Feed Insects as a Reservoir of Granadaene-Producing Lactococci

. 2022 ; 13 () : 848490. [epub] 20220509

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35615513

Insects are a component of the diet of different animal species and have been suggested as the major source of human dietary protein for the future. However, insects are also carriers of potentially pathogenic microbes that constitute a risk to food and feed safety. In this study, we reported the occurrence of a hemolytic orange pigmented producing phenotype of Lactococcus garvieae/petauri/formosensis in the fecal microbiota of golden lion tamarins (Leontopithecus rosalia) and feed larvae (Zophobas atratus). Feed insects were identified as a regular source of L. garvieae/petauri/formosensis based on a reanalysis of available 16S rRNA gene libraries. Pan-genome analysis suggested the existence of four clusters within the L. garvieae/petauri/formosensis group. The presence of cyl cluster indicated that some strains of the L. garvieae/petauri/formosensis group produced a pigment similar to granadaene, an orange cytotoxic lipid produced by group B streptococci, including Streptococcus agalactiae. Pigment production by L. garvieae/petauri/formosensis strains was dependent on the presence of the fermentable sugars, with no pigment being observed at pH <4.7. The addition of buffering compounds or arginine, which can be metabolized to ammonium, restored pigment formation. In addition, pigment formation might be related to the source of peptone. These data suggest that edible insects are a possible source of granadaene-producing lactococci, which can be considered a pathogenic risk with zoonotic potential.

Zobrazit více v PubMed

Armistead B., Herrero-Foncubierta P., Coleman M., Quach P., Whidbey C., Justicia J., et al. (2020a). Lipid analogs reveal features critical for hemolysis and diminish granadaene mediated Group B Streptococcus infection. Nat. Commun. 11:1502. 10.1038/s41467-020-15282-15280 PubMed DOI PMC

Armistead B., Whidbey C., Iyer L. M., Herrero-Foncubierta P., Quach P., Haidour A., et al. (2020b). The cyl genes reveal the biosynthetic and evolutionary origins of the group b Streptococcus hemolytic lipid, granadaene. Front. Microbiol. 10:3123. 10.3389/fmicb.2019.03123 PubMed DOI PMC

Blom J., Kreis J., Spänig S., Juhre T., Bertelli C., Ernst C., et al. (2016). EDGAR 2.0: an enhanced software platform for comparative gene content analyses. Nucleic Acids Res. 44 W22–W28. 10.1093/nar/gkw255 PubMed DOI PMC

Callahan B. J., McMurdie P. J., Rosen M. J., Han A. W., Johnson A. J. A., Holmes S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13 581–583. 10.1038/nmeth.3869 PubMed DOI PMC

De la Rosa M., Perez M., Carazo C., Pareja L., Peis J. I., Hernandez F. (1992). New granada medium for detection and identification of group B Streptococci. J. Clin. Microbiol. 30 1019–1021. 10.1128/jcm.30.4.1019-1021.1992 PubMed DOI PMC

DeSantis T. Z., Hugenholtz P., Larsen N., Rojas M., Brodie E. L., Keller K., et al. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72 5069–5072. 10.1128/AEM.03006-3005 PubMed DOI PMC

Didion J. P., Martin M., Collins F. S. (2017). Atropos: specific, sensitive, and speedy trimming of sequencing reads. PeerJ 5:e3720. 10.7717/peerj.3720 PubMed DOI PMC

Eilenberg J., Vlak J. M., Nielsen-LeRoux C., Cappellozza S., Jensen A. B. (2015). Diseases in insects produced for food and feed. J. Insects Food Feed 1 87–102. 10.3920/jiff2014.0022 PubMed DOI

Ferrario C., Ricci G., Milani C., Lugli G. A., Ventura M., Eraclio G., et al. (2013). Lactococcus garvieae: where is it from? a first approach to explore the evolutionary history of this emerging pathogen. PLoS One 8:e84796. 10.1371/journal.pone.0084796 PubMed DOI PMC

Garofalo C., Milanović V., Cardinali F., Aquilanti L., Clementi F., Osimani A. (2019). Current knowledge on the microbiota of edible insects intended for human consumption: a state-of-the-art review. Food Res. Int. 125:108527. 10.1016/j.foodres.2019.108527 PubMed DOI

Garofalo C., Osimani A., Milanović V., Taccari M., Cardinali F., Aquilanti L., et al. (2017). The microbiota of marketed processed edible insects as revealed by high-throughput sequencing. Food Microbiol. 62 15–22. 10.1016/j.fm.2016.09.012 PubMed DOI

Garvie E. I., Farrow J. A. E., Phillips B. A. (1981). A taxonomic study of some strains of streptococci which grow at 10°C but not at 45°C including Streptococcus lactis and Streptococcus cremoris. Zentralblatt fur Bakteriologie. Allgemeine Angewandte und Okologische Microbiologie Abt.1 Orig. C Hyg. 2 151–165. 10.1016/s0721-9571(81)80037-3 DOI

Gasco L., Biasato I., Dabbou S., Schiavone A., Gai F. (2019). Animals fed insect-based diets: state-of-the-art on digestibility, performance and product quality. Animals 9:170. 10.3390/ani9040170 PubMed DOI PMC

Gibello A., Galán-Sánchez F., Blanco M. M., Rodríguez-Iglesias M., Domínguez L., Fernández-Garayzábal J. F. (2016). The zoonotic potential of Lactococcus garvieae: an overview on microbiology, epidemiology, virulence factors and relationship with its presence in foods. Res. Vet. Sci. 109 59–70. 10.1016/j.rvsc.2016.09.010 PubMed DOI

Goodman L. B., Lawton M. R., Franklin-Guild R. J., Anderson R. R., Schaan L., Thachil A. J., et al. (2017). Lactococcus petauri sp. nov., isolated from an abscess of a sugar glider. Int. J. Systematic Evol. Microbiol. 67 4397–4404. 10.1099/ijsem.0.002303 PubMed DOI PMC

Govorushko S. (2019). Global status of insects as food and feed source: a review. Trends Food Sci. Technol. 91 436–445. 10.1016/j.tifs.2019.07.032 DOI

Hall T. A. (1999). BioEdit: a User-friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. London: Information Retrieval Ltd.

Hall T., Biosciences I., Carlsbad C. (2011). BioEdit: an important software for molecular biology. GERF Bull. Biosci. 2 60–61.

Hernández-Flores L., Llanderal-Cázares C., Guzmán-Franco A. W., Aranda-Ocampo S. (2015). Bacteria present in comadia redtenbacheri larvae (Lepidoptera: Cossidae). J. Med. Entomol. 52 1150–1158. 10.1093/jme/tjv099 PubMed DOI

Kelleher P., Bottacini F., Mahony J., Kilcawley K. N., van Sinderen D. (2017). Comparative and functional genomics of the Lactococcus lactis taxon; insights into evolution and niche adaptation. BMC Genomics 18:267. 10.1186/s12864-017-3650-3655 PubMed DOI PMC

Laroute V., Yasaro C., Narin W., Mazzoli R., Pessione E., Cocaign-Bousquet M., et al. (2016). GABA production in lactococcus lactis is enhanced by arginine and co-addition of malate. Front. Microbiol. 7:1050. 10.3389/fmicb.2016.01050 PubMed DOI PMC

Liu G. Y., Nizet V. (2009). Color me bad: microbial pigments as virulence factors. Trends Microbiol. 17 406–413. 10.1016/j.tim.2009.06.006 PubMed DOI PMC

Liu G. Y., Essex A., Buchanan J. T., Datta V., Hoffman H. M., Bastian J. F., et al. (2005). Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J. Exp. Med. 202 209–215. 10.1084/jem.20050846 PubMed DOI PMC

Meier-Kolthoff J. P., Göker M. (2019). TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 10:2182. 10.1038/s41467-019-10210-3 PubMed DOI PMC

Meier-Kolthoff J. P., Carbasse J. S., Peinado-Olarte R. L., Göker M. (2021). TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 50 D801–D807. 10.1093/nar/gkab902 PubMed DOI PMC

Meyburgh C. M., Bragg R. R., Boucher C. E. (2017). Lactococcus garvieae: an emerging bacterial pathogen of fish. Dis. Aquat. Organ. 123 67–79. 10.3354/dao03083 PubMed DOI

Milanović V., Osimani A., Roncolini A., Garofalo C., Aquilanti L., Pasquini M., et al. (2018). Investigation of the dominant microbiota in ready-to-eat grasshoppers and mealworms and quantification of carbapenem resistance genes by qPCR. Front. Microbiol. 9:3036. 10.3389/fmicb.2018.03036 PubMed DOI PMC

Modrackova N., Stovicek A., Burtscher J., Bolechova P., Killer J., Domig K. J., et al. (2021). The bifidobacterial distribution in the microbiome of captive primates reflects parvorder and feed specialization of the host. Sci. Rep. 11:15273. 10.1038/s41598-021-94824-y PubMed DOI PMC

Nizet V. (2002). Streptococcal β-hemolysins: genetics and role in disease pathogenesis. Trends Microbiol. 10 575–580. 10.1016/S0966-842X(02)02473-2473 PubMed DOI

Orban J. I., Patterson J. A. (2000). Modification of the phosphoketolase assay for rapid identification of bifidobacteria. J. Microbiol. Methods 40 221–224. 10.1016/s0167-7012(00)00133-130 PubMed DOI

Osimani A., Aquilanti L. (2021). Spore-forming bacteria in insect-based foods. Curr. Opin. Food Sci. 37 112–117. PubMed

Paradas M., Jurado R., Haidour A., Rodríguez Granger J., Sampedro Martínez A., De La Rosa, et al. (2012). Clarifying the structure of granadaene: total synthesis of related analogue [2]-granadaene and confirmation of its absolute stereochemistry. Bioorg. Med. Chem. 20 6655–6661. 10.1016/j.bmc.2012.09.017 PubMed DOI

Parodi A., Leip A., De Boer I. J. M., Slegers P. M., Ziegler F., Temme E. H. M., et al. (2018). The potential of future foods for sustainable and healthy diets. Nat. Sustainabil. 1 782–789. 10.1038/s41893-018-0189-187 DOI

Raheem D., Raposo A., Oluwole O. B., Nieuwland M., Saraiva A., Carrascosa C. (2019). Entomophagy: nutritional, ecological, safety and legislation aspects. Food Res. Int. 126:108672. 10.1016/j.foodres.2019.108672 PubMed DOI

Richter M., Rosselló-Móra R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. U S A. 106 19126–19131. 10.1073/pnas.0906412106 PubMed DOI PMC

Rosa-Fraile M., Dramsi S., Spellerberg B. (2014). Group B streptococcal haemolysin and pigment, a tale of twins. FEMS Microbiol. Rev. 38 932–946. 10.1111/1574-6976.12071 PubMed DOI PMC

Rosa-Fraile M., Rodríguez-Granger J., Haidour-Benamin A., Cuerva J. M., Sampedro A. (2006). Granadaene: proposed structure of the group B Streptococcus polyenic pigment. Appl. Environ. Microbiol. 72 6367–6370. 10.1128/AEM.00756-756 PubMed DOI PMC

Rosa-Fraile M., Sampedro A., Varela J., Garcia-Peña M., Gimenez-Gallego G. (1999). Identification of a peptide from mammal albumins responsible for enhanced pigment production by group B Streptococci. Clin. Diagn. Lab. Immunol. 6 425–426. 10.1128/cdli.6.3.425-426.1999 PubMed DOI PMC

Shabayek S., Spellerberg B. (2017). Acid stress response mechanisms of group B Streptococci. Front. Cell. Infect. Microbiol. 7:395. 10.3389/fcimb.2017.00395 PubMed DOI PMC

Shahi N., Mallik S. K. (2020). Emerging bacterial fish pathogen Lactococcus garvieae RTCLI04, isolated from rainbow trout (Oncorhynchus mykiss): genomic features and comparative genomics. Microb. Pathog. 147:104368. 10.1016/j.micpath.2020.104368 PubMed DOI

Shannon A. L., Attwood G., Hopcroft D. H., Christeller J. T. (2001). Characterization of lactic acid bacteria in the larval midgut of the keratinophagous lepidopteran, Hofmannophila pseudospretella. Lett. Appl. Microbiol. 32 36–41. 10.1046/j.1472-765X.2001.00854.x PubMed DOI

Six A., Firon A., Plainvert C., Caplain C., Touak G., Dmytruk N., et al. (2016). Molecular characterization of nonhemolytic and nonpigmented group b streptococci responsible for human invasive infections. J. Clin. Microbiol. 54 75–82. 10.1128/JCM.02177-2115 PubMed DOI PMC

Smith C. C., Srygley R. B., Healy F., Swaminath K., Mueller U. G. (2017). Spatial structure of the mormon cricket gut microbiome and its predicted contribution to nutrition and immune function. Front. Microbiol. 8:801. 10.3389/fmicb.2017.00801 PubMed DOI PMC

Spellerberg B., Martin S., Brandt C., Lütticken R. (2000). The cyl genes of Streptococcus agalactiae are involved in the production of pigment. FEMS Microbiol. Lett. 188 125–128. 10.1016/S0378-1097(00)00224-X PubMed DOI

Stoddard S. F., Smith B. J., Hein R., Roller B. R. K., Schmidt T. M. (2015). rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 43 D593–D598. 10.1093/nar/gku1201 PubMed DOI PMC

Stoops J., Crauwels S., Waud M., Claes J., Lievens B., Van Campenhout L. (2016). Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoria migratorioides) sold for human consumption. Food Microbiol. 53 122–127. 10.1016/j.fm.2015.09.010 PubMed DOI

Thompson J. D., Higgins D. G., Gibson T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22 4673–4680. 10.1093/nar/22.22.4673 PubMed DOI PMC

Tinker K. A., Ottesen E. A. (2016). The core gut microbiome of the American cockroach, Periplaneta americana, is stable and resilient to dietary shifts. Appl. Environ. Microbiol. 82 6603–6610. 10.1128/AEM.01837-1816 PubMed DOI PMC

van der Fels-Klerx H. J., Camenzuli L., Belluco S., Meijer N., Ricci A. (2018). Food safety issues related to uses of insects for feeds and foods. Comp. Rev. Food Sci. Food Safety 17 1172–1183. 10.1111/1541-4337.12385 PubMed DOI

Vandeweyer D., Crauwels S., Lievens B., Van Campenhout L. (2017). Microbial counts of mealworm larvae (Tenebrio molitor) and crickets (Acheta domesticus and Gryllodes sigillatus) from different rearing companies and different production batches. Int. J. Food Microbiol. 242 13–18. 10.1016/j.ijfoodmicro.2016.11.007 PubMed DOI

Vandeweyer D., Wynants E., Crauwels S., Verreth C., Viaene N., Claes J., et al. (2018). Microbial dynamics during industrial rearing, processing, and storage of tropical house crickets (Gryllodes sigillatus) for human consumption. Appl. Environ. Microbiol. 84:e00255-18. 10.1128/AEM.00255-218 PubMed DOI PMC

Vendrell D., Balcázar J. L., Ruiz-Zarzuela I., de Blas I., Gironés O., Múzquiz J. L. (2006). Lactococcus garvieae in fish: a review. Comp. Immunol. Microbiol. Infect. Dis. 29 177–198. 10.1016/j.cimid.2006.06.003 PubMed DOI

Verbeke W., Spranghers T., De Clercq P., De Smet S., Sas B., Eeckhout M. (2015). Insects in animal feed: acceptance and its determinants among farmers, agriculture sector stakeholders and citizens. Animal Feed Sci. Technol. 204 72–87. 10.1016/j.anifeedsci.2015.04.001 DOI

Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173 697–703. 10.1128/jb.173.2.697-703.1991 PubMed DOI PMC

Wynants E., Crauwels S., Verreth C., Gianotten N., Lievens B., Claes J., et al. (2018). Microbial dynamics during production of lesser mealworms (Alphitobius diaperinus) for human consumption at industrial scale. Food Microbiol. 70 181–191. 10.1016/j.fm.2017.09.012 PubMed DOI

Zhang J., Suo Y., Zhang D., Jin F., Zhao H., Shi C. (2018). Genetic and virulent difference between pigmented and non-pigmented Staphylococcus aureus. Front. Microbiol. 9:598. 10.3389/fmicb.2018.00598 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...