Microbiome composition and presence of cultivable commensal groups of Southern Tamanduas (Tamandua tetradactyla) varies with captive conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
38698458
PubMed Central
PMC11064412
DOI
10.1186/s42523-024-00311-w
PII: 10.1186/s42523-024-00311-w
Knihovny.cz E-zdroje
- Klíčová slova
- Anteater, Captive environment, Cultivable microbes, Diet, Fecal microbiome,
- Publikační typ
- časopisecké články MeSH
Southern Tamanduas (Tamandua tetradactyla) belong to the specialized placental myrmecophages. There is not much information about their intestinal microbiome. Moreover, due to their food specialization, it is difficult to create an adequate diet under breeding conditions. Therefore, we used 16S rDNA amplicon sequencing to analyze the fecal microbiome of captive Southern Tamanduas from four locations in the Czech Republic and evaluated the impact of the incoming diet and facility conditions on microbiome composition. Together with the microbiome analysis, we also quantified and identified cultivable commensals. The anteater fecal microbiome was dominated by the phyla Bacillota and Bacteroidota, while Pseudomonadota, Spirochaetota, and Actinobacteriota were less abundant. At the taxonomic family level, Lachnospiraceae, Prevotellaceae, Bacteroidaceae, Oscillospiraceae, Erysipelotrichaceae, Spirochaetaceae, Ruminococcaceae, Leuconostocaceae, and Streptococcaceae were mainly represented in the fecal microbiome of animals from all locations. Interestingly, Lactobacillaceae dominated in the location with a zoo-made diet. These animals also had significantly lower diversity of gut microbiome in comparison with animals from other locations fed mainly with a complete commercial diet. Moreover, captive conditions of analyzed anteater included other factors such as the enrichment of the diet with insect-based products, probiotic interventions, the presence of other animals in the exposure, which can potentially affect the composition of the microbiome and cultivable microbes. In total, 63 bacterial species from beneficial commensal to opportunistic pathogen were isolated and identified using MALDI-TOF MS in the set of more than one thousand selected isolates. Half of the detected species were present in the fecal microbiota of most animals, the rest varied across animals and locations.
Zobrazit více v PubMed
IUCN 2023. The IUCN Red List of Threatened Species. Version 2022-2. ISSN 2307-8235 https://www.iucnredlist.org
Delsuc F, et al. Convergence of gut microbiomes in myrmecophagous mammals. Mol Ecol. 2014;23(6):1301–1317. doi: 10.1111/mec.12501. PubMed DOI
Firmino MD, et al. External and digestive system morphology of the Tamandua tetradactyla. Anat Histol Embryol. 2020;49(1):97–104. doi: 10.1111/ahe.12494. PubMed DOI
Gull JM, et al. Digestive physiology of captive giant anteaters (Myrmecophaga tridactyla): determinants of faecal dry matter content. J Anim Physiol Anim Nutr. 2015;99(3):565–576. doi: 10.1111/jpn.12223. PubMed DOI
Teullet S, et al. Metagenomics uncovers dietary adaptations for chitin digestion in the gut microbiota of convergent myrmecophagous mammals. bioRxiv. 2023;2023.04.21.537829. PubMed PMC
Gaudin TJ, Hicks P, Di Blanco Y. Myrmecophaga tridactyla (Pilosa: Myrmecophagidae) Mamm Species. 2018;50(956):1–13. doi: 10.1093/mspecies/sey001. DOI
Kreutz K, Fischer F, Linsenmair KE. Timber plantations as favourite habitat for giant anteaters. Mammalia. 2012;76(2):137–142. doi: 10.1515/mammalia-2011-0049. DOI
Muegge BD, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332(6032):970–974. doi: 10.1126/science.1198719. PubMed DOI PMC
Clark A, et al. Survey of feeding practices, body condition and faeces consistency in captive ant-eating mammals in the UK. J Zoo Aquar Res. 2016;4(4):183–195.
McKenzie VJ, et al. The effects of captivity on the mammalian gut microbiome. Integr Compar Biol. 2017;57(4):690–704. doi: 10.1093/icb/icx090. PubMed DOI PMC
Sherrill-Mix S, et al. Allometry and ecology of the bilaterian gut microbiome. MBIO 2018;9(2). PubMed PMC
de Jonge N, et al., The gut microbiome of 54 mammalian species. Front. Microbiol. 2022;13. PubMed PMC
Cheng S-C, et al. Hologenomic insights into mammalian adaptations to myrmecophagy. Natl Sci Rev. 2022;10(4). PubMed PMC
Caporaso JG, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108(SUPPL. 1):4516–4522. doi: 10.1073/pnas.1000080107. PubMed DOI PMC
Milani C, et al. Assessing the fecal microbiota: an optimized ion torrent 16S rRNA gene-based analysis protocol. PLoS ONE. 2013;8(7). PubMed PMC
Mekadim C, et al. Dysbiosis of skin microbiome and gut microbiome in melanoma progression. BMC Microbiol. 2022;22(1). PubMed PMC
Bolyen E, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852–857. doi: 10.1038/s41587-019-0209-9. PubMed DOI PMC
Callahan BJ, et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Katoh K, et al. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC
Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5(3):e9490. doi: 10.1371/journal.pone.0009490. PubMed DOI PMC
Segata N et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6). PubMed PMC
Modrackova N, et al. The bifidobacterial distribution in the microbiome of captive primates reflects parvorder and feed specialization of the host. Sci Rep. 2021;11(1):15273. doi: 10.1038/s41598-021-94824-y. PubMed DOI PMC
Hungate RE, Macy J. The roll-tube method for cultivation of strict anaerobes. Bull Ecol Res Comm. 1973;17:123–126.
Modrackova N, et al. The bifidobacterial distribution in the microbiome of captive primates reflects parvorder and feed specialization of the host. Sci Rep. 2021;11(1):1–13. doi: 10.1038/s41598-021-94824-y. PubMed DOI PMC
Zoelzer F, Burger AL, Dierkes PW. Unraveling differences in fecal microbiota stability in mammals: from high variable carnivores and consistently stable herbivores. Animal Microbiome. 2021;3(1):77. doi: 10.1186/s42523-021-00141-0. PubMed DOI PMC
Yin XC, et al. Dietary perturbations alter the ecological significance of ingested Lactobacillus plantarum in the digestive tract. Sci Rep. 2017;7. PubMed PMC
Martino ME, et al. Bacterial adaptation to the host's diet is a key evolutionary force shaping drosophila-lactobacillus LESymbiosis. Cell Host Microbe. 2018;24(1):109. doi: 10.1016/j.chom.2018.06.001. PubMed DOI PMC
Ley RE, et al. Evolution of mammals and their gut microbes. Science. 2008;320(5883):1647–1651. doi: 10.1126/science.1155725. PubMed DOI PMC
Alberdi A, Martin Bideguren G, Aizpurua O. Diversity and compositional changes in the gut microbiota of wild and captive vertebrates: a meta-analysis. Sci Rep. 2021;11(1):22660. doi: 10.1038/s41598-021-02015-6. PubMed DOI PMC
Odonnell MM, et al. Core fecal microbiota of domesticated herbivorous ruminant, hindgut fermenters, and monogastric animals. MicrobiologyOpen. 2017;6(5):e00509. doi: 10.1002/mbo3.509. PubMed DOI PMC
Youngblut ND, et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat Commun. 2019;10(1):2200. doi: 10.1038/s41467-019-10191-3. PubMed DOI PMC
Amato KR, et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 2013;7(7):1344–1353. doi: 10.1038/ismej.2013.16. PubMed DOI PMC
David LA, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559. doi: 10.1038/nature12820. PubMed DOI PMC
Liu Y, Wang J, Wu C, Modulation of gut microbiota and immune system by probiotics, pre-biotics, and post-biotics. Front Nutr 2022;8. PubMed PMC
Li C, et al. Probiotics, prebiotics, and synbiotics regulate the intestinal microbiota differentially and restore the relative abundance of specific gut microorganisms. J Dairy Sci. 2020;103(7):5816–5829. doi: 10.3168/jds.2019-18003. PubMed DOI
Chapman CMC, Gibson GR, Rowland I. In vitro evaluation of single- and multi-strain probiotics: inter-species inhibition between probiotic strains, and inhibition of pathogens. Anaerobe. 2012;18(4):405–413. doi: 10.1016/j.anaerobe.2012.05.004. PubMed DOI
Neuzil-Bunesova V, et al. Feed insects as a reservoir of granadaene-producing lactococci. Front Microbiol. 2022;13. PubMed PMC
Song SJ et al. Cohabiting family members share microbiota with one another and with their dogs. eLife. 2013;2013(2). PubMed PMC
Hauffe HC, Barelli C. Conserve the germs: the gut microbiota and adaptive potential. Conserv Genet. 2019;20(1):19–27. doi: 10.1007/s10592-019-01150-y. DOI
Redford KH, et al. Conservation and the microbiome. Conserv Biol. 2012;26(2):195–197. doi: 10.1111/j.1523-1739.2012.01829.x. PubMed DOI PMC
Kohl KD, Skopec MM, Dearing MD, Captivity results in disparate loss of gut microbial diversity in closely related hosts. Conserv Physiol. 2014;2(1). PubMed PMC
Bahrndorff S, et al. The microbiome of animals: implications for conservation biology. Int J Genomics. 2016;2016:5304028. doi: 10.1155/2016/5304028. PubMed DOI PMC
Gibson KM, et al. Gut microbiome differences between wild and captive black rhinoceros—implications for rhino health. Sci Rep. 2019;9(1):7570. doi: 10.1038/s41598-019-43875-3. PubMed DOI PMC
Martiny AC. High proportions of bacteria are culturable across major biomes. ISME J. 2019;13(8):2125–2128. doi: 10.1038/s41396-019-0410-3. PubMed DOI PMC
Willem MdV, et al. Gut microbiome and health: mechanistic insights. Gut. 2022;71(5):1020. doi: 10.1136/gutjnl-2021-326789. PubMed DOI PMC
Makovska M, et al. Species and strain variability among sarcina isolates from diverse mammalian hosts. Animals. 2023;13(9). PubMed PMC
Neuzil-Bunesova V, et al. Bifidobacterium canis sp. Nov., a novel member of the bifidobacterium pseudolongum phylogenetic group isolated from faeces of a dog (Canis Lupus f. familiaris) Int J Syst Evolut Microbiol. 2020;70(9):5040–5047. doi: 10.1099/ijsem.0.004378. PubMed DOI
Bagge E, Persson M, Johansson KE. Diversity of spore-forming bacteria in cattle manure, slaughterhouse waste and samples from biogas plants. J Appl Microbiol. 2010;109(5):1549–1565. PubMed
Moore RJ, Lacey JA. Genomics of the pathogenic clostridia. Microbiol Spectrum. 2019;7(3). PubMed PMC
Guo P, et al. Clostridium species as probiotics: potentials and challenges. J Anim Sci Biotechnol. 2020;11(1). PubMed PMC
Rodriguez CI, Martiny JBH. Evolutionary relationships among bifidobacteria and their hosts and environments. BMC Genomics. 2020;21(1). PubMed PMC
Lugli GA, et al. Phylogenetic classification of six novel species belonging to the genus Bifidobacterium comprising Bifidobacterium anseris sp. nov., Bifidobacterium criceti sp. nov., Bifidobacterium imperatoris sp. nov., Bifidobacterium italicum sp. nov., Bifidobacterium margollesii sp. nov. and Bifidobacterium parmae sp. nov. Syst Appl Microbiol. 2018;41(3):173–83. PubMed
Lugli GA, et al. Exploring the biodiversity of Bifidobacterium asteroides among honey bee microbiomes. Environ Microbiol. 2022;24(12):5666–5679. doi: 10.1111/1462-2920.16223. PubMed DOI PMC
Meyer D, Stasse-Wolthuis M. The bifidogenic effect of inulin and oligofructose and its consequences for gut health. Eur J Clin Nutr. 2009;63(11):1277–1289. doi: 10.1038/ejcn.2009.64. PubMed DOI
Modrackova N, et al. Prebiotic potential of natural gums and starch for bifidobacteria of variable origins. Bioact Carbohydr Dietary Fibre. 2019;20.
Dempsey E, Corr SC. Lactobacillus spp. for gastrointestinal health: Current and future perspectives. Front Immunol. 2022;13:840245. doi: 10.3389/fimmu.2022.840245. PubMed DOI PMC
Shan C, et al. Pediococcus pentosaceus enhances host resistance against pathogen by increasing IL-1β production: understanding probiotic effectiveness and administration duration. Front. Immunol. 2021;12. PubMed PMC
Wanna W, et al. Evaluation of probiotic characteristics and whole genome analysis of Pediococcus pentosaceus MR001 for use as probiotic bacteria in shrimp aquaculture. Sci. Rep. 2021;11(1). PubMed PMC
Wang H, et al. Effects of compound probiotics on growth performance, rumen fermentation, blood parameters, and health status of neonatal Holstein calves. J Dairy Sci. 2022;105(3):2190–2200. doi: 10.3168/jds.2021-20721. PubMed DOI
Li H, et al. Pediococcus pentosaceus im96 exerts protective effects against enterohemorrhagic escherichia coli o157:H7 infection in vivo. Foods. 2021;10(12). PubMed PMC
Chen P, et al. Characterization of Streptococcus lutetiensis isolated from clinical mastitis of dairy cows. J Dairy Sci. 2021;104(1):702–714. doi: 10.3168/jds.2020-18347. PubMed DOI
Jans C, Boleij A. The road to infection: host-microbe interactions defining the pathogenicity of Streptococcus bovis/Streptococcus equinus complex members. Front Microbiol. 2018;9(APR). PubMed PMC
Wang X, et al. Antimicrobial resistance of Escherichia coli, Enterobacter spp., Klebsiella pneumoniae and Enterococcus spp. isolated from the feces of giant panda. BMC Microbiol. 2022;22(1):102. doi: 10.1186/s12866-022-02514-0. PubMed DOI PMC
Modrackova N, et al. Microbial shifts of faecal microbiota using enteral nutrition in vitro. J Funct Foods. 2021;77:104330. doi: 10.1016/j.jff.2020.104330. DOI
Bunesova V, et al. Effect of rearing systems and diets composition on the survival of probiotic bifidobacteria in the digestive tract of calves. Livest Sci. 2015;178:317–321. doi: 10.1016/j.livsci.2015.06.017. DOI
Ma J-E et al. The fecal metagenomics of malayan pangolins identifies an extensive adaptation to myrmecophagy. Front Microbiol. 2018;9. PubMed PMC
Metabolic diversity and responses of anteater clostridial isolates to chitin-based substrates