foods. (2020) 9:782. doi: 10.3390/foods9060782, PMID: PubMed DOI PMC
Sasi Jyothsna TS, Tushar L, Sasikala C, Ramana CV. Paraclostridium benzoelyticum gen. Nov., sp. nov., isolated from marine sediment and reclassification of Clostridium bifermentans as Paraclostridium bifermentans comb. nov. proposal of a new genus Paeniclostridium gen. Nov. to accommodate Clostridium sordellii and Clostridium ghonii. Int J Syst Evol Microbiol. (2016) 66:1268–74. doi: 10.1099/ijsem.0.000874, PMID: PubMed DOI
Landsberg JH, Tabuchi M, Rotstein DS, Subramaniam K, Rodrigues TCS, Waltzek TB, et al. . Novel lethal Clostridial infection in Florida manatees (Trichechus manatus latirostris): cause of the 2013 unusual mortality event in the Indian River lagoon. Front Mar Sci. (2022) 9:841857. doi: 10.3389/fmars.2022.841857 DOI
Li J, Zhuang S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: current state and perspectives. Eur Polym J. (2020) 138:109984. doi: 10.1016/j.eurpolymj.2020.109984 DOI
Al-Zahrani SS, Bora RS, Al-Garni SM. Antimicrobial activity of chitosan nanoparticles. Biotechnol. Biotechnologic Equip. (2021) 35:1874–80. doi: 10.1080/13102818.2022.2027816 DOI
Guarnieri A, Triunfo M, Scieuzo C, Ianniciello D, Tafi E, Hahn T, et al. . Antimicrobial properties of chitosan from different developmental stages of the bioconverter insect Hermetia illucens. Sci Rep. (2022) 12:8084. doi: 10.1038/s41598-022-12150-3, PMID: PubMed DOI PMC