Feed Insects as a Reservoir of Granadaene-Producing Lactococci

. 2022 ; 13 () : 848490. [epub] 20220509

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35615513

Insects are a component of the diet of different animal species and have been suggested as the major source of human dietary protein for the future. However, insects are also carriers of potentially pathogenic microbes that constitute a risk to food and feed safety. In this study, we reported the occurrence of a hemolytic orange pigmented producing phenotype of Lactococcus garvieae/petauri/formosensis in the fecal microbiota of golden lion tamarins (Leontopithecus rosalia) and feed larvae (Zophobas atratus). Feed insects were identified as a regular source of L. garvieae/petauri/formosensis based on a reanalysis of available 16S rRNA gene libraries. Pan-genome analysis suggested the existence of four clusters within the L. garvieae/petauri/formosensis group. The presence of cyl cluster indicated that some strains of the L. garvieae/petauri/formosensis group produced a pigment similar to granadaene, an orange cytotoxic lipid produced by group B streptococci, including Streptococcus agalactiae. Pigment production by L. garvieae/petauri/formosensis strains was dependent on the presence of the fermentable sugars, with no pigment being observed at pH <4.7. The addition of buffering compounds or arginine, which can be metabolized to ammonium, restored pigment formation. In addition, pigment formation might be related to the source of peptone. These data suggest that edible insects are a possible source of granadaene-producing lactococci, which can be considered a pathogenic risk with zoonotic potential.

Zobrazit více v PubMed

Armistead B., Herrero-Foncubierta P., Coleman M., Quach P., Whidbey C., Justicia J., et al. (2020a). Lipid analogs reveal features critical for hemolysis and diminish granadaene mediated Group B PubMed DOI PMC

Armistead B., Whidbey C., Iyer L. M., Herrero-Foncubierta P., Quach P., Haidour A., et al. (2020b). The cyl genes reveal the biosynthetic and evolutionary origins of the group b PubMed DOI PMC

Blom J., Kreis J., Spänig S., Juhre T., Bertelli C., Ernst C., et al. (2016). EDGAR 2.0: an enhanced software platform for comparative gene content analyses. PubMed DOI PMC

Callahan B. J., McMurdie P. J., Rosen M. J., Han A. W., Johnson A. J. A., Holmes S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. PubMed DOI PMC

De la Rosa M., Perez M., Carazo C., Pareja L., Peis J. I., Hernandez F. (1992). New granada medium for detection and identification of group B PubMed DOI PMC

DeSantis T. Z., Hugenholtz P., Larsen N., Rojas M., Brodie E. L., Keller K., et al. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. PubMed DOI PMC

Didion J. P., Martin M., Collins F. S. (2017). Atropos: specific, sensitive, and speedy trimming of sequencing reads. PubMed DOI PMC

Eilenberg J., Vlak J. M., Nielsen-LeRoux C., Cappellozza S., Jensen A. B. (2015). Diseases in insects produced for food and feed. DOI

Ferrario C., Ricci G., Milani C., Lugli G. A., Ventura M., Eraclio G., et al. (2013). Lactococcus garvieae: where is it from? a first approach to explore the evolutionary history of this emerging pathogen. PubMed DOI PMC

Garofalo C., Milanović V., Cardinali F., Aquilanti L., Clementi F., Osimani A. (2019). Current knowledge on the microbiota of edible insects intended for human consumption: a state-of-the-art review. PubMed DOI

Garofalo C., Osimani A., Milanović V., Taccari M., Cardinali F., Aquilanti L., et al. (2017). The microbiota of marketed processed edible insects as revealed by high-throughput sequencing. PubMed DOI

Garvie E. I., Farrow J. A. E., Phillips B. A. (1981). A taxonomic study of some strains of streptococci which grow at 10°C but not at 45°C including DOI

Gasco L., Biasato I., Dabbou S., Schiavone A., Gai F. (2019). Animals fed insect-based diets: state-of-the-art on digestibility, performance and product quality. PubMed DOI PMC

Gibello A., Galán-Sánchez F., Blanco M. M., Rodríguez-Iglesias M., Domínguez L., Fernández-Garayzábal J. F. (2016). The zoonotic potential of PubMed DOI

Goodman L. B., Lawton M. R., Franklin-Guild R. J., Anderson R. R., Schaan L., Thachil A. J., et al. (2017). PubMed DOI PMC

Govorushko S. (2019). Global status of insects as food and feed source: a review. DOI

Hall T. A. (1999).

Hall T., Biosciences I., Carlsbad C. (2011). BioEdit: an important software for molecular biology.

Hernández-Flores L., Llanderal-Cázares C., Guzmán-Franco A. W., Aranda-Ocampo S. (2015). Bacteria present in comadia redtenbacheri larvae (Lepidoptera: Cossidae). PubMed DOI

Kelleher P., Bottacini F., Mahony J., Kilcawley K. N., van Sinderen D. (2017). Comparative and functional genomics of the PubMed DOI PMC

Laroute V., Yasaro C., Narin W., Mazzoli R., Pessione E., Cocaign-Bousquet M., et al. (2016). GABA production in lactococcus lactis is enhanced by arginine and co-addition of malate. PubMed DOI PMC

Liu G. Y., Nizet V. (2009). Color me bad: microbial pigments as virulence factors. PubMed DOI PMC

Liu G. Y., Essex A., Buchanan J. T., Datta V., Hoffman H. M., Bastian J. F., et al. (2005). PubMed DOI PMC

Meier-Kolthoff J. P., Göker M. (2019). TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. PubMed DOI PMC

Meier-Kolthoff J. P., Carbasse J. S., Peinado-Olarte R. L., Göker M. (2021). TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. PubMed DOI PMC

Meyburgh C. M., Bragg R. R., Boucher C. E. (2017). PubMed DOI

Milanović V., Osimani A., Roncolini A., Garofalo C., Aquilanti L., Pasquini M., et al. (2018). Investigation of the dominant microbiota in ready-to-eat grasshoppers and mealworms and quantification of carbapenem resistance genes by qPCR. PubMed DOI PMC

Modrackova N., Stovicek A., Burtscher J., Bolechova P., Killer J., Domig K. J., et al. (2021). The bifidobacterial distribution in the microbiome of captive primates reflects parvorder and feed specialization of the host. PubMed DOI PMC

Nizet V. (2002). Streptococcal β-hemolysins: genetics and role in disease pathogenesis. PubMed DOI

Orban J. I., Patterson J. A. (2000). Modification of the phosphoketolase assay for rapid identification of bifidobacteria. PubMed DOI

Osimani A., Aquilanti L. (2021). Spore-forming bacteria in insect-based foods.

Paradas M., Jurado R., Haidour A., Rodríguez Granger J., Sampedro Martínez A., De La Rosa, et al. (2012). Clarifying the structure of granadaene: total synthesis of related analogue [2]-granadaene and confirmation of its absolute stereochemistry. PubMed DOI

Parodi A., Leip A., De Boer I. J. M., Slegers P. M., Ziegler F., Temme E. H. M., et al. (2018). The potential of future foods for sustainable and healthy diets. DOI

Raheem D., Raposo A., Oluwole O. B., Nieuwland M., Saraiva A., Carrascosa C. (2019). Entomophagy: nutritional, ecological, safety and legislation aspects. PubMed DOI

Richter M., Rosselló-Móra R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. PubMed DOI PMC

Rosa-Fraile M., Dramsi S., Spellerberg B. (2014). Group B streptococcal haemolysin and pigment, a tale of twins. PubMed DOI PMC

Rosa-Fraile M., Rodríguez-Granger J., Haidour-Benamin A., Cuerva J. M., Sampedro A. (2006). Granadaene: proposed structure of the group B PubMed DOI PMC

Rosa-Fraile M., Sampedro A., Varela J., Garcia-Peña M., Gimenez-Gallego G. (1999). Identification of a peptide from mammal albumins responsible for enhanced pigment production by group B PubMed DOI PMC

Shabayek S., Spellerberg B. (2017). Acid stress response mechanisms of group B PubMed DOI PMC

Shahi N., Mallik S. K. (2020). Emerging bacterial fish pathogen PubMed DOI

Shannon A. L., Attwood G., Hopcroft D. H., Christeller J. T. (2001). Characterization of lactic acid bacteria in the larval midgut of the keratinophagous lepidopteran, PubMed DOI

Six A., Firon A., Plainvert C., Caplain C., Touak G., Dmytruk N., et al. (2016). Molecular characterization of nonhemolytic and nonpigmented group b streptococci responsible for human invasive infections. PubMed DOI PMC

Smith C. C., Srygley R. B., Healy F., Swaminath K., Mueller U. G. (2017). Spatial structure of the mormon cricket gut microbiome and its predicted contribution to nutrition and immune function. PubMed DOI PMC

Spellerberg B., Martin S., Brandt C., Lütticken R. (2000). The cyl genes of PubMed DOI

Stoddard S. F., Smith B. J., Hein R., Roller B. R. K., Schmidt T. M. (2015). rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. PubMed DOI PMC

Stoops J., Crauwels S., Waud M., Claes J., Lievens B., Van Campenhout L. (2016). Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers ( PubMed DOI

Thompson J. D., Higgins D. G., Gibson T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. PubMed DOI PMC

Tinker K. A., Ottesen E. A. (2016). The core gut microbiome of the American cockroach, PubMed DOI PMC

van der Fels-Klerx H. J., Camenzuli L., Belluco S., Meijer N., Ricci A. (2018). Food safety issues related to uses of insects for feeds and foods. PubMed DOI

Vandeweyer D., Crauwels S., Lievens B., Van Campenhout L. (2017). Microbial counts of mealworm larvae ( PubMed DOI

Vandeweyer D., Wynants E., Crauwels S., Verreth C., Viaene N., Claes J., et al. (2018). Microbial dynamics during industrial rearing, processing, and storage of tropical house crickets ( PubMed DOI PMC

Vendrell D., Balcázar J. L., Ruiz-Zarzuela I., de Blas I., Gironés O., Múzquiz J. L. (2006). Lactococcus garvieae in fish: a review. PubMed DOI

Verbeke W., Spranghers T., De Clercq P., De Smet S., Sas B., Eeckhout M. (2015). Insects in animal feed: acceptance and its determinants among farmers, agriculture sector stakeholders and citizens. DOI

Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. PubMed DOI PMC

Wynants E., Crauwels S., Verreth C., Gianotten N., Lievens B., Claes J., et al. (2018). Microbial dynamics during production of lesser mealworms ( PubMed DOI

Zhang J., Suo Y., Zhang D., Jin F., Zhao H., Shi C. (2018). Genetic and virulent difference between pigmented and non-pigmented PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...